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The first wave of the COVID-19 pandemic was characterized by an initial rapid rise in new cases followed by a peak
and a more erratic behaviour that varies between regions. This is not easy to reproduce with traditional SIR models,
which predict a more symmetric epidemic. Here, we argue that superspreaders and population heterogeneity would pre-
dict such behaviour even in the absence of restrictions on social life. We present an agent-based lattice model of a dis-
ease spreading in a heterogeneous population. We predict that an epidemic driven by superspreaders will spread
rapidly in cities, but not in the countryside where the sparse population limits the maximal number of secondary infec-
tions. This suggests that mitigation strategies should include restrictions on venues where people meet a large number
of strangers. Furthermore, mitigating the epidemic in cities and in the countryside may require different levels of restric-
tions.
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At its onset the coronavirus disease 2019 (COVID-
19) pandemic shocked the world, with the number of
new cases and deaths growing more than 20% per
day in the main hotspots [1]. With a growth rate this
high, the disease was expected to spread through the
population in less than six months without mitiga-
tion, and to reach a peak after three months, at
which point 30% of the population would have had
the disease [2]. This, however, was not how the initial
wave of the epidemic played out [3].

While most of the epidemic undoubtedly was
halted due to mitigation efforts, it is striking that
even in countries that have implemented a very
light lockdown, such as Sweden, the epidemic
peaked long before herd immunity was achieved.
Furthermore, even societies that slowly reopened
businesses and public life did not experience an
immediate explosive resurgence of the epidemic
expected given the low levels of immunity and the
speed with which the disease spread initially [3].

Here, we will propose an agent-based lattice
model of an infectious disease that spreads in a
geographically heterogeneous population. The
model is a simplified depiction of the dynamics of
viral infection with severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), with its

characteristic parameters. We will examine the
effect of the heterogeneous infection pattern that is
so characteristic of this disease, using a gamma dis-
tributed infectiousness with dispersion factor
k = 0.1 from [4]. Infection heterogeneity is a feature
of several epidemic diseases [5] and plays a particu-
larly important role for COVID-19 [4,6–8]. In indi-
vidual events, a single person has caused dozens of
infections [9]. At the same time, the attack rate
within households has been reported to be very
low, at less than 20% [10], despite prolonged close
contact. This suggests that the majority of COVID-
19 patients infect very little. In [11] an agent-based
model was used to demonstrate that the Achilles
heel of an epidemic driven by superspreaders was
public social contacts, while the repeated contacts
to smaller family and work groups were less dan-
gerous.

Looking at COVID-19 data from the first wave
in the United States in the analysis by [12], it is
clear that a rapidly spreading epidemic occurs pri-
marily in densely populated areas. In less densely
populated areas, the epidemic onset is delayed, and
in rural areas, the epidemic never really starts, with
most cases appearing to be spillover from the cities.
The daily per capita mortality at the first peak in
[12] varies by a factor of ten between the most and
least densely populated areas in the United States.
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The density dependence of COVID epidemics
could in principle be explained by the higher chance
of meeting infected people in dense areas. However,
only 1% of COVID-19 spread was outdoors in
China [13], suggesting that only indoor meetings
count. Furthermore, only few infections happen
within households [10], suggesting that it is social
visits and meetings in confined areas that facilitate
infection [14]. We will base our model on these
observations.

METHODS

Our model plays out on a lattice of side L with periodic
boundary conditions. Each lattice site may either be
empty or contain one agent. The agents can be in one of
three states, susceptible, infectious or recovered. Individu-
als interact with their neighbours with a frequency fmeet

which is constant and fixed along with the mean infec-
tion probability per meeting to give the desired number
of secondary infections at the onset of the epidemic, R0.
The distance that agents travel we draw from the distri-
bution pðrÞ¼ 1

r0
e�r=r0 with a mean of r0 = 10 sites unless

stated otherwise. The real probability distribution of tra-
vel distances for cars has in Italy been determined to be
an exponential function below 20 km, and then a power
law with a steeper cut-off around 500 km [15]. The inter-
action radius r0 is not by itself a meaningful parameter.
Rather, it is the number of neighbours within this radius,
given by πρr20 (where ρ is the population density) which
determines the behaviour of the system, as will be
demonstrated below. A diagram of the model can be
seen in Fig. 1.

COVID-19 is known to be transmitted before the onset
of symptoms [16]. For simplicity, rather than using the
susceptible-exposed-infectious-recovered (SEIR) modelling
framework, we combined the exposed, presymptomatic
state and the overlapping infectious period into one single
infectious period of 1/γ = 10 days. Given the geometry of
the system, this leads to a measured serial interval of

approximately 6 days, slightly higher than most sources
estimate [17,18]. However, it is a small difference, and
given the simplifications of our model we judged that it
would not be meaningful to fit this parameter precisely to
the observed value. Infected agents randomly leave the
infectious state with a rate of γ per day, meaning that the
duration of the disease is exponentially distributed. The
implications of using a different distribution of disease
durations are explored in the supplement.

When an infectious agent i interacts with a susceptible
agent, the susceptible agent will become infected with a
probability pi that is specific to the infecting agent. We
draw these probabilities from a gamma distribution with
dispersion factor k = 0.1 [4,5], within the range observed
for COVID-19 [4,6,8]. The distribution is normalized to
give an average reproduction number R0 of 3 at a popula-
tion density of 1 at the onset of the epidemic.

The geographical heterogeneity of the population is
modelled by placing a square ‘city’ of side L/5 on a lattice
with periodic boundary conditions and lattice size L. The
city has the population density 1, that is all sites are occu-
pied, and the city population is thus L2/25. The city is sur-
rounded by ‘countryside’ with a population density and
total population of 24 L2/25.

Importantly, we assume that the rate of interactions per
agent is kept the same in both city and countryside, mean-
ing that we assume that people are equally social. If an
agent in the countryside attempts to interact with an
empty site, the attempt is counted as failed, and new
attempts are made until the number of contacts is the
same as in the city, where all sites are occupied.

Thus, people in the countryside interact with a smaller
set of people while still spending the same amount of time
on social activities. In a wider perspective, this proposes
that density dependence of disease spreading is more due
to difference in diversity of contacts than due to differ-
ences in time spent around other people. Thereby our
model assumes an infection rate that depends on density,
but not in a simple linear fashion as sometimes assumed
[19].

We seed the disease within the city. Even if we were to
seed it randomly, the city would usually be hit early on
provided that the epidemic catches on.

Fig. 1. Model: A superspreader in a city interacts a little with a lot of people and will infect some fraction of them. On the other
hand, a superspreader outside the city will interact a lot with each of a smaller set of people. The superspreader then infects practically
all of them, but there is a lower cap on the number of secondary infections.
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RESULTS

In Fig. 2, we consider a disease with heterogeneous
infection rates and study how simulated epidemic
trajectories depend on population density. One sees
that the dynamics resembles that of a SIR model at
values much lower and much higher than the criti-
cal density. In the low regime, the epidemic only
spreads in the city which is relatively well-mixed,
whereas in the high regime, the countryside begins
to resemble the city more and more. In both
extremes, the fraction of infected individuals rises
and falls symmetrically. The figure illustrates how
the epidemic is ‘stretched out’ in the intermediate
density range. The epidemic has the longest lifetime
when is just above the percolation threshold crit, as
the disease still spreads in the countryside, but is
nonetheless slowed down by the lower population
density.

In Fig. 3A,B, we measure the attack rate of the
epidemic in a homogeneously distributed popula-
tion in order to find the percolation threshold,
below which the epidemic will stop propagating.
Panel (A) identifies crit � 0.01 for a homogeneously
spreading disease. In contrast, a disease with an
overdispersion of k = 0.1 has a much higher critical
density crit � 0.04, as seen in (B). The same figure
demonstrates that it is not the density alone that

determines the ability of the disease to percolate,
but rather the number of neighbours, proportional
to r0. The overdispersed simulation and the simula-
tion with homogeneous infection were done with
same average disease transmission rate and the fac-
tor ∼ 4 difference in critical density comes about
because a disease with k = 0.1 has 10% of the
infected being responsible for 80% of the infections.
Thus, most people do not transmit the disease, and
it is therefore the density of the few people who do
spread the disease that sets the critical threshold.

Since our model analysis centres on superspread-
ers as a main driver of the epidemic, Fig. 3C com-
pares epidemics with and without superspreaders. It
can be seen that with no superspreaders, the epi-
demic will spread unhindered in the countryside,
albeit more slowly since the countryside is geo-
graphically larger than in the city.

This leads to a graph similar to two superim-
posed SIR-like models. If superspreaders are pre-
sent, however, the epidemic may spread both
slowly and erratically in the countryside and con-
tinue long after herd immunity is achieved in the
city.

The dependence of the percolation threshold on
the dispersion parameter k is further investigated in
Fig. 4, which shows the attack rate as a function of
both the number of neighbours and k. The figure
shows that the percolation threshold increases dras-
tically at low k, meaning that a superspreader-dri-
ven epidemic requires more social contacts per
person in order to spread. Once the epidemic
becomes sufficiently overdispersed (k < 0.05), it is
no longer viable.

In Fig. 5, we try to replicate the data compiled
by [12] and see that local disease incidence in a
model with heterogeneous infectivity is indeed
much more population density dependent than a
model assuming homogeneous infectivity. This fits
well with the cited data, which suggest a strong
dependence of COVID-19 incidence on population
density. It has already been known for years that
the spread of epidemics is population density
dependent [19]. Here, we show that this dependence
is enhanced by heterogeneous infectivity. Impor-
tantly, as opposed to traditional disease models, we
assume that everyone is equally social, but that the
set of available contacts is smaller in sparsely popu-
lated regions. The significance of this will be dis-
cussed further below.

The delayed onset and erratic behaviour of the
countryside epidemic obviously depend on the den-
sity and other characteristics of the countryside and
the assumed travelling pattern of individuals. Also,
real countryside contains a diverse pattern of smal-
ler and large settlements. Therefore, we considered
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Fig. 2. Epidemic trajectories: Infected fraction of the popula-
tion over time changes with the countryside population density
ρ. In the low- regime, increasing the population density
stretches the curve, as the epidemic spreads further from the
city. When ρ is above ∼ 0.06, the epidemic again approaches
the behaviour of a SIR model, as the epidemic now spreads
unhindered across the whole system. Around ρcrit, there is a
large variation in the duration of the epidemic. The parameters
used are γ = 0.1, r0 = 10, fmeet = 10 and dispersion parameter
k = 0.1.
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a system with several cities distributed on a lattice
with side length L = 1000 (Fig. 6). The system
mimics the observed city size distribution, which is
fairly close to the Zipf law [20,21]. The random dis-
tribution of smaller cities is not entirely naturalistic,
since evidence suggests that real cities are organized
in a fractal pattern [22,23]. A figure using a city dis-
tribution closer to a fractal can be found in the
supplement. For illustrative purposes, we chose a
density in the countryside that is close to but below
the percolation threshold for the disease (ρ = 0.03).
With this below-critical spreading, we observe cities

that are spared and cities that are nearly completely
infected. In reality assuming near critical spreading
in the countryside would not be necessary for glo-
bal spread, since people occasionally travel long
distances [15], facilitating rare direct transmissions
between distant cities.

DISCUSSION

Based on the above, we suggest that the lopsided
appearance of COVID-19 epidemic curves can be

A

C

B

Fig. 3. Comparison of models without and with superspreaders. Panel (A) shows the attack rate as a function of the number of
neighbours within the radius of interaction (∼ ρr0) in a population where everyone infects with the same rate. (B) shows attack
rate with heterogeneous infection rates, using a gamma distribution with dispersion factor k = 0.1. The two overlaid curves
demonstrate that the parameter r0 does not affect the physics of the system, and what really determines the ability of the disease
to percolate is the number of neighbours, proportional to ρr0. (C) Epidemic trajectory when superspreaders dominate (blue) and
when infectiousness is evenly distributed (red) for equal countryside population density and radius of interaction (ρr0 = 6).
When superspreaders are the main drivers of the epidemic, it is strongly impeded once the city has reached herd immunity.When
everyone infects equally, the epidemic simply spreads radially out from the city, leading to a ‘second wave’ in the countryside.
Parameters are as in Fig. 2.
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explained by heterogeneous infection ability com-
bined with a geographically heterogeneous popula-
tion. However, our model makes a number of

assumptions and breaks from reality, whose impor-
tance must be discussed.

First and foremost, the distribution of full and
empty lattice sites does not represent the geographi-
cal distribution of people as such. Rather, it repre-
sents the density of contacts. The density ratio
between people in the countryside compared to an
inner city is much lower than what is used in our
model. On the other hand, persons living outside
the cities may be more mobile than city-dwellers.
The density contrast of agents on our lattice repre-
sents the combined effect of these factors.

A further complication is the distribution of dis-
ease duration and incubation periods. We here
assume a simple exponential distribution of infec-
tious period duration, whereas the real mechanics
of COVID-19 includes presymptomatic transmis-
sion and a broad gamma distribution of incubation
periods [17]. A different infectious period distribu-
tion might complicate our findings. Therefore, we
examine the effect of a gamma distributed infec-
tious period duration in the supplement. We find
that, while changing this distribution has an effect
on the percolation threshold, it does not change
our fundamental conclusions.
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Fig. 4. Dependence of attack rate on density and k. Since
the variable determining percolation is not the absolute den-
sity, but the number of neighbours, we plot ρr0 on the x-axis
rather than ρ. It is seen that the disease percolates muchmore
easily at a higher k, which implies a more homogeneous
infectivity. The more overdispersed the disease (correspond-
ing to lower k), the more neighbours are required for percola-
tion.
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Fig. 5. Epidemic trajectory in regions of varying density.
When infectivity is homogeneous (top), the epidemic is a lot
less sensitive to a lower population density than when the
epidemic is driven by superspreaders (bottom). Here, the epi-
demic is nearly absent in the low-density regions and appears
to be driven by spillover. Inset illustrates the layout of the lat-
tice.
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Fig. 6. Simulation with multiple cities: Infected individuals
are shown in red, susceptibles are green, empty sites are white
and recovered are black. City size distribution mimics Zipf’s
law [23], such that there is one city of with 40,000 inhabi-
tants, 4 with 10,000, and so forth. The graphs show the frac-
tion of the population currently infected as a function of
time for three example runs of the simulation. Here, ρ = 0.03
and the other parameters are the same as the above figures.
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It has long been discussed how disease transmis-
sion rate depends on population density [19,24,25].
We here present a new way of looking at this prob-
lem. A classical SIR model with pseudo-mass
action transmission would assume a simple linear
dependence of R0 on population density, implicitly
assuming that people become more social by living
in a densely populated area.

Our model makes a different assumption: People
will be equally social regardless of population den-
sity, but when population density is lower, the
groups that they spend time with will be less
diverse. The number of possible unique contacts for
each individual declines linearly with population
density, but people in sparsely populated areas are
likely to have multiple encounters with the same
persons, as their communities are smaller.

If, however, the epidemic is dominated by super-
spreaders who only need one or a few encounters
to transmit the disease, the duration of each
encounter becomes less important as even a rather
brief contact to a superspreader is likely to lead to
infection. Instead, what limits the action of super-
spreaders is their number of unique contacts.
Superspreaders that interact with only a small,
tight-knit group will inherently be highly limited in
how many secondary infections they can generate.

If superspreading makes a disease vulnerable to
variations in population density, we should conversely
expect to see that diseases with a homogeneous infec-
tivity, that is a dispersion factor close to or above 1,
exhibit little variation with population density. One
example of a disease with a homogeneous infectivity
is influenza, with an estimated dispersion factor of
k = 0.94 for the 1918 pandemic flu [26]. When exam-
ining the incidence of seasonal influenza, which we
assume to have a similar dispersion factor, [27] find
no consistent variation with population density. This
is a point in favour of the link between superspreading
and population density dependence.

Finally, the effect of lockdowns and changes of
social behaviour is important. A previous paper [11]
suggests that even moderate mitigation may limit the
action of superspreaders by reducing the maximal
number of people any person can be in contact with.
If this hypothesis is true, bans on gatherings and a
reduction in public social life would lead to early
peaks in the number of new cases. Our study com-
pounds this finding and suggests that a change in
behaviour is not strictly necessary to cause an epi-
demic peak well before herd immunity has been
achieved. Mitigation strategies that primarily target
cities may well be sufficiently effective in bringing
down the epidemic. However, large events like funer-
als, weddings or festivals are not included in our
model and will of course facilitate spreading in any

location. Finally, if there is a large difference in atti-
tude towards the disease in the city and the coun-
tryside, this can significantly change the behaviour
of the epidemic in the countryside relative to the
city. All in all, how governments and populations
have responded to the pandemic has likely had a
crucial effect on its trajectory. Our model investi-
gates how it would have played out in the absence
of these complicating factors.

CONCLUSION

Despite some caveats, our model reproduces the main
aspects of geographical heterogeneity and suggests a
new view on density dependence of epidemic dynam-
ics. An epidemic with a large heterogeneity in infec-
tion rates is predicted to be most intense in large cities
while it slowly tapers off in the countryside. This is
consistent with what we see in data from the first half
year of the COVID-19 pandemic [12,28]. Our results
thus favour the hypothesis that the COVID-19 pan-
demic is driven by superspreaders, and that the
observed quick exponential growth phase, early peak,
and slow, erratic recovery phase are in part conse-
quences of combining heterogeneity of infectivity with
a heterogeneous population density.

Of course, restrictions limiting social contact were
crucial to the overall COVID-19 pandemic, and
behavioural societal changes remain a central part of
a pandemic that still after a year is far from reaching
herd immunity. Our model predicts that anything
that limits the diversity of contacts, be it population
density or limits on gatherings, will have an outsized
effect on disease spread. In comparison, simply limit-
ing the number or duration of contacts will not be
as effective unless the diversity is also decreased. A
superspreader still spreads quite effectively given ten
encounters with ten different individuals, but is
much less effective given 20 encounters with only five
different people. The present work suggests that
future epidemiological models should take contact
diversity into account if they are to properly capture
the dynamics of COVID-19 and other diseases with
large transmission heterogeneity.
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