Hindawi BioMed Research International Volume 2017, Article ID 1408737, 2 pages https://doi.org/10.1155/2017/1408737

Corrigendum

Corrigendum to "Application of PK/PD Modeling in Veterinary Field: Dose Optimization and Drug Resistance Prediction"

Ijaz Ahmad, 1,2 Lingli Huang, 1 Haihong Hao, 3 Pascal Sanders, 4 and Zonghui Yuan 1,3

Correspondence should be addressed to Ijaz Ahmad; ijaz_pharma@yahoo.com

Received 17 September 2017; Accepted 12 October 2017; Published 6 November 2017

Copyright © 2017 Ijaz Ahmad et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the article titled "Application of PK/PD Modeling in Veterinary Field: Dose Optimization and Drug Resistance Prediction" [1], there was an error in Table 3. Some antibiotic groups were not correctly classified in Table 3 as raised by Benini and Fumagalli in [2]. The correct statement is that ketolides exhibit concentration-dependent killing and have prolonged persistence and the PK/PD indices responsible for efficacy are AUC24/MIC. Clindamycin and vancomycin exhibit time-dependent killing and have moderate to prolonged persistence and PK/PD indices responsible for efficacy are AUC24/MIC. The corrected table is shown as follows (see Table 3).

¹National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China

²The University of Agriculture Peshawar, Khyber Pakhtunkhwa 25130, Pakistan

³MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China

⁴Laboratory of Fougères, French Agency for Food, Environmental and Occupational Safety, 94701 Maisons-Alfort Cedex, France

2 BioMed Research International

TABLE 3: Classification of antibacterial drugs according to pharmacokinetics and pharmacodynamics indices: different groups of antibacterials, their bacterial effect, and PK/PD integration most closely related their clinical effect.

Group	Drugs	PK/PD indices	Activity	Bacterial effect	Duration of PAE	References
1	Aminoglycosides	$C_{ m max}/{ m MIC}$ or AUC/MIC	Primarily bactericidal	Concentration- dependent	Prolonged	Martinez et al., 2014 [17]
	Fluoroquinolone	AUC/MIC	Bactericidal	Concentration- dependent	Prolonged	Martinez et al., 2014 [17]
	Enrofloxacin e	$C_{\rm peak}/{ m MIC}/{ m AUC}$: MIC	Bacteriostatic bactericidal	Concentration- dependent		Balaje et al., 2013 [49]
	Azithromycin	AUC ₂₄ /MIC				
	Tetracycline	AUC ₂₄ /MIC	Bacteriostatic	Time- dependent	Prolonged	Martinez et al., 2014 [17]
	Colistin	AUC/MIC		Concentration- dependent	Short	Hengzhuang et al., 2012 [59]
	Metronidazole	$C_{\rm peak}/{ m MIC}/{ m AUC}$: MIC		Concentration- dependent		Paul et al., 2005 [60]
2	Ketolides	AUC/MIC	Bacteriostatic or bactericidal	Concentration- dependent	Prolonged	Martinez et al., 2014 [17]
	Penicillins Carbapenems Cephalosporins	% <i>T</i> > MIC	Bactericidal	Time- dependent	Non or brief against Gram-negative and prolonged against Gram-positive	Martinez et al., 2014 [17]
	Lincosamides (clindamycin)	AUC/MIC	Bacteriostatic	Time- dependent	Brief	Martinez et al., 2014 [17]
	Trimethoprim	% <i>T</i> > MIC	Bacteriostatic alone and bactericidal with combination	Time- dependent	Brief	Martinez et al., 2014 [17]
	Glycopeptides (vancomycin)	AUC/MIC	Bactericidal	Time- dependent	Prolonged	Martinez et al., 2014 [17]

References

- [1] I. Ahmad, L. Huang, H. Hao, P. Sanders, and Z. Yuan, "Application of PK/PD modeling in veterinary field: dose optimization and drug resistance prediction," *BioMed Research International*, vol. 2016, Article ID 5465678, pp. 1–12, 2016.
- [2] A. Benini and G. F. Fumagalli, "Comment on 'application of PK/PD modeling in veterinary field: Dose optimization and drug resistance prediction," *BioMed Research International*, vol. 2017, pp. 1-2, 2017.