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Abstract: Traditional fluxgate sensors used in geomagnetic field observations are large, costly, power-
consuming and often limited in their use. Although the size of the micro-fluxgate sensors has been
significantly reduced, their performance, including indicators such as accuracy and signal-to-noise,
does not meet observational requirements. To address these problems, a new race-track type probe is
designed based on a magnetic core made of a Co-based amorphous ribbon. The size of this single-
component probe is only Φ10 mm × 30 mm. The signal processing circuit is also optimized. The
whole size of the sensor integrated with probes and data acquisition module is Φ70 mm × 100 mm.
Compared with traditional fluxgate and micro-fluxgate sensors, the designed sensor is compact and
provides excellent performance equal to traditional fluxgate sensors with good linearity and RMS
noise of less than 0.1 nT. From operational tests, the results are in good agreement with those from a
standard fluxgate magnetometer. Being more suitable for modern dense deployment of geomagnetic
observations, this small-size fluxgate sensor offers promising research applications at lower costs.

Keywords: compact magnetic sensor; fluxgate magnetometer; geomagnetic field measurement

1. Introduction

A fluxgate sensor is a vector sensor that can be used to measure constant magnetic
fields or low-frequency magnetic fields [1,2]. The sensor is based on the phenomenon of
electromagnetic induction and modulates the measured magnetic field by the transformer
effect. Compared with other types of magnetic sensors, fluxgate sensors have advan-
tages such as high resolution (up to 0.1 nT), wide magnetic field measurement range and
good stability [3–7].

At present, the main magnetic measuring instruments with resolution up to nT level
are the fluxgate magnetometer, SQUID magnetometer, optical pump magnetometer and
Overhauser magnetometer. Among them, the resolution of the optical pump magnetome-
ter can reach 0.01 nT, but the optical system and gas chamber in its structure are large in
size and are characterized by high power consumption; moreover, only the scalar mea-
surement of the magnetic field can be performed. The Overhauser magnetometer has
a resolution of 0.01 nT and the power consumption is only 0.5 W at a sampling rate of
5 seconds, but it can also only perform scalar measurements of the magnetic field. Only the
SQUID magnetometer is more sensitive than the fluxgate sensor among the current vector
sensors [8–10]. Nevertheless, the high demand for liquid helium or nitrogen (for high
temperature SQUIDs) and the limited dynamic range make their use limited. Considering
its advantages and disadvantages, the fluxgate sensor is still the most suitable vector sensor
for magnetic field observations requiring resolutions of 0.1 nT and an absolute accuracy
between 1 nT and 100 nT, as needed to monitor Earth’s magnetic field [11,12].

The current fluxgate sensors installed in fixed stations are often limited in their use
because of their large size, high cost, high power consumption and the need for constant
maintenance during use [13–16]. In addition, geomagnetic stations used for fluxgate-sensor
observations occupy a large area and have other requirements concerning the surrounding
electromagnetic environment. Moreover, all building materials need to be non-magnetic
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and specially customized; hence, these sensors are very expensive to fabricate. With the
rapid social economic development, the construction of roads and other infrastructures
brought about by urban expansion have further narrowed the possible sites for geomagnetic
stations. Stations that once produced good-quality observation data have become outdated
with the spread of transportation networks and dense distribution of transmission lines.
These persistent problems make the study of small-size fluxgate sensors that can be buried
all-important. Compared with traditional fixed station installation, buried installations
have the advantages of low cost, flexible-site selection and dense deployment within a
region. Nowadays, some advanced fluxgate magnetometers, such as the Mag-03 series of
Bartington, can realize the buried placement of the probes. However, its accessories, such
as the Mag-03 MC-MB cylindrical probe mounting bracket, Mag-03 DAM data acquisition
module, or SCU1 signal conditioning unit, are still bulky and cannot meet the needs of
buried observation of the whole fluxgate.

To achieve these goals of flexible siting, convenience in monitoring and intensive
deployment, the traditional fluxgate sensor needs to be improved. Current developments
in fluxgate sensors are directed toward miniaturization, low power consumption, low cost
and improved accuracy over a large measurement range [17–20]. Three main types of micro-
fluxgate magnetic sensor are available: (1) CMOS-based devices with flat coils, (2) sensors
with thin-film or microfabricated solenoids and (3) PCB-based devices with solenoids made
from tracks and vias [21,22]. However, these micro-fluxgate sensors fabricated through
modern high technology are not suitable for applications directed towards monitoring
Earth’s magnetic field, because their resolution is only a few nanoteslas and the RMS noise
is several to a dozen nanoteslas in practical applications [23–32]. Nonetheless, their size
is substantially reduced compared with that of conventional fluxgate sensors and their
power consumption is considerably reduced.

Considering the limitations of traditional fluxgate sensors and the unsuitability of
micro-fluxgate sensors for the needs of geomagnetic field observations, we propose a
compact fluxgate sensor that does meet those needs. Different from the split design of the
traditional fluxgate, this fluxgate integrates the probes and data acquisition module. As
its core, a Co-based amorphous alloy cold drawn and annealed by vacuum-melt draw-
ing equipment was selected. An improved miniaturized racetrack probe structure was
designed. By optimizing the weak signal detection circuit, the original low noise, high
resolution, high stability and other excellent performance indicators of the traditional
fluxgate sensor were ensured along with a reduction in size and power consumption of
the sensor.

2. Core Material and Probe Design

The fluxgate sensor exploits the non-linear relationship between the magnetic induc-
tion intensity and magnetic field intensity of a soft magnetic core under an alternating
saturated magnetic field excitation to characterize the magnetic field as a voltage in mea-
surements [33,34]. To reduce the interference signal generated by the transformer of the
excitation signal, a dual-core fluxgate structure was selected (Figure 1). With this structure,
the excitation coils are symmetrical in size and identical in electromagnetic parameter
settings. When current is passed through the coils, the magnetic fields generated by them
oppose. The magnetic fluxes generated by the excitation current through the common
induction coils cancel each other, whereas the fluxes generated by the measured magnetic
fields are superimposed on the induction coils.



Sensors 2021, 21, 6598 3 of 14Sensors 2021, 21, x FOR PEER REVIEW 3 of 15 
 

 

 
Figure 1. A dual-core fluxgate probe structure. 

As shown in Figure 2a, a simplified trifold line is used to represent the hysteresis line 
of the core. When the magnetic field intensity is less than the saturation magnetic field 
intensity 𝐻௦ of the core, the magnetic permeability of the core is assumed constant at 𝜇. 
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In accordance with Faraday’s law of electromagnetic induction, the output voltage of 
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Figure 1. A dual-core fluxgate probe structure.

As shown in Figure 2a, a simplified trifold line is used to represent the hysteresis
line of the core. When the magnetic field intensity is less than the saturation magnetic
field intensity Hs of the core, the magnetic permeability of the core is assumed constant at
µa. The excitation coils are excited by a standard sinusoidal current. Without considering
the demagnetization, for example, of the core and eddy currents, a magnetic field with
intensity Hm sin ωt is generated inside the core. During operations, if the measured mag-
netic field intensity is H0, the core’s magnetic induction intensity and its magnetic field
intensity along with the output voltage of the induction coil are prescribed as illustrated in
Figure 2b–d, respectively.
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In accordance with Faraday’s law of electromagnetic induction, the output voltage of
the induction coils in one period (0–π) is

Uout =

{
N2µa HmSω sin ωt, ωt1 ≤ ωt ≤ ωt2&ωt3 ≤ ωt ≤ ωt4

0, otherwise
, (1)
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where N2 denotes the number of turns of the induction coils, S the cross-sectional area
of the magnetic core, ωt1 = arcsin

(
Hs−H0

Hm

)
, ωt2 = arcsin

(
Hs+H0

Hm

)
, ωt3 = π − ωt2 and

ωt4 = π −ωt1.
Performing a Fourier expansion on Equation (1) yields

Uout =
∞
∑

i=2

2N2Sµa Hmω
π

{
1

i+1 [cos(i + 1)ωt1 − cos(i + 1)ωt2] sin i

+ 1
i−1 [cos(i− 1)ωt1 − cos(i− 1)ωt2]ωt

}
sin iωt.

(2)

The amplitude of the second harmonic is the largest in the fluxgate induction output
signal. From Equation (2), the output amplitude of the second harmonic is

U2m =
8

3π
N2Sµaω

1
H2

m

{[
H2

m − (H2
s − H2

0)
2
] 3

2 −
[

H2
m − (H2

s + H2
0)

2
] 3

2
}

. (3)

When H0 tends to 0, the sensitivity of the induced second harmonic is

G2 = dU2m
dH0

= 8
π N2Sµaω 1

H2
m

{
(Hs − H0)

√
H2

m − (Hs − H0)
2

+(Hs + H0)
√

H2
m − (Hs + H0)

2
}

.
(4)

When the measured magnetic field H0 is small enough, requiring dG2
dHm

= 0 establishes
the optimal excitation field amplitude of Hm =

√
2Hs for the fluxgate sensor.

Taking into account the demagnetization of the core, the actual excitation magnetic
field intensity H inside the core is

H =
1

1 + D(µr − 1)
N1

l
Im, (5)

where D denotes the demagnetization coefficient, µr the relative permeability of the core,
N1 the number of turns of the excitation coils, l the length of the coil and Im the amplitude
of the excitation current. Therefore, the optimal excitation current amplitude of the probe is

Im =
√

2
l

N1
[1 + D(µr − 1)]Hs. (6)

The power consumption of the excitation current has a significant influence on the
operation of the fluxgate sensor. To achieve low-power operation and reduce the magnitude
of the excitation current, an analysis of the factors in Equations (4) and (6) shows that
reducing µr reduces the required excitation current magnitude, but, at the same time,
causes a reduction in the sensitivity of the probe. While Hs is mainly determined by the
material properties of the core, D and l/N1 are mainly determined by the structure of the
probe. Therefore, based on the traditional fluxgate sensor, we designed a miniaturized
race-track type fluxgate probe with a core made of Co-based amorphous alloy ribbon.

Because the working principle of the fluxgate is based on the nonlinear magnetization
properties of the core material, the core material needs to meet certain requirements, such
as high relative permeability, low coercivity and low magnetostriction [35]. Therefore,
when the external magnetic field changes slightly, the magnetic induction intensity in the
core changes significantly and an electromotive force is generated in the induction coils.
To reduce the power consumption of the sensor, the core material must have the lowest
possible saturation magnetic field intensity. Therefore, permalloys and amorphous alloys
with low saturation magnetic field intensity and high relative permeability are the best
choices for the core.

The traditional fluxgate sensor has a core made of permalloys. Because of limitations
in the processing technology, it is usually made into a ring, which makes the probe volume
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too large. At the same time, permalloys must undergo a rigorous heat treatment process
at 1100 ◦C under stress, making the probe costly to manufacture. In contrast, amorphous
alloy materials can, without heat treatment, acquire material properties close to permalloys,
including good toughness, high mechanical strength and high permeability that adequately
meets the requirements of cores for magnetic sensors [36–41]. The Fe-based amorphous
alloys have high permeability characteristics, although the saturation magnetic field inten-
sity is greater than that of Co-based amorphous alloys and the electroplated permalloy.
Co-based amorphous alloys have good toughness, low saturation magnetic field intensity,
high magnetic permeability and a near-zero magnetostriction constant, all of which are
conducive in realizing low power consumption for the fluxgate sensor [42,43]. The core
noise can be further decreased by annealing the Co-based amorphous alloy [29]. Magnetic
permeability is also improved, making it more responsive to weak magnetic field signals.

After comparison, the Co-based amorphous ribbon with a width of 1.6 mm (Figure 3)
was selected as the core material, thereby improving the probe structure of the fluxgate
sensor. The magnetic parameters of CACO-01 are shown in Table 1 below. Compared with
the classic Metglas 2714A Co-based amorphous ribbon, it has a lower saturation magnetic
field intensity and lower coercivity, making it more suitable for compact fluxgate probes.
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Table 1. The magnetic parameters of CACO-01 and Metglas 2714A.

Type Composition
Saturation

Magnetic Field
Intensity/T

Coercivity /Am−1 Maximum
Permeability

CACO-01 Co-Fe-Mo-Si-B 0.55 0.13 1,000,000
Metglas 2714A Co-Fe-Ni-Si-B 0.57 0.4 1,000,000

Despite its large size and high power consumption, the ring-type probe made of
permalloy is highly sensitive. A conventional race-track type fluxgate probe does reduce
the overall volume, compared with the ring-type probe. However, the narrow space of the
short axis of the race-track type skeleton and the brittleness of the permalloy material after
annealing mean that its fabrication can only be made by initially winding the magnetic
core on the coil skeleton. Then, after high-temperature annealing, the wires are wound
on the probe skeleton manually. The coils of this hand-wound race-track type fluxgate
probe are not only difficult to wind, but incur a high manufacturing cost. Taking advantage
of the good toughness characteristics of the Co-based amorphous alloy, we designed the
main probe body based on the original race-track probe structure as two symmetrical and
splittable semi-cylindrical skeleton structures (see Figure 4). The skeleton is made of epoxy
resin, which has a low coefficient of thermal expansion and plexiglass material in the ratio
of 5:1.
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Figure 4. Photo of the probe structure. (a) Two independent semi-cylindrical core skeletons; (b)
induction coil skeleton; (c) probe casing.

Two independent semi-cylindrical core skeletons (Figure 4-a) enable the manufacturer
to use a machine to wind the excitation coils, thereby significantly reducing labor costs.
After winding is completed, the two skeletons are combined and fixed. A gap of 1.8 mm
is left in the middle of the core skeletons that allows for the insertion of the Co-based
amorphous ribbon. Amorphous alloy magnetic tapes reach periodic deep saturation as
the high frequency excitation field changes. A multi-core design is adopted for the probe.
This reduces considerably the required core cross-sectional area and excitation current
compared with that using the traditional permalloy material, while maintaining the same
probe sensitivity, thereby reducing the size and power consumption of the sensor. The
induction coils (Figure 4-b) are also machine-wound. After winding, the core skeleton is
inserted into the central cavity of the induction coil skeleton and encapsulated together
into the externally protected probe casing (Figure 4-c). Compared with the size of the
common ring-type probe of fluxgate sensors deployed in geomagnetic field stations, the
size of the modified probe (Figure 5) is greatly reduced. The single-component probe is
only Φ10 mm × 30 mm in size.
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3. Concept of the Proposed Sensor and Realization

The working principle of our small-size fluxgate sensor involves applying the second
harmonic method to extract useful signals related to the measured magnetic field from
the output voltage of the induction coil. In operation (Figure 6), the fluxgate sensor
under the action of the excitation signal outputs a harmonic signal from the induction coil
containing information about the change in the geomagnetic field. The alternating output
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signal is amplified using frequency selection, low-pass filtering, phase-sensitive detection,
integration and other signal processing to form a quasi-DC voltage signal corresponding to
the three components of the magnetic field, denoted H, Z and D.
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In fluxgate sensor circuits, the excitation signal plays a decisive role. The parts
concerning excitation and sensing are interlinked. When an error occurs in the excitation
signal, the entire system undergoes a chain reaction that eventually leads to a wrong output
from the probe sensing. Therefore, the excitation signal module of the fluxgate senor
must have the following features: (1) high frequency stability, (2) high voltage amplitude
stability, (3) high phase stability and (4) high waveform stability. The common means for
generating excitation signals are crystal oscillators and timers of a microcontroller. The
signals generated by crystal oscillators are not highly stable and require additional filtering
for signal processing; they are therefore not suitable for small-size fluxgate sensors.

For this reason, a microcontroller was used to output the excitation signal, to have an
adjustable frequency and a stable duty cycle and to ensure compactness. Both the excitation
signal and the phase-sensitive demodulation reference signal in the signal processing circuit
are generated by independent timers built into the microcontroller. While the signal is
generated, a phase shift of the phase-sensitive demodulation reference signal is produced
directly by the microcontroller, which ensures frequency stability and phase-shift accuracy.
Once the excitation system is initialized, the control and intervention of the microcontroller
is no longer required, thereby reducing the power consumption of the fluxgate sensor. To
ensure this small-size fluxgate sensor still has high sensitivity, low noise and low power
consumption, the excitation signal generated is a high-frequency triangular waveform.
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4. Experiments and Results

With the designed small-size fluxgate sensor (Figure 7), the size of the whole device
is only Φ70 mm × 100 mm. The location of the three probes in the device is shown in
Figure 8. The H component probe and the D component probe are placed orthogonally in
the horizontal plane and the Z component probe is placed on the vertical orthogonal plane.
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In constructing a test platform for the small-size fluxgate sensor, we chose a magnetic-
field-shielding cylinder (Figure 9) with a shielding space of more than 30 cm and a length
of not less than 2 m, a permalloy shielding layer of not less than 6-layer thick, a loadable
test coil, a high-precision current source and a high-precision signal generator. The fluxgate
sensor was placed at the center of the shielding cylinder. The sensor and component probe
to be measured were aligned parallel or coincident with the axis of the shielding cylinder.
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4.1. Linearity Testing

The current in the test coil of the magnetic shielding cylinder was varied to generate
standard magnetic fields of different strengths. The output values of the fluxgate mag-
netometer were recorded for the different magnetic field strengths (see Table 2). The test
results (Figure 10) show that the linearity of our fluxgate sensor was better than 4‰ along
all three axes; with this excellent linearity, a good performance similar to the traditional
fluxgate sensor was attained.

Table 2. Linearity test results. All magnetic field values are given in nanoteslas.

Standard
Magnetic

Field

Component
H Linearity/‰ Component

D Linearity/‰ Component
Z Linearity/‰

2000 2003.99 1.15 2000.53 0.62 2000.53 0.23
1500 1503.37 1.12 1500.82 0.63 1500.74 0.17
1000 1002.9 1.21 1001.13 0.63 1000.91 0.08
800 802.39 0.88 800.83 1.16 800.73 0.33
400 401.87 0.45 401.36 1 401.01 0.05
200 201.83 0.7 201.12 3.2 201.17 0.9

0 1.69 / 1.76 / 0.99 /
−200 −198.56 1.25 −197.79 2.25 −198.887 0.615
−400 −398.55 0.6 −397.4 2.1 −398.67 0.85
−800 −798.7 0.49 −796.91 1.67 −798.37 0.8
−1000 −999.04 0.73 −997.24 1 −998.59 0.42
−1500 −1499.27 0.64 −1496.64 1.07 −1498.19 0.55
−2000 −1999.38 0.54 −1996.31 0.97 −1997.91 0.55
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4.2. Noise Testing

For noise tests, there was no applied magnetic field in any direction inside the shielded
cylinder. The output values of the three components of the fluxgate sensor were recorded
over a set period of time. Five hundred continuous samples of data were selected after read-

ings were stabilized (Figure 11). The RMS values of noise, Noise =
√

1
N−1 ∑N

i=1
(

Bi − B
)2,

where N denotes the number of samples, Bi the sampled value and B the average of the
sampled values, were calculated and are here listed in Table 3. The maximum value among
the three components of noise is 0.087 nT, that is, the designed fluxgate sensor has an RMS
noise value below 0.1 nT. Compared with the noise level of traditional fluxgate devices
used at geomagnetic field stations, such as the GM4 fluxgate magnetometer used by the
Chinese geomagnetic network, the noise level of our sensor is comparable and meets the
needs for geomagnetic field observations. Compared with a micro-fluxgate sensor, our
sensor has significantly less noise.
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Table 3. Noise test results.

Component H Component D Component Z

RMS noise (nT) 0.065 0.059 0.087

4.3. Instrument Comparison Test

A simultaneous experiment comparing our small-size fluxgate sensor with a standard
fluxgate sensor of a geomagnetic reference station was performed (Figure 12). The type of
the reference standard instrument is a GM4-XL fluxgate magnetometer.
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The performance of the fluxgate sensor was further examined from a correlation
analysis of the daily geomagnetic field variation recorded by the standard instrument and
designed instrument. After a period of observations, the data for the three components of
the geomagnetic field measured by the two instruments in the same working environment
were in good agreement. The data taken over one day of recordings were plotted for a
visual comparison (Figure 13).
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Through data processing and analysis, the designed fluxgate sensor behaved highly
consistently, compared with the standard instrument. The correlation coefficients obtained
from the daily recordings of the three components of the geomagnetic field were all above
0.99. That is, there is good consistency and coincidence between the data sets of the
two instruments. The designed fluxgate instrument truly reflects the variation in Earth’s
magnetic field and meets the criterion needed for daily monitoring.

5. Conclusions

With a Co-based amorphous alloy ribbon as the magnetic core material in the fluxgate
sensor, we designed a modified miniaturized race-track fluxgate probe based on the traditional
race-track probe structure. The size of the single-component probe is only Φ10 mm × 30 mm.
The sensor circuit was designed to employ the second harmonic method. The excitation
signal of the sensor and the phase-sensitive demodulation reference signal were generated
using the built-in timer of the microcontroller. Phase shifts were achieved directly by the
microcontroller while the signal was generated, ensuring the stability of the frequency and
accuracy of phase shifts. With experimental measurements, the fluxgate sensor showed good
linearity and the RMS noise was less than 0.1 nT for each of the three field components. The
agreement between the designed fluxgate sensor and the standard fluxgate sensor of the
station is good and ensures the operational viability of the designed device. The proposed
fluxgate sensor is compact and its power consumption is low and attains good linearity, low
noise and excellent performance over a wide measurement range, all of which is needed for
daily geomagnetic field monitoring. The comparison between the proposed fluxgate sensor
and other sensors is shown in Table 4.

Table 4. Comparison between the proposed fluxgate sensor and other sensors.

Type Operation Range Size Power
Consumption Linearity RMS

Noise

The proposed sensor ±70,000 nT Φ70 mm × 100 mm 1 <2 W <4‰ <0.1 nT
GM4 ±62,500 nT Φ180 mm × 100 mm 2 <4 W <5‰ <0.1 nT

Mag-03 ±70,000 nT Φ25 mm × 202 mm 2 <3 W <5‰ <0.1 nT
The sensor in [27] ±50,000 nT 5.5 mm × 5.8 mm 2 33.75 mW / 23 nT
The sensor in [31] 0~100,000 nT 6.74 mm × 9 mm 2 20.35 mW <4% 2.2 nT

1 The whole size of the device. 2 The size of the probe.

The small-size fluxgate sensor proposed makes up for the shortcomings in existing
micro-fluxgate sensors, the performance of which does not meet the needs for field ob-
servations. Problems of large volume and power consumption of traditional fluxgate
instruments were also solved. The designed sensor is more suitable for modern dense
deployment of geomagnetic field stations and is conducive in solving the deteriorating
quality in data from fixed geomagnetic stations through buried installations operating with
magnetic fluxgate sensors. The application prospects of the fluxgate sensor are very broad.
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