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Abstract: Coronin proteins are evolutionary conserved WD repeat containing proteins that have
been proposed to carry out different functions. In Dictyostelium, the short coronin isoform, coronin
A, has been implicated in cytoskeletal reorganization, chemotaxis, phagocytosis and the initiation
of multicellular development. Generally thought of as modulators of F-actin, coronin A and its
mammalian homologs have also been shown to mediate cellular processes in an F-actin-independent
manner. Therefore, it remains unclear whether or not coronin A carries out its functions through
its capacity to interact with F-actin. Moreover, the interacting partners of coronin A are not known.
Here, we analyzed the interactome of coronin A as well as its interaction with F-actin within cells
and in vitro. Interactome analysis showed the association with a diverse set of interaction partners,
including fimbrin, talin and myosin subunits, with only a transient interaction with the minor actin10
isoform, but not the major form of actin, actin8, which was consistent with the absence of a coronin
A-actin interaction as analyzed by co-sedimentation from cells and lysates. In vitro, however, purified
coronin A co-precipitated with rabbit muscle F-actin in a coiled-coil-dependent manner. Our results
suggest that an in vitro interaction of coronin A and rabbit muscle actin may not reflect the cellular
interaction state of coronin A with actin, and that coronin A interacts with diverse proteins in a
time-dependent manner.

Keywords: Dictyostelium; coronin A; interactome analysis; Actin

1. Introduction

The coronin protein family is comprised of a group of evolutionary conserved proteins that are
characterized by the presence of a central Tryptophan-Aspartate (WD or WD-40) repeat-containing
domain fused via a linker of variable length to a coiled-coil domain that is involved in
homo-oligomerization [1,2]. Coronin molecules are widespread in eukaryotes, with a bioinformatic
analysis defining over 723 coronin molecules from 358 different eukaryotic species [3]. Notably, while
lower eukaryotes such as yeast, amoeba and parasites including Leishmania, Toxoplasma and Plasmodium
appear to express one or maximally two coronin molecules [4-6], in higher eukaryotes, multiple
coronin molecules are expressed, with up to seven coronins expressed in mammals [1,7-9].

The biological function for many of the coronins within cells or organisms remains unclear. While
a number of studies have demonstrated an interaction of coronin molecules with actin in vitro, most of
the work linking coronin molecules to F-actin interaction has been performed using recombinantly
expressed Saccharomyces cerevisiae coronin (Crn1) [4,10]. In vitro, Crnl was found to co-precipitate
with F-actin [11], which is in accordance with the presence of a CA-like (Central region fused to an
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acidic region) domain in yeast Crnl [12] that is known to be responsible for interactions with actin and
Arp2/3 [13,14]. However, the CA-like domain is missing in most other coronin molecules, and in fact,
it is unclear to what degree yeast Crnl is a functional homologue of Dictyostelium and mammalian
coronins [3]. Furthermore, yeast cells lacking Crnl do not show an obvious phenotype and have no
detectable defects in actin-based processes under a variety of different growth conditions [4,15]. In the
unicellular parasites Toxoplasma gondii, Plasmodium and Leishmania, coronins appear to play divergent
roles; while in Leishmania, coronin regulates microtubule remodeling during cytokinesis [16], in
Toxoplasma gondii, deletion of coronin does not affect a number of actin-dependent processes, although
a weak interaction with actin was observed in vitro [6]. Similarly, Plasmodium coronin only weakly
interacts with actin in vitro [5] and was shown to localize within the cell in a calcium-dependent and
actin-independent manner [17].

In mammals, coronin molecules are emerging as multifunctional regulators of diverse physiological
processes, and a common molecular function for the different coronins has not been clearly established.
Thus far, F-actin modulation has been the common denominator to explain the role of the different
coronin proteins; whereas several coronin proteins were shown to bind F-actin in vitro and within
cells [18-21], other coronin proteins were specifically shown to neither bind to nor modulate F-actin
within cells [22,23]. Notably, for one of the best characterized coronins, mammalian coronin 1 (also
known as P57 or TACO, for Tryptophan Aspartate containing Coat protein) [24,25], as well as a
number of other coronins, emerging evidence is suggesting that they perform actin-independent
functions that include neuronal signaling, T cell homeostasis and the initiation of multicellular
differentiation [6,26-30].

Given the above-mentioned conflicting reports on the capacity of coronin proteins to interact with
F-actin in vitro and within cells as well as the issue of potential redundancy, for example, in mammals,
where multiple coronin molecules can be co-expressed [1], we turned to Dictyostelium discoideum, that
only expresses a single short coronin, coronin A. Coronin A was initially described as a myosin-actin
co-precipitating protein that accumulates at crown-shaped, actin-rich cell protrusions (hence the name
‘coronin’) although subsequent work showed that ‘crowns’ are also formed in the absence of coronin
A [31,32]. Dictyostelium cells lacking coronin A show pleiotropic defects in cytokinesis, uptake of
yeast particles as well as motility and migration [33-35]. In addition to coronin A, Dictyostelium
also expresses a ‘tandem’ coronin molecule, termed coronin B, and the two coronins appear to have
non-redundant functions [36]. Dictyostelium cells, which are a unicellular species when sufficient food
is available, have the remarkable capacity, upon starvation, to transform into multicellular structures,
resulting in spore-bearing fruiting body formation to ensure long-term survival. The developmental
program responsible for the transformation from single cells to spores is initiated upon starvation
and depends on cell density and food-deprivation factors that induce pulsating release of cyclic
Adenosine Monophosphate (cAMP). This cAMP-release induces the upregulation of genes necessary
for cAMP production and chemotaxis, driving the initiation of multicellular development [37-39].
Recent work showed that coronin A is responsible for the initiation of the cAMP relay that is required
for development upon starvation, but dispensable for cAAMP sensing, chemotaxis, and development per
se [30]. Together with the finding that F-actin depolymerization does not compromise cAMP-mediated
signal transduction, these results suggest that coronin A does not directly modulate F-actin during
multicellular development [30]. Instead, F-actin-dependent processes may occur downstream of the
coronin A-dependent starvation response, and, in accordance with the role for coronin 1 in mammals
and coronin in Plasmodium, a prime role for coronin A in Dictyostelium may lie within the regulation of
cAMP-dependent signal transduction [30].

In this paper, we characterized the interactome of coronin A by affinity purification followed by
mass spectrometry as well as analyzing the interaction of Dictyostelium coronin A with F-actin within
cells and with rabbit muscle F-actin in vitro. We found that while the interactome analysis revealed
the co-precipitation of coronin A with a number of actin-interacting proteins as well as a transient
interaction with the minor actin10 isoform, within cells, coronin A failed to interact with actin under
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conditions in which actin robustly interacted with myosin. In accordance with Dictyostelium coronin A
being dispensable for F-actin modulation, phagocytosis of bacteria and inert beads were unaffected
by deletion of coronin A. Together, these data suggest that an interaction of coronin A with the actin
cytoskeleton occurs indirectly, and that an in vitro association with rabbit muscle actin may not be
indicative for the cellular state of coronin A.

2. Results

2.1. Coronin A-F-Actin Interaction in Vitro and within Cells

Coronin A was originally identified as an actin-myosin interacting protein and has been suggested
to play diverse roles in the regulation of a number of actin-dependent processes [40—-42]. However,
more recent work has suggested that the function for coronin A in initiating multicellular development
occurs independently of a role in F-actin reorganization [30]. To investigate an interaction of coronin
A with actin, a number of experimental approaches were undertaken to determine the interaction
partners of coronin A within Dictyostelium as well as to assess the capacity of coronin A to interact with
F-actin within cells (with endogenous actin) and in vitro (using rabbit muscle F-actin).

First, to identify the coronin A interactome in an unbiased manner, corA~ cells that were transfected
with FLAG-tagged coronin A or with non-tagged coronin A (control) and grown in HL5 medium were
immunoprecipitated from cell lysates using FLAG affinity chromatography, eluted and interacting
proteins analyzed by quantitative mass spectrometry. A total of 47 significantly enriched (log2ratio
> 1.5; g-value < 0.05) coronin A interacting proteins were identified (Figure 1A,B and Tables S1 and
52). The most prominently associated proteins included several uncharacterized proteins, metabolic
enzymes, tubulin chaperones and a transcription factor (Figure 1A,B). While a > 2-fold enrichment for
the actin interacting proteins myosin-K heavy chain, actobindin-B/C, talin-B and fimbrin was observed
(Figure 1A,B and Tables S1 and S2), actin was not present in the interactome.
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Figure 1. Coronin A interactome analysis. Growing Dictyostelium cells were collected, lysed and
subjected to AP-MS as described in Materials and Methods. Shown are all interacting proteins with
log2ratio > 1.5 and g-value < 0.05. (A). Volcano plot; (B). Log2ratiorank. See also Tables S1 and S2.

Since cell lysis prior to mass spectrometry analysis may have disrupted any interactions between
coronin A and actin, as a second approach, we analyzed an interaction of coronin A with F-actin
within cells. To do so, cells were lysed using F-actin stabilization buffer [43-45], followed by analysis
of the pellets and supernatants by SDS-PAGE and immunoblotting for actin and coronin A. Since this
assay probes the state of F-versus G-actin in situ, care was taken to avoid any dilution factor (see also
Materials and Methods). As shown in Figure 2 (‘untreated’), all of the coronin A immunoreactivity was
recovered in the supernatant, suggesting that at steady state, coronin A does not interact with F-actin.
To analyze interaction of coronin A with F-actin under conditions in which F-actin is polymerized,
cells were either left untreated or incubated with the F-actin polymerizing drug Jasplakinolide. As a
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control, F-actin was fully depolymerized by the inclusion of Latrunculin A. Cells were then harvested,
lysed, and sedimented followed by analysis of soluble proteins as mentioned above. As can be seen in
Figure 2 (‘Jasp” and ‘LatA’), under all conditions of actin polymerization/depolymerization, coronin A
was resolved in the supernatant, independent of the polymerization state of actin.
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Figure 2. Coronin A-F-actin interaction within cells. Cells were either left untreated (left) or treated
with Jasplakinolide (middle) or Latrunculin A (right). The cells were lysed in 200 puL F-actin stabilization
buffer and F-actin and G-actin were separated by ultracentrifugation of the lysate as described in
Materials and Methods. The pellet was resuspended in the exact same volume as the original
lysis volume. Proteins in the supernatant (S) or pellet (P) fractions were separated by SDS-PAGE
and immunoblotted for coronin A and actin. Shown are representative results from at least four
independent experiments.

In a third approach, to asses coronin A-F-actin interaction, we directly analyzed whether actin
co-eluted with FLAG-coronin A following affinity purification. To that end, the purification procedure
as described above for FLAG-coronin A was adapted to ensure that F-actin remained intact by replacing
the filtration step (that may have resulted in the clearance of F-actin) by homogenization followed
by low-speed centrifugation to remove large debris. Cell lysates were subsequently loaded onto
the anti-FLAG column, and following elution with the FLAG peptide, fractions were analyzed by
SDS-PAGE and immunoblotted using either coronin A antibodies or anti-actin antibodies. As can be
seen in Figure 3A,B, all actin eluted in the flow through, without any actin co-eluting in FLAG-coronin
A containing fractions. To test whether the absence of actin in FLAG-coronin A-eluted fractions was due
to the FLAG tag, we repeated the purification using His-tagged coronin A (Figure 3C,D). In addition,
both the lysis and the elution buffer did not contain any NaCl, given the reported sensitivity of the
interaction of Dictyostelium coronin A with F-actin to NaCl in vitro [31]. As can be seen in Figure 3C,D,
no actin co-eluted with His-coronin A-containing fractions and all the detectable actin signal was
found in the flow through. As a positive control, a His-tagged myosin-coronin A fusion protein was
expressed in Dictyostelium, and this fusion protein was purified by metal affinity chromatography as
for His-coronin A. In this case (Figure 3E,F), as expected, actin co-eluted in His-tagged myosin-coronin
A containing fractions.
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Figure 3. Co-purification of Dictyostelium coronin A and actin. Dictyostelium cells expressing the
constructs indicated were lysed in lysis buffer and homogenized using a glass Tenbroek homogenizer
followed by low speed centrifugation. (A,B). FLAG-CorA was purified using an anti-FLAG column.
Fractions were collected, separated by SDS-PAGE, and tested for the presence of coronin A (A) and
actin (B) by Western blotting. (C,D). Coronin A fused to a Histidine-tag was purified using Nickel
beads. Cells were lysed in the absence of NaCl, fractions were collected, separated by SDS-PAGE, and
tested for the presence of coronin A (C) and actin (D) by Western blotting. (E,F). Coronin A fused to
a Histidine-tagged myosin heavy chain fragment was purified using Nickel beads. Fractions were
collected, separated by SDS-PAGE, and tested for the presence of coronin A (E) and actin (F) by Western
blotting. Shown are representative results from at least three independent experiments.

Together, the above data suggest that within cells, coronin A failed to interact with actin; instead,
actin may interact with coronin A in an indirect manner, possibly via one or more of the interactors
defined by mass spectrometry, such as myosin, fimbrin or talin (Figure 1). However, given the
published datasets showing the interaction of coronin A, as well as a number of other coronin molecules
with (rabbit muscle) F-actin in vitro [4-6,12,31,46,47], we also analyzed the capacity of FLAG-coronin
A to interact with purified rabbit muscle F-actin. In addition, given the reported interaction of several
coronins with F-actin via their coiled coils [4,18], we included a coronin A mutant lacking the coiled coil
domain. We found, in accordance with earlier reports [31], that the interaction of coronin A with rabbit
muscle F-actin depended on the ionic strength (Figure 4A), and that coronin A co-pelleted with rabbit
muscle F-actin at a concentration of 50 mM NaCl but not at 100 or 150 mM NacCl (Figure 4A). As a
control, S. cerevisine Crnl was employed as it possesses actin interaction domains (in contrast to most
other coronins, including Dictyostelium coronin A, see [3,12]); as expected, Crn1 readily co-sedimented
with rabbit muscle F-actin (Figure 4B). These data suggest that in vitro, coronin A can be co-precipitated
with rabbit muscle F-actin under low—but not at elevated ionic—strength conditions.
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Figure 4. Coronin A-F-actin interaction with muscle F-actin in vitro. (A). Purified FLAG-CorA
and/or equimolar amounts of rabbit muscle G-actin or F-actin was subjected to ultracentrifugation
at 100,000x g, for 1h at 4 °C in the presence of rabbit muscle G-actin and F-actin and different NaCl
concentrations. The supernatant was removed and the pellet resuspended in 2x SDS-PAGE sample
buffer. Samples were separated by SDS-PAGE and the gel stained using Coomassie blue. Lanes 1-4:
controls; lanes 5-8: coronin A and G-actin; lanes 9-14: Sedimentation analysis was performed in the
presence of the NaCl concentrations indicated. (B). Rabbit muscle F-actin or G-actin were incubated
in the absence or presence of S. cerevisine Crnl, incubated for 20 min at room temperature and the
samples were then processed as described in the Materials and Methods. Pellets (P) and supernatants
(S) were separated by SDS-PAGE and immunoblotted for Crn1 (left panel) or actin (right panel) as
described above. The lower band most likely represents a degradation product of Crnl. (C). Purified
actin, FLAG-CorA or FLAG-CorAACC were analyzed as in A, separated by SDS-PAGE and the gel
stained using Coomassie blue. (D). Interaction of the indicated amounts of purified FLAG-CorA
(top) or FLAG-CorAACC (bottom) with rabbit muscle G- and F-actin was carried out as described
in the Materials and Methods. Samples were separated by SDS-PAGE and the gel stained using
Coomassie blue. (E). Plot of the ratio of rabbit muscle F-actin-bound (co-pelleting, P) to non-bound
(S) for FLAG-CorA or FLAG-CorAACC determined from the mean grey values of the bands from the
Coomassie blue stained gels. Curve fitting shows an apparent Kd of 8.9 pug (CI 5-20 ug). Shown are

representative results from at least three (two in the case of panels D, E) independent experiments.

6 of 20



Int. ]. Mol. Sci. 2020, 21, 1469 7 of 20

To further analyze a potential interaction of coronin A with rabbit muscle F-actin, as well as a
possible involvement of the C-terminal coiled coil in this process, FLAG-tagged coronin A or coronin A
lacking the coiled coil (FLAG-CorAACC) was purified and analyzed for co-sedimentation with rabbit
muscle F-actin (Figure 4C). As shown in Figure 4D,E, coronin A co-sedimented with rabbit muscle
F-actin in vitro in a saturable manner (Figure 4D,E and left panels). Co-sedimentation was dependent
on the presence of the coiled coil, since purified FLAG-tagged coronin A lacking the coiled coil did not
co-sediment with rabbit muscle F-actin (Figure 4D,E and right panels).

The here shown in vitro interaction of coronin A with rabbit muscle actin through its coiled coil is
in sharp contrast to the absence of an interaction of coronin A with Dictyostelium actin (Figures 1-3).
Therefore, to further investigate a potential interaction of coronin A and Dictyostelium actin that may
have a temporal aspect and possibly depends on the presence of the coiled coil, we used affinity
precipitation followed by mass spectrometry to analyze the interactome of cells expressing either
FLAG-tagged coronin A or coronin A lacking the coiled coil (FLAG-CorAACC) at the time points shown
in Figure 5. Interestingly, there were only a limited number of common interacting proteins among the
top 25 hits across the different time points (Figure 5 and Table S1), suggesting a highly dynamic coronin
A interactome, at least at this time resolution. Furthermore, we found that for the different time points,
a number of actin-interacting molecules were detected in the coronin A interactome, including myosin
(24 h), talin, fimbrin (48 h) and actobindin (110 h). In contrast to the in vitro results showing robust
interaction with rabbit muscle actin, of the 31 different actin genes expressed in Dictyostelium that
encode for 15 different isoforms [48,49] we found only the minor actin-10 form to associate with coronin
A in a coiled coil-dependent manner at 48 h, but not at 24 or 110 h. We conclude from these data that
while Dictyostelium coronin A can be co-pelleted in vitro with rabbit muscle F-actin, an interaction of
coronin A with actin within cells or cell lysates is not detected; rather, coronin A was found to interact
with a range of proteins, including actin-interacting proteins, in a transient manner.

2.2. Coronin A is Required for the Phagocytosis of Yeast Particles, but not Bacteria and Inert Beads, Independent
of the Coiled-Coil Domain

Together the above data suggest that while in vitro, coronin A can interact with rabbit muscle
F-actin in a manner dependent on its coiled coil, it fails to directly bind (F-)actin within cells. To
further analyze a potential role for coronin A in F-actin-mediated processes, we assessed the rate of
phagocytosis, a process highly dependent on F-actin rearrangement [50,51]. Indeed, blocking actin
dynamics using cytochalasin strongly reduced bead uptake, similar to internalization at 4 °C (Figure
S1). To determine a role for coronin A in phagocytosis, we assessed the capacity of wild type, corA-,
or as well as corA-cells expressing coronin A or the delta coiled coil mutant to ingest a range of
fluorescently labelled particles of different surface compositions and sizes including yeast, bacteria
and inert beads using fluorescent activated cell sorting (FACS). We first assessed the ingestion of the
natural food of Dictyostelium (bacteria) such as live Escherichia coli expressing the neon green fluorescent
protein (Figure 6A,C) and heat-killed Klebsiella aerogenes (Figure 6E), but also of carboxylated inert
beads of 1 um, 4.5 um, and 6 pum diameter (Figure 6B). No major differences were observed in the
phagocytosis of bacteria and inert beads between wild type, coronin A-deficient, or cells expressing
full length or delta coiled coil coronin A (Figure 6), suggesting that coronin A as well as the coiled
coil is dispensable for phagocytosis of bacteria and inert beads. Interestingly, when internalization
of heat-killed Saccharomyces cerevisine was analyzed, cells lacking coronin A displayed significantly
reduced levels of phagocytosis compared to wild type cells (Figure 6E), which is consistent with earlier
work describing a defect in the uptake of yeast particles in the absence of coronin A [34]. Since yeast
uptake in Dictyostelium is known to depend on receptor-mediated uptake and is characterized by
associated activation of signal transduction [52-54], these data are consistent with a role for coronin A
in the modulation of signal transduction rather than F-actin rearrangement.



Int. J. Mol. Sci. 2020, 21, 1469

T=24 hrs

W log2ratio_corA-KO-FLAG-CorA-24h
I log2ratio_corA-KQ-FLAG-CorAdCC-24h

transcription factor jumonji ‘_
Carbonic anhydrase 1__
Putative acetyl |
tRNA-splicing ligase RtcB homalog ‘=
Protein phosphatase 2A scaffold subunit ‘=
Small aggregate formation protein ‘E
Myaosin-ID light chain _1_
Myaosin IC heavy chain -
Acetyl-coenzyme A synthetase 1=
Myosin 1D heavy chain o —
Isocitrate dehydrogenase [NAD] regulatory subunit B, mitochondrial 1=
Lysosomal alpha-mannosidase ‘=
Putative calpain-like cysteine protease A ‘=
ATP synthase subunit gamma, mitochondrial =
Rab GTPase 1=
Crooked neck-like protein 1 -
Luminal-binding protein 2 !_-
265 proteasome non-ATPase regulatory subunit 2 i=
Emp24/gp25L/p24 family protein _—
Formin-A i!
ATPase subunit 4 =
Pre-mRNA-processing factor 19 .j_

-250 -1.25 000 125 250 375 5.00

log2ratio

T=48 hrs

W log2ratio_corA-KO-FLAG-CorA-48h
log2ratio_corA-KO-FLAG-CorAdCC-48h

!

Carbonic anhydrase 0S=

Pyrroline-5-carboxylate reductase 2

; i 1,2-d
Proteasome subunit alpha type-2
Extracellular signal-regulated kinase 1
NSFL1 cofactor p47 homolog
Annexin A7
Cystatin-AL
1,4-alpha-glucan-branching enzyme
Guanine deaminase

Proteasome subunit alpha type-7

ATP synthase subunit gamma, mitochondrial
Talin-B

Fimbrin

Discoidin-25

UTP--glucose-1-phosphate uridylyltransferase 1
ATPase subunit 4

Proteasome subunit alpha type-1

Proteasome subunit beta type-1
5-axoprolinase

UTP--glucose-1-phosphate uridylyltransferase 2
Actin-10

Proteasome subunit alpha type-4

'|‘||'|r'r||'||‘|r||‘||‘||"'|‘|"||‘|r||‘|'||'l['||'||'l|"|[|"'|‘

Proteasome subunit alpha type-5
Actobindin-B/C

-1.00 0.00 1.00 2.00 3.00 4.0

log2ratio

T=110 hrs

8 of 20

W log2ratio_corA-KO-FLAG-CorA-110h
[W log2ratio_corA-KO-FLAG-CorAdCC-110h

Insulin-degrading enzyme homolog
Homogentisate 1,2-dioxygenase
S-oxoprolinase

PH domain-containing protein
UTP--glucose-1-phosphate uridylyltransferase 1

GMP synthase

uTP--gl 1 uri 2
Citrate synthase, mitochondrial

Proteasome activator 28

Autophagy-related protein 8

Propionyl-CoA carboxylase

NSFL1 cofactor p47 homolog

Sulfate adenylyltransferase

ATPase subunit 8

Probable hydroxyacid-oxoacid transhydrogenase, mitochondrial
Cystatin-A1

Paly [ADP-ribose] polymerase

Probable malate dehydrogenase 2, mitochondrial
Phosphoenolpyruvate carboxykinase (ATP)

Isocitrate dehydrogenase [NAD] regulatory subunit B, mitochondrial
Actobindin-B/C

Histone H2B.v1

Glutamate dehydrogenase 2

Cysteine proteinase 5

Cysteine proteinase 4

0 125 25375 5

log2ratio

Figure 5. Time-dependent analysis of the coronin A interactome. Cells expressing either FLAG-CorA or FLAG-CorAACC were sampled at 24, 48 or 110 h, lysed,
and subjected to AP-MS as described in Materials and Methods. The 25 most significant interactors (log2ratio > 1; g-value < 0.05) are shown. For clarity, proteins with
unknown function are not represented. Note that the expression of FLAG-CorAACC is ~40-fold enriched relative to FLAG-CorA. See also Table S1.
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Figure 6. Phagocytosis in the presence and absence of coronin A. (A): Histogram profiles of the
distribution and percentage of wild type and corA~ cells that have phagocytosed (S1) live E. coli
after different time points of incubation. Incubation at 4 °C (control) showed significant reduction of
phagocytosis. Shown are representative results from at least 3 independent experiments. (B-E): Plot of
the percentage of wild type, corA~, corA~™ + CorA, corA™ + FLAG-CorA and corA~ + FLAG-CorAACC
DH1-10 cells that have taken up beads of the indicated sizes (B) live E. coli (C), heat-killed bacteria (D),
or heat-killed yeast (E), respectively (error bar = standard error; ** p < 0.002).

Together, these results suggest that coronin A is dispensable for phagocytosis of bacteria and inert
beads, but plays a role in yeast particle uptake in a manner that is independent of F-actin interaction.

3. Discussion

Coronins constitute a family of WD repeat containing proteins that are often referred to as
F-actin binding and modulating molecules. One reason for this assignment is the fact that coronin
A from Dictyostelium discoideum was originally identified as a molecule that co-sedimented with an
actin/myosin precipitate [31]. However, the evidence for coronin A modulating F-actin within cells
is indirect and largely based on the reported phenotypes of Dictyostelium lacking coronin A, namely
a defect in phagocytosis, chemotaxis and migration [31,32,34,55]. Interestingly, more recent work
showed that the defect in chemotaxis and migration in corA™ cells is readily complemented by pulsing
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the cells with cAMP [30], suggesting that, per se, these processes do not depend on coronin A. Instead,
coronin A was found to be responsible for the initiation of multicellular development [30].

Here, we analyzed the interactome of Dictyostelium coronin A as well as its interaction with actin.
We found that coronin A interacts with diverse proteins in a transient manner and could not find
evidence for a direct interaction of coronin A and F-actin within cells or cell lysates. Furthermore, we
found a transient association with the minor (<5%) actin10 isoform, but not with actin§, that represents
>95% of the cellular actin [48,56]. Since we did detect a number of actin-interacting molecules to
co-purify specifically with coronin A, including talin, fimbrin, actobindin and myosin subunits, it is
possible that any interaction of coronin A with actin may occur indirectly via these proteins. We also
show that the phagocytosis of a range of different cargos was not compromised by the absence of coronin
A, with the exception of yeast phagocytosis, which is known to depend on signaling processes [52].
Together these data suggest that coronin A does not directly interacts with/modulates F-actin.

Most previous studies analyzing coronin-actin interaction have employed rabbit muscle actin to
demonstrate in vitro co-pelleting with F-actin. Similarly to earlier studies, we confirmed the in vitro
interaction of coronin A with muscle F-actin and further found that this interaction was dependent
on the coiled coil, which is consistent with the demonstration that the coiled coil in other coronins
also possesses low-affinity actin binding sites [11,57]. Since these latter analyses were also performed
using in vitro interaction analyses, it is unclear to what degree this reflects an in vivo association with
F-actin; while for a number of mammalian coronins, association with F-actin within cells could not
be demonstrated [22,23,45], we cannot, however, also given the high degree of homology between
Dictyostelium and rabbit muscle actin, exclude the possibility that the presence (within cells) or
absence (in vitro) of other factors or differential posttranslational modifications determines coronin
A-F-actin interaction.

The absence of a direct interaction between Dictyostelium coronin A and F-actin within cells as
shown here is consistent with the finding that coronin A in Dictyostelium is dispensable for several F-actin
dependent processes: first, as shown here, the phagocytosis of bacteria and inert beads, an exquisite
actin-dependent process [50,51], was unaltered in the absence of coronin A. Second, in Dictyostelium
cells lacking coronin A, F-actin-dependent processes including folate-mediated chemotaxis as well as
chemotaxis upon external cAMP pulsing occurred normally [30]. Rather, the reported phenotypes
of corA™ Dictyostelium, including altered chemotaxis, reduced yeast particle phagocytosis, reduced
macropinocytosis as well as defective cytokinesis, all of which largely depend on proper signal
transduction [54,58-61], suggests that Dictyostelium coronin A may perform a signaling function,
consistent with the sequence homology of coronin A with the G3 subunit of trimeric G proteins
as well as the function of mammalian coronin 1 in the modulation of the cAMP protein kinase A
pathway [1,26,28,31]. In this light, it is interesting to note that recent work also suggests that the
capacity of Plasmodium coronin to modulate actin filament turnover occurs in a manner dependent on
protein kinase A/cAMP signaling [17].

Itis possible that the identified coronin A interacting proteins fimbrin, myosin, talin and actobindin,
all of which are known actin interactors [62-65], function as intermediates to link coronin A to the
actin cytoskeleton. For example, the interaction with the F-actin cytoskeleton might serve to regulate a
dose- and time-dependent availability and/or potentiation of coronin A for signaling processes such
as in multicellular development initiated upon starvation [30,66,67]. In such a scenario, an indirect
and labile interaction of coronin A with the cytoskeleton would be advantageous, making it quickly
available for incorporation into other complexes.

4. Materials and Methods

4.1. Cells, Antibodies, and Growth Conditions

DH1-10 wild-type Dictyostelium discoideum cells were acquired from dictybase.org. The corA
-deficient (corA~) cells are described elsewhere [30]. Cells were grown in HL-5 media [68] in 100
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mL or 500 mL Erlenmeyer flasks at 22 °C with 160 rpm. Anti-coronin A antiserum was described
earlier [30]. Anti-yeast Crnl antiserum was produced in rabbits using recombinant Crn1 (Thermo Fisher).
Mouse anti-actin clone 4 was purchased from Millipore. For production of N-terminal FLAG-tagged
(DYKDDDDK) coronin A, full length coronin A-encoding cDNA was amplified from DH1-10 genomic
DNA by PCR, using primers to insert a thrombin cleavage site to the 5" end, and BamHI restriction sites to
either end of the PCR product. The thrombin cleavage site was optimized for Dictyostelium codon usage.
Forward primer: 5 ATTGGATCCTTAGTTCCAAGAGGTTCAATGTCTAAAGTAGTCCGTAGTAG
‘3; Reverse primer: 5 ATTGGATCCTTAGTTGGTGAGTTCTTTGATTTTGGGATCCTTTTTAACG
‘3. The PCR product was first subcloned into pCR-BluntII-TOPO vector (Invitrogen), sequenced,
digested with BamHI and inserted into the vector pTX-FLAG (dictybase.org). The resulting vector
carried a FLAG-tag 10 amino acids upstream of the inserted thrombin cleavage site and coronin A.
The expression of the fusion protein is driven by a Dictyostelium-actin 15 promoter. For the construction
of the coronin A expression vector, the actinl5 promoter was synthesized with Xbal restriction sites
at both ends and cloned into pUC57 vector (Eurofin genomics); then subcloned into the Xbal site of
pBIG (dictybase.org) and checked for correct orientation by sequencing. Then full length coronin A
CDS was amplified from DH1-10 genomic DNA by PCR, using primers to introduce BamHI restriction
sites on both ends of the PCR product, which was then cloned into the pBIG vector to give pBIG-CorA
driven by the actin15 promoter. For ACC-CorA, the expression plasmid was generated by synthesizing
(Eurofins genomics) BamHI flanked coronin A CDS lacking the last 34 codons, which encode the coiled
coil motif, and cloning into the BamHI site of pTX-FLAG vector to generate pTX-FLAG-CorAACC.

For the generation of a histidine-tagged (6X) version of coronin A, the coronin A coding
region was amplified from DH1-10 genomic DNA with forward (FwCorA Hpal AGAGCGT
TAACATGTCTAAAGTAGTCCG) and reverse (RevCorA Hpal AGAGCGTTAACTTAGTTGGT
GAGTTCTTTG) primers adding Hpal restriction sites on both ends of the gene. The resulting
fragment was ligated into the cloning vector T-easy (Promega) according to the manufacturer’s
protocol. The vector for production of N-terminal His-tagged (6x His) coronin A was then generated by
removing the GFP sequence from the vector pTX-GFP (dictybase.org) with EcoRV and inserting the full
length Hpal restricted coronin A sequence in its place via blunt end ligation. For use as a positive control
in the actin co-purification experiments, we generated a vector that expresses coronin A as a fusion
protein fused to the C terminus of a 6x His-tagged portion of myosin heavy chain capable of binding
actin. pDIC2, the vector containing the myosin heavy chain fragment, was a kind gift from Thomas
Reubold of the Institute for Biophysical Chemistry at Hannover Medical School [69,70]. The coronin
A-encoding gene was excised from the T-easy cloning vector described earlier using the restriction
enzyme Hpal to create blunt ends, pDIC2 was linearized with the blunt-cutting restriction enzyme
EcoICRI and the coronin A-coding sequence was ligated via blunt end ligation. For the generation of
a yeast Crnl expression vector, Glutathione S-transferase (GST)-fused Crnl was amplified from an
existing vector (pGAT_Crnl); forward primer: 5 GTGTCTGCAGATGTCCCCTATACTAGGTTATTG'3
and reverse primer: 5 CACACTGCAGTCATTTTGACAGTTCGCC’3. GST-Crnl was then cloned into
a p425-TEF yeast expression vector via Pstl sites [71].

4.2. Anti-Flag Immunoprecipitation and Mass Spectrometry

Cells (5 x 10°, the corA~ transformed with and stably expressing FLAG-CorA or FLAG-CorAACC
and corA~ expressing CorA as control for unspecific binding) were seeded in triplicates at 10°5 cells/mL,
grown in HL-5 media as mentioned above and harvested at 24, 48 and 110 h, washed 2 times with ice
cold PBS and lysed with 500 pL Lysis Buffer (low salt TBS (20 mM Tris-HCl pH 8.0, 25 mM NaCl, 5 mM
KCl1)/1% Triton x100/HALT from Thermo #1861281) for 30 min on ice with gentle agitation every 5 min
and clarified for 15 min at 18,200 g at 4 °C. Monoclonal anti-FLAG-M2 slurry (Sigma, F1804-50UG,
25 uL) was washed twice with low salt TBS and co-incubated with 450 puL of cleared lysate for 90 min
at 4 °C in 2 mL microfuge tubes with 360° rotation. Unbound/non-interacting proteins were removed
by 3 washes with low salt TBS. Peptide elution occurred in series, first with 100 pL elution buffer 1
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(1.6 M urea, 100 mM Ammoniumbicarbonate, 5 ng/mL trypsin) at 37 °C with 1200 rpm for 30 min and
then twice, each with 40 uL elution buffer 2 (1.6 M urea, 100 mM Ammoniumbicarbonate, 1 mM TCEP),
vortexing and centrifuging, collecting and pooling the supernatant. Eluted proteins were reduced by
adding 9 puL TCEP from a 200 mM stock solution to the pooled supernatant (total volume 180 uL)
and alkylated with 3.8 uL chloroacetamide (750 mM stock solution) for 1 h at 37 °C, then digested
overnight with 0.5 ug of trypsin (Promega USA). Samples were acidified with 150 puL of 5% TFA, pH <
2. Peptides were bound to acetonitrile conditioned C18-columns, washed with 0.1% TFA and eluted
with C18-buffer (50% acetonitrile/50% water (v/v) and 0.1% TFA). Eluted peptides were concentrated
under vacuum to dryness, then dissolved in and adjusted to 0.2 pg/uL with 0.1% formic acid.

For the LC-MS/MS analysis, the puRPLC-MS system was setup as described previously [72].
Chromatographic separation of peptides was carried out using an EASY nano-LC 1000 system (Thermo
Fisher Scientific), equipped with a heated RP-HPLC column (75 uM x 37 cm) packed in-house with
1.9 uM C18 resin (Reprosil-AQ Pur, Dr. Maisch). Aliquots of 1 ug total peptides were analyzed per
LC-MS/MS run using a linear gradient ranging from 95% solvent A (0.15% formic acid, 2% acetonitrile)
and 5% solvent B (98% acetonitrile, 2% water, 0.15% formic acid) to 30% solvent B over 120 min at a flow
rate of 200 nl/min. A mass spectrometry analysis was performed on Q-Exactive HF mass spectrometer
equipped with a nano electrospray ion source (both Thermo Fisher Scientific). Each MS1 scan was
followed by high-collision-dissociation (HCD) of the 20 most abundant precursor ions with dynamic
exclusion for 30 s. The total cycle time was approximately 1-2 s For MS1, 3e6 ions were accumulated in
the Orbitrap cell over a maximum time of 100 ms and scanned at a resolution of 120,000 FWHM (at
200 m/z). MS2 scans were acquired at a target setting of 1e5 ions, accumulation time of 50 ms and a
resolution of 15,000 FWHM (at 200 m/z). Singly charged ions and ions with unassigned charge state
were excluded from triggering MS2 events. The normalized collision energy was set to 28%, the mass
isolation window was set to 1.4 m/z and one microscan was acquired for each spectrum.

To determine bait-binding affinities, an MS1 based label-free quantification was carried out.
Therefore, the generated raw files were imported into the Progenesis QI for proteomics software
(Nonlinear Dynamics, Version 2.0) and analyzed using the default parameter settings. MS/MS-data
were exported directly from Progenesis QI for proteomics in mgf format and searched against a decoy
database of the forward and reverse sequences of the SwissProt entries of Dictyostelium discoideum
(www.ebi.ac.uk, release date 2017/10/09) and commonly observed contaminants (in total 26,272
sequences) using MASCOT (Matrix Science, Version 2.4.1). The search criteria were set as follows:
full tryptic specificity was required (cleavage after lysine or arginine residues); 3 missed cleavages
were allowed; carbamidomethylation (C) was set as fixed modification; oxidation (M) as variable
modification. The mass tolerance was set to 10 ppm for precursor ions and 0.02 Da for fragment ions.
Results from the database search were imported into Progenesis QI for proteomics and the final peptide
measurement list containing the peak areas of all identified peptides, respectively, was exported.
This list was further processed and statically analyzed using our in-house developed SafeQuant R
script (SafeQuant, https://github.com/eahrne/SafeQuant, [72]). The peptide and protein false discovery
rate (FDR) was set to 1% using the number of reverse hits in the dataset. All quantitative analyses
were performed in biological triplicates. The resulting details of the proteomics experiments carried
out including identification scores, number of peptides quantified, normalized (by sum of all peak
intensities) peak intensities, log2 ratios, coefficients of variations and p-values for each quantified
protein and sample are displayed in Supplementary Table S1. All raw data and results associated with
the manuscript will be deposited into the Proteome X change Consortium via the PRIDE [73] partner
repository with the dataset identifier PXD009483 and 10.6019/PXD009483.

For the data shown in Figure 1b (Table S2), the log2ratio for FLAG-CorA samples (pooled of
all samples from the different timepoints) was determined against the control sample expressing
non-FLAG tagged CorA and background proteins were filtered out using the cutoff of log2ratio >
1.5 and g-value < 0.05; this dataset reflects the growth phase-independent interactome of coronin A.
The significantly enriched proteins ranked per their fold enrichment were plotted using Numbers. For
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the time-dependent analysis in Figure 5, the log2ratio for FLAG-CorA and FLAG-CorAACC against
the control sample expressing non-FLAG tagged CorA were calculated and the same cutoff set as
above, and the samples for each time point (representing the early log, log and early stationary growth
phases, i.e., common to exponential growth and stationary phases) were compared to the control of
the same time point. The top 25 significantly enriched proteins ranked per their fold enrichment in
FLAG-CorA were plotted using Numbers.

4.3. Analysis of F-Actin and G-Actin from Cell Lysates

Coronin A-actin interaction from cell lysates was essentially performed as described [45]. In brief,
DH1-10 wild type cells were harvested (4 x 10° cells/sample), washed and resuspended in 0.5
mL starvation buffer B (5 mM Na,HPO,, 5 mM KH,POy, 2.5 mM MgSO,4, 200 pM CaCl, [74].
The cells were then exposed to either 9 uM Jasplakinolide (Sigma-Aldrich) for 1 h to induce actin
polymerization, 10 uM Latrunculin A (Sigma-Aldrich) for 30 min to induce actin depolymerization,
or buffer alone as a control and placed on a shaking platform at 22 °C. The cells were pelleted and
washed twice with phosphate-buffered saline (PBS), and then lysed with 200 pL F-actin stabilization
buffer (50 mM PIPES pH 7.0, 50 mM NaCl, 5 mM MgCl,, 5 mM ethylene glycol-bis(3-aminoethyl
ether)-N,N,N’,N’-tetraacetic acid (EGTA), 5% glycerol, 0.1% Triton X-100, 0.1% Tween 20, 0.1%
NonidetP-40, 0.1% (-Mercaptoethanol, 1 mM ATP, protease inhibitor mix [44,75]) on ice for 15 min.
The lysates were pre-cleared by centrifugation at 600X g for 5 min and the supernatant was subjected
to ultracentrifugation at 150,000x g for 30 min at 4 °C to sediment F-actin. The supernatant was
removed and the remaining pellet was resuspended in 100 pL ice cold distilled water containing
10 uM Cytochalasin D (Sigma, St. Louis, MO, USA) for 30 min on ice and occasionally agitated gently
by pipetting up and down. The resuspended pellet fraction was then mixed with 100 pL 2x F-actin
stabilization buffer to bring the solution to the same volume as the previously removed supernatant
fraction. Ten microliter of each supernatant (G-actin) and pellet (F-actin) were analyzed by SDS-PAGE
and immunoblotting using anti-actin and anti-coronin A antibodies as described below.

4.4. Protein Purifications

For co-precipitation analysis, FLAG-coronin A and FLAG-CorAACC were purified using the M2
Flag affinity gel. In brief, 5 x 108 FLAG-CorA- or FLAG-CorAACC-expressing cells were harvested
in log growth phase and washed twice with ice cooled TBS (20 mM Tris-HCI pH 8.0, 150 mM NaCl,
5 mM KCI). The cells were then lysed in 4 mL lysis buffer (TBS, 2 mM EDTA, 1% Triton X100,
Protease/Phosphatase Inhibitor from Thermo-Fischer #1861281) on ice for 30 min with gentle agitation
every 5 min. The lysate was cleared at 18,000x g for 15 min at 4 °C, filtered through a 0.45 uM filter
(Sartorius), then loaded onto 250 pL of M2-anti-FLAG slurry and incubated with rotation in 15 mL
Falcon for 90 min at 4 °C. Non-bound protein were washed off 4x (each with 1 mL lysis buffer), and
then 8x with 1 mL each of low salt TBS (20 mM Tris-HCI pH 8.0, 25 mM NaCl, 5 mM KClI) at 1000x g, 5
min at 4 °C, while collecting the supernatant and determining the presence of protein at OD280 with
an Eppendorf BioSpectrometer® basic (Eppendorf, Hamburg, Germany). By the 9th wash, no protein
was detected in the supernatant. Bound proteins were eluted with 250 pL of 3x FLAG peptide (Sigma
or GenScript) at 0.2 pg/uL in low salt TBS for 1 h at 4 °C. Purified fractions were run on 10% SDS-PAGE
gel, stained with Coomassie® G-250 SimplyBlue™ SafeStain (ThermoFisher) and imaged by scanning
with a CanoScan 9000F Mark II scanner (Canon).

G-actin was isolated from rabbit muscle acetone powder (Sigma M6890) as described
previously [76]. In brief, 1.5g acetone powder was dissolved in 30 mL buffer G (2 mM imidazole,
0.2 mM ATP, 0.5 mM dithiothreitol (DTT), 0.2 mM MgCl,, pH 7.2-7.4) and stirred on ice for 30 min.
The extract was filtered and the remaining acetone powder was extracted with another 30 mL of
buffer G for 30 min. Both supernatants were pooled and centrifuged for 20 min at 25,000 g at 4 °C.
The supernatant was pooled and supplemented with KCI (1M stock) to a final concentration of 50 mM
and MgCl, to a final concentration of 2 mM and stirred at 4 °C for 1 h. After stirring we slowly
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added ground KCI powder to reach 0.8 M final concentration and stirred for another 30 min at 4 °C.
The solution containing polymerized actin was centrifuged for 1 h at 150,000 ¢ at 4 °C and the
resulting pellet was resuspended in 4 mL of buffer A (2.5 mM imidazole, 0.2 mM ATP, 0.2 mM CaCl,,
0.005% NaNs3, 0.2 mM DTT, pH 7.2-7.4) using 18G and 23G syringe needles. The dissolved pellets were
dialyzed for 3 days against daily exchanged buffer A, followed by ultracentrifugation at 250,000x g at
4 °C for 1.5 h. The depolymerized actin in the supernatant was further purified using gel filtration
(Superdex 200 10/300 GL, GE Healthcare). The purified G-actin was kept dialyzing against buffer A at
4 °C for two weeks.

For the purification of yeast Crnl, the cDNA coding for Crnl was fused with that of GST as
described above. An overnight culture of Y36032_GST-Crnl1 yeast (Euroscarf) was diluted in synthetic
dropout complete-LEU medium to an OD600 of 0.2. The cells were grown at 30 °C to an OD600 of
0.8-1 in 31 Erlenmeyer flasks on a shaking platform. The cells were harvested at 5000 g for 5 min at
4 °C and washed with ddH,O. Pellets from a volume of 100 mL original culture were resuspended in
500 pL yeast lysis buffer (20 mM Tris-HCI pH 8.0, 150 mM NaCl, 2 mM EDTA, 0.1% TX-100, 1 mM
PMSE, 3 mM DTT, complete protease inhibitor from Roche) and mixed with 500 uL glass beads (Carl
Roth: A553.1 Glasperlen 0.25-0.5 mm). The yeast cells were disrupted in a bead vortex for 2 x 30 s.
In between vortexing steps, the lysate was placed on ice for 5 min. The supernatant was removed
and the remaining material was extracted a second time with 500 pL yeast lysis buffer. Pooled lysates
were centrifuged at 17,000x g for 1 min at 4 °C and GST-Crn1 purified on a GSTrap (GE Life Sciences)
column followed by incubation with thrombin (4 hrs, 4 °C; 1 unit per 100 ug of protein) to remove the
GST-tag. Thrombin was removed using benzamidine beads (50% slurry; Sigma-Aldrich #A7155) and
the Crn1 solution was dialyzed (Spectrapor, 10 kDa cutoff) against KMEI buffer (see below) followed
by removal of the GST tag using GSTrap from GE and concentrated in an Amicon MWCO 50 kDa
device (Millipore, Burlington, MA, USA).

For the co-purification of His-coronin A and His-Myosin-coronin A with actin, the purification
was performed as described above with the following changes: cells were lysed in 5 mL imidazole lysis
buffer (50 mM Tris-HCl pH 7.5, 20 mM Imidazole, 2 mM Benzamidine, 1 mM EDTA, 0.5% Triton x 100,
protease inhibitor mix) on ice for 20 min. The lysate was loaded onto a 300 puL bed of Ni-NTA resin
(Qiagen, Hilden, Germany). The loaded column was washed with 40 column volumes of imidazole
washing buffer (50 mM Tris-HCI pH 7.5, 40 mM Imidazole, 1 mM EDTA, 2 mM Benzamidine), and
bound proteins were eluted with imidazole elution buffer (washing buffer + 260 mM imidazole).
Collected fractions were then analyzed by Western blotting as described below.

4.5. Coronin A-F-Actin co-Precipitation Analysis

Coronin A-F-actin co-precipitation analysis was carried out using the FLAG-coronin A or
FLAG-CorAACC and the procedure according to the Hypermol Actin toolkit (Hypermol, Bielefeld,
Germany). In brief, FLAG-CorA and FLAG-CorAACC were purified as described above using
M2-anti-FLAG resin and dissolved in low salt TBS (20 mM Tris-HCl pH 8.0, 25 mM NacCl, 5 mM
KClI). For preparation of rabbit muscle actin, lyophilized G-Actin was reconstituted with 900 puL
H,O to obtain a 1.1 mg/mL stock solution, and left to rehydrate at room temperature for 5 min, and
subsequently dialyzed overnight in MonoMix buffer (0.1 mM CaCl,, 0.5 mM DTT, 0.4 mM ATP, 2 mM
Tris-HCI, pH 8.2). For F-Actin preparation, the G-actin stock was pre-spun at 100,000x g, 1 h, 4 °C
in an Optima TLX ultracentrifuge (TLA55) and the supernatant was used for the co-sedimentation
assay. G-actin was mixed in a 1:10 ratio with 10x PolyMix buffer (Hypermol, 1 M KCl, 0.02 M MgCl,,
0.01 M ATP, 0.1 M imidazole, pH 7.4) and left 30 min at room temperature for polymerization. For
co-sedimentation, 2 ug prespun (100,000 g, 1 h at 4 °C in an Optima TLX ultracentrifuge (TLA55))
FLAG-CorA or FLAG-CorAACC was incubated with different amounts of F-actin for 45 min at room
temperature. For higher salt concentrations, FLAG-CorA and G/F-Actin were mixed at equal molar
ratios of 1 uM and additional NaCl (from a 5M stock solution in ddH,O) was added to the samples
to final concentrations of 50 mM, 100 mM and 150 mM in a total volume of 40 uL. After incubation,
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samples were centrifuged at 100,000x g, 1 h, 4 °C in an Optima TLX ultracentrifuge (TLA55, Beckman
Coulter). As controls G-actin, F-actin, FLAG-CorA, and FLAG-CorAACC were centrifuged separately
to assess their solubility. After centrifugation, the supernatants were transferred to 1.5 mL microfuge
tubes containing SDS sample buffer (Tris-HCl pH 6.8, 2% SDS, 5% Glycerol, 0.015% DTT, 0.0002%
bromophenol blue). The pellet was washed twice with low salt TBS (25 mM NaCl, 20 mM Tris-HCl,
pH 7.5) and resuspended in low salt TBS containing SDS sample buffer and transferred into 1.5 mL
microfuge tubes. Samples were boiled for 5 min at 95 °C and separated on a 10% SDS-PAGE. The gel
was stained using Coomassie G250 SimplyBlue™ SafeStain (ThermoFisher, Waltham, MA, USA). For
the sedimentation analysis of yeast Crn1, a stock of freshly purified G-actin was diluted to 4 uM into
buffer A. KMEI (10x) actin polymerization buffer was added to yield a 1x concentration (KMEL 20 mM
Imidazole, 50 mM KCl, 1 mM EGTA, 1 mM MgCl,, pH 7.5) and the actin was left to polymerize at RT
for 1 h. Thirty pL of F-actin or G-actin were mixed with 10 uL yeast-Crnl purified as described [4]
to a final volume of 40 uL and a final concentration of 500 nM. The mixture was incubated for 30
min at room temperature while shaking. The samples were then subjected to ultracentrifugation at
150,000x g for 30 min at 4 °C. After removal of the supernatant the pellets were resuspended in 40 uL
distilled water with 10 uM cytochalasin D and left to stand for 20 min at RT. Both supernatant and
pellet were mixed or resuspended in equal amounts of SDS sample buffer. The samples were separated
by SDS-PAGE and Western blot was performed as described below. The apparent Kd was obtained by
non-linear fitting of the data using Prism (8.3.0) based on duplicate data allowing different values of
the maximum P/S ratio for each group.

4.6. Western Blotting

Proteins were separated on 10% Sodium dodecyl sulfate polyacrylamide gel electrophoresis
(SDS-PAGE) gels and transferred onto nitrocellulose membranes with semi-dry or wet transfer systems
(BioRad, Hercules, CA, USA), depending on the size of proteins to be analyzed. The membranes were
stained with Ponceau red protein stain for 15 min, rinsed with ddH,O and scanned with a CanoScan
9000F Mark II scanner (Canon). The Ponceau red was washed off and the membrane blocked with
5% milk in PBS-Tween20 for 1 h at RT or overnight at 4 °C. The antibodies were diluted in 5% milk
PBS-Tween20 at 1:15,000 for anti-coronin A, and 1:5000 for anti-actin. Primary antibody incubation was
done either at room temperature for 2 h or overnight at 4 °C, followed by washes and by incubation with
horseradish peroxidase (HRP)-coupled secondary antibodies (Southern Biotech). Membranes were
developed using SuperSignal PicoWest chemiluminescence substrate (Thermo-Fisher) or WesternBright
Quantum HRP substrate (Advansta) and imaged using a Fuji FPM 800A (Fuji, Tokyo, Japan) or Fusion
FX7 (VILBER, Paris, France)

4.7. Phagocytosis

For the preparation of particles, harvested log-growth phase Klebsiela acrogenes and S. cerevisiae
(strain NYYO-1, [77]) were washed with and resuspended in KK2 buffer (16 mM KH;POy4, 4 mM
Ky;HPOy,) before heat killing at 80 °C and 65 °C, respectively, for 20 min. Heat-killed bacteria and
yeast cells were stained in the dark, respectively, with 10X and 2.5x manufacturer recommended
working concentration of CellBrite Fix 640 dye (#30089, Biotium, Freemont, CA, USA) for 30 min at
RT. Excess dye solution was removed by centrifugation and labelled cell were resuspended in KK2
buffer. Live bacteria were laboratory strain E. coli (DH50) expressing neon green fluorescent protein
grown overnight in liquid broth to stationary growth phase. The live bacteria were a kind gift from
Dirk Bumann at the Biozentrum, University of Basel, Basel, Switzerland. For beads, @ =1 um, 3 pm,
4.5 pm or 6 pm fluorescent carboxylate-modified microspheres particles were obtained from Life
technologies or PolySciences. For the uptake experiment, 12 x 107 Dictyostelium cells were harvested in
early log growth and resuspended in 6 mL HL5 medium at a density of 2 X 10° cells/mL in a 2 conical
flask and then incubate at 22 °C for 1 h at 160 rpm. For control, cells were pretreated with the actin
depolymerizing drug cytochalasin A (C6637 Sigma-Aldrich) to a final concentration of 5 pg/mL for 30
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min at 22 °C before the fluorescent particles were added. Particles were added to the Dictyostelium
cells at MOI of 5, 10, 100, or 200 and incubated at 22 °C with 160 rpm, or at 4 °C (control) and 500 pL
samples were collected at 0, 10, 20, 30, 60, and 90 min into 3 mL ice-cold KK2 supplemented with 5 uM
NaNj3; washed and resuspended in 250 pL ice cold FACS buffer (PBS, 2% FCS, 10 mM EDTA, 0.05%
Na-azide) and maintained on ice until measurement [78]. Non-ingested fluorescently labelled bacteria
and yeast particles were quenched by adding 0.4% trypan blue at a ratio of 2:1 (trypan blue:sample)
and incubated for 10 min prior to analysis. Samples were analyzed by Fluorescent Activated Cell
Sorting (FACS) on a BD LSRFortessa (Becton-Dickinson, Franklin Lakes, NJ, USA) and Flow]o Software
(flowjo.com).

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/4/1469/
s1. Figure S1: Control for phagocytosis, Table S1: Table S1_Summary Sheet for all time points plus the combined,
Table S2: Log2ratios_FLAG-CorA.
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