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Abstract

Background

Maternal hypertension, type 2 diabetes (T2D) and obesity are associated with an increased

risk of having offspring with conotruncal heart defects (CTDs). Prior studies have identified

sets of single nucleotide polymorphisms (SNPs) that are associated with risk for each of

these three adult phenotypes. We hypothesized that these same SNPs are associated with

maternal risk of CTDs in offspring.

Methods and results

We evaluated the parents of children with a CTD ascertained from the Children’s Hospital of

Philadelphia (n = 466) and by the Pediatric Cardiac Genomic Consortium (n = 255). We

used a family-based design to assess the association between CTDs and the maternal

genotype for individual hypertension, T2D, and obesity-related SNPs and found no associa-

tion between CTDs and the maternal genotype for any individual SNP. In addition, we calcu-

lated genetic risk scores (GRS) for hypertension, T2D, and obesity using previously

published GRS formulas. When comparing the GRS of mothers to fathers, there were no

statistically significant differences in the mean for the combined GRS or the GRS for each

individual condition. However, when we categorized the mothers and fathers of cases with

CTDs as having high (>95th percentile) or low (�95th percentile) scores, compared to

fathers, mothers had almost two times the odds of having a high GRS for hypertension (OR

1.7, 95% CI 1.0, 2.8) and T2D (OR 1.8, 95% CI 1.1, 3.1).
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Conclusions

Our results support a link between maternal genetic risk for hypertension/T2D and CTDs in

their offspring. These associations might be independent of maternal phenotype at

conception.

Introduction

Congenital heart defects are the most common, significant congenital abnormality in new-

borns. They occur in approximately 1% of all live births and 10% of stillbirths. Little is known

regarding the etiology of these defects, but both genetic and environmental factors have been

identified [1]. Conotruncal defects (CTDs) are among the most common types of congenital

heart defects, accounting for one fifth of all heart defects [2,3]. Although 22q11.2 deletions, tri-

somy 21 and other genetic syndromes are seen in nearly 25% of cases with CTD defects, the

etiology in most cases remains unknown. Given the high recurrence rate and heritability in

families (approximately 4–5% recurrence risk for any CTD in siblings) [4], these unexplained

CTDs are nonetheless thought to have a genetic basis [5, 6].

Major risk factors for congenital heart defects, and CTDs specifically, include maternal

hypertension (HTN), type 2 diabetes (T2D), and obesity [7–10]. In fact, mothers who have

HTN prior to pregnancy have been found to have an increased risk of having a child with a

CTD, even after controlling for medication use [7,9]. Diabetic or obese mothers also have

increased risk for these defects in offspring [8,10,11]. Based on the relatively high frequency of

these conditions in females of reproductive age in the general population (i.e., ~25% for obesity

[12], 5% for T2D [13] and 5% for chronic HTN [14] and the reported magnitudes of associa-

tion between these maternal conditions and the risk of CTDs (i.e., OR~1.3 [15], 5.4 [16] and

1.3 [9,17] respectively), these maternal conditions may account for a substantial proportion of

the risk for CTDs in offspring.

The specific mechanisms underlying the associations between these common chronic

maternal conditions and congenital heart defects are unclear, and could involve abnormal

blood flow to the placenta (e.g. HTN) [9,18,19], glucose metabolism (T2D, obesity) [16,20], or

other pathways. Even in the absence of the overt maternal phenotype, a genetic predisposition

to one of these conditions in the mother might be associated with CTD risk to her offspring

due to a more subtle alteration of the embryonic environment (e.g., sub-clinical maternal phe-

notype). An association between maternal genetic variation and offspring risk (independent of

the offspring’s genotype) is known as a maternal genetic effect. These effects can be viewed as

resulting from the influence of the maternal in utero environment, caused by maternal genetic

variation as opposed to inheritance of these genes by the infant [21]. A better understanding of

associations between maternal genotypes and the risk to offspring could help identify pheno-

typically normal, yet genotypically high-risk mothers. This could aid in increased screening for

high-risk pregnancies (and subsequent early diagnoses and options for early interventions)

and improved pre-pregnancy counseling.

Several large-scale genome wide association studies have identified single nucleotide poly-

morphisms (SNPs) associated with HTN, T2D and obesity [22–26]. As compared to individual

SNPs, select groups of SNPs have collectively been found to be associated with these conditions

in adults; together these groups of SNPs have been used to predict risk for these three condi-

tions by way of a genetic risk score [22,27]. We therefore hypothesized that pregnant women

with elevated genetic risk scores for these chronic conditions were more likely to have a child
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with a CTD as compared to women with lower scores. As proof of this concept, a recent study

demonstrated that women with high maternal genetic risk scores for HTN, T2D and obesity

were more likely to have an infant that was either large or small for gestational age as com-

pared to mothers with lower genetic risk scores, independent of maternal phenotype [27]. To

test our hypothesis, we evaluated the maternal genetic risk scores and the individual compo-

nent SNPs for HTN, T2D and obesity to determine whether the maternal genetic risk for these

conditions was associated with the risk of having a child with a CTD.

Methods and materials

Study population

The study population included two independent cohorts of CTD case-parent trios recruited

from the Children’s Hospital of Philadelphia (CHOP) and the Pediatric Cardiac Genomic

Consortium (PCGC) [28]. There were 466 case-parent trios recruited at CHOP and 255 case-

parent trios by the PCGC. Details of ascertainment and recruitment have been described pre-

viously [29,30]. Patients with genetic syndromes were excluded.

Briefly, the CHOP CTD trios were recruited from The Cardiac Center at CHOP from 1992

to 2010. Individuals of all races/ethnicities were eligible to participate, but for our analyses, we

restricted to Caucasian trios. All subjects provided informed consent under a protocol

approved by the Children’s Hospital of Philadelphia Institutional Review Board for the Protec-

tion of Human Subjects.

The PCGC trios were recruited from 2010 to 2012. Five main clinical centers participated:

Harvard Medical School (Boston Children’s Hospital and Brigham and Women’s Hospital),

Yale School of Medicine, Columbia University Medical Center, Icahn School of Medicine at

Mount Sinai, and the Children’s Hospital of Philadelphia as well as four satellite clinical sites at

the University of Rochester Medical Center, Cohen Children’s Medical Center, Children’s

Hospital of Los Angeles, and University College London. For both the CHOP and PCGC

cohorts, the cases had one of the following CTD cardiac defects: tetralogy of Fallot, D-transpo-

sition of the great arteries, ventricular septal defects (conoventricular, posterior malalignment

and conoseptal hypoplasia), double outlet right ventricle, isolated aortic arch anomalies, trun-

cus arteriosus or interrupted aortic arch. There was no overlap between those patients ascer-

tained at CHOP and those recruited at CHOP for the PCGC. We limited our analyses to non-

Hispanic Caucasian families.

Data collection

For both cohorts, case demographics, cardiac diagnoses, and information on extracardiac

defects were collected through structured electronic or paper case report forms [29,30]. Specif-

ically, data were obtained on case CTD type, race and extracardiac defects; father’s race and

age; and maternal race, age, pre-pregnancy body mass index (BMI), pre-gestational diabetes

and gestational diabetes.

All cardiac diagnoses were obtained from echocardiographic or other imaging modalities

and diagnoses were confirmed by a pediatric cardiologist. Extracardiac defects were confirmed

by review of medical records, including available genetic consultation records. Parental infor-

mation was obtained through family interviews or medical record review. Additional details

about the pregnancy (i.e. preeclampsia and HTN medication use) were collected from the

case’s parents in all CHOP cases and in cases from the PCGC if the case was enrolled at age<1

year [30]. Information was available on maternal HTN medication use during pregnancy from

both CHOP and PCGC subjects, but mothers were not directly asked about HTN during preg-

nancy in the CHOP cohort.

Maternal genetic risk factors for having a child with a congenital heart defect
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Descriptive statistics

We tabulated counts and percentages for maternal, paternal and offspring demographic infor-

mation separately for the CHOP and PCGC cohorts. For continuous variables, we tested for

normality using the Shapiro-Wilk test and we log-transformed the data when appropriate. Dif-

ferences in the distribution of categorical variables in the CHOP and PCGC cohorts were

tested using Fisher’s exact test and differences in the mean values of continuous variables were

assessed using a Student’s t test. These analyses were performed using Stata 13 (Stata Corp,

College Station, TX). A P-value�0.05 was considered significant, unless otherwise specified.

Genotyping

All study subjects provided either blood or saliva samples, from which DNA was extracted

using standard methods, as previously described [28]. Genotyping, imputaton and quality con-

trol procedures have been described. Briefly, due to differences in the timing of the availability

of data from CHOP and PCGC, subsets of data from each of these two sources were genotyped

in separate batches on different arrays (CHOP: 550K, 610K; PCGC: 1M and 2.5M). In addi-

tion, data from CHOP and PCGC were imputed separately, using genotype data only for the

SNPs that overlapped the relevant genotyping platforms (e.g. for CHOP, the overlap of 550K

and 610K). Both sets of imputations (i.e. CHOP and PCGC) were performed using IMPUTE2

and reference data from the 1000 Genomes Project.

Individual SNP analyses

We previously performed SNP-level, trio-based maternal effect genome wide association stud-

ies (GWAS) to assess the association of the maternal genotype for individual SNPs with CTDs.

We conducted these analyses separately in the CHOP and PCGC cohorts [28], using a multi-

nomial likelihood approach [31] implemented in the EMIM software package [29,32]. A meta-

analysis of the results from the CHOP and PCGC cohorts was conducted using GWAMA [29].

For the current study, we used p-values from the meta-analysis to assess the association

between common (minor allele frequency>0.05) maternal genotypes for individual SNPs in

HTN, T2D and obesity-related genes. Specifically, we assessed maternal genotypes for SNPs

included in published genetic risk scores for HTN (31 SNPs), obesity (30 SNPs) and T2D (46

SNPs). Significance was assessed using a Bonferroni correction for the number of SNPs evalu-

ated for each condition (i.e. p<0.002 for HTN and obesity; p<0.001 for TD2). SNPs with asso-

ciation p-values <0.05, but greater than the Bonferroni adjusted p-values were considered

“suggestive.”

Genetic risk score analyses

Following the single SNP analysis, we calculated genetic risk scores in mothers and fathers

using the raw genotype data from both cohorts (PCGC and CHOP) based on the approach of

Tyrrell et al [22,27]. A separate risk score was computed for each condition (HTN, obesity and

T2D). Data for 31 of 33 SNPs comprising the HTN genetic risk score, 46 of 55 T2D SNPs and

all 30 of the obesity SNPs were available for this analysis (S1 Table) [27]. There was no overlap

between any of the SNPs among the three different genetic risk scores. Briefly, each score was

determined as the sum of the number of at-risk alleles for each SNP (0, 1, or 2), weighted by

the magnitude of the association with the given maternal condition. Both the definition of the

at-risk allele and the weighting factor were as defined by Tyrrell et al.

We derived genetic risk scores for each of the three conditions separately and also created a

combined genetic risk score that represented the sum of the risk scores for each of the three

Maternal genetic risk factors for having a child with a congenital heart defect
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conditions. Because, to our knowledge, methods designed for directly assessing associations

with maternal genetic risk scores do not exist for trio-based data, we used a case-control design

for our risk score analyses, whereby mothers served as “cases” and fathers served as “controls.”

Thus, in the absence of maternal genetic effects, mothers and fathers would have similar

genetic risk scores, whereas higher risk scores among mothers than fathers would suggest

maternal genetic effects. We evaluated differences in the mean genetic risk scores of mother

and fathers as continuous variables using the Student’s t test. We also considered genetic risk

scores as categorical variables, to determine whether there was a threshold effect, such that a

maternal genetic effect would only be evident in mothers with very elevated genetic risk scores.

Since no data exists on what that threshold value would be, we considered three categorization

schemes, based arbitrarily on cut-points at the top 5th, 10th and 25th respective percentiles of

the genetic risk score distribution in fathers. Thus, we used a Fisher’s exact test to assess differ-

ences in the distribution of mothers and fathers for each of these categories of elevated genetic

risk scores (top 5th, 10th and 25th). Although our main analyses were conducted among the full

analytic group (CHOP and PCGC pooled data), we also repeated all of the above tests in post-
hoc subgroup analyses of the CHOP and PCGC cohorts separately, to see if either individual

cohort was driving the observed associations.

We also repeated the genetic risk score comparisons in post-hoc sub–analyses among the

full analytic group after removing trios with mothers who had preeclampsia, hypertension

(treated with medication), or pregestational diabetes. In addition, we separately evaluated

those trios with infants with tetralogy of Fallot, as that was our largest conotruncal type in both

the PCGC and CHOP cohorts. In both of these analyses, we compared the top 5th percentile of

genetic risk scores in mothers versus fathers and also compared the mean genetic risk score.

Results

Baseline characteristics

We evaluated the parents of children with a CTD ascertained from the Children’s Hospital of

Philadelphia (n = 466) and by the Pediatric Cardiac Genomic Consortium (n = 255). The char-

acteristics of mothers, fathers and cases for each cohort are presented in Table 1. Significantly

more women reported having preeclampsia in the PCGC cohort as compared to the CHOP

cohort (7.0% versus 1.0%, respectively, p-value <0.01). In addition, there were significantly

fewer cases with extracardiac defects in the PCGC cohort than in the CHOP cohort (31.1%

versus 49.8%, respectively, p-value <0.01). There was also a significant difference in the distri-

bution of the subtypes of CTDs between the two cohorts (p-value <0.01). For instance, com-

pared to the PCGC cohort, the CHOP cohort had a higher proportion of cases with tetralogy

of Fallot (41% versus 32%) and a lower proportion with L-transposition of the great arteries

(0% versus 4.9%).

Single SNP results

We used a family-based design to assess the association between CTDs and the maternal geno-

type for individual hypertension, T2D, and obesity-related SNPs from previously performed

SNP-level, trio-based maternal effect genome wide association studies (GWAS) [28,29]. After

accounting for multiple comparisons, no single SNP in our analyses was significantly associ-

ated with CTDs (S2 Table). A few SNPS had p-values suggestive of associations, including one

obesity-related SNP, [rs2815752 (NEGR1), unadjusted p = 0.004] and several HTN-related

SNPs [rs13139571 (GUCY1A3-GUCY1B3), rs11191548 (CYP17A1-NT5C2) and rs1801253

(ADRB1), each with unadjusted p = 0.01] (Table 2).
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Table 1. Characteristics of conotruncal heart defect (CTD) cases and their parents in the CHOP and PCGC by study cohorts.

PCGC N (%)

N = 225�
CHOP N (%)

N = 466

P values

Case CTD categories †

Isolated aortic arch anomaly 8 (3.6) 22 (4.7) <0.01

D-Transposition of the great arteries 42 (18.9) 93 (20.0)

Double outlet right ventricle 32 (14.3) 48 (10.3)

Interrupted aortic arch 6 (2.7) 6 (1.3)

Tetralogy of Fallot 72 (32.3) 190 (40.8)

Truncus arteriosus 7 (3.1) 13 (2.8)

Ventricular septal defect 36 (16.1) 88 (18.8)

Right ventricle-aorta/Pulmonary atresia 1 (0.4) 1 (0.2)

L-Transposition of the great arteries 11 (4.9) 0 (0.0)

Complex CTD 8 (3.6) 5 (1.1)

Case sex

Male 138 (61.0) 284 (61.0) 0.93

Female 87 (39.0) 182 (39.0)

Case extracardiac malformations‡

Yes 70 (31.1) 232 (49.8) <0.01

No 155 (68.9) 226 (48.5)

Unknown 0 (0.0) 8 (1.7)

Maternal race

White 223 (99) 466 (100) 0.13

Asian 1 (0.5) 0 (0)

More than one race 1(0.5) 0 (0)

Paternal race

White 223 (99) 466 (100) 0.13

Hispanic 1 (0.5) 0 (0)

Unknown 1 (0.5) 0 (0)

Maternal age

<20 4 (2.0) 7 (2.0) 0.92

20-<25 24 (11.0) 45 (10.0)

25-<30 52 (23.0) 114 (26.0)

30-<35 91 (41.0) 166 (38.0)

35-<40 46 (20.0) 88 (20.0)

>40 6 (3.0) 16 (4.0)

Paternal age

<20 3 (1.0) 1 (1.0) 0.30

20-<25 13 (6.0) 27 (6.0)

25-<30 49 (22.0) 96 (23.0)

30-<35 74 (33.0) 165 (39.0)

35-<40 61 (28.0) 96 (23.0)

>40 22 (10.0) 35 (8.0)

Maternal BMI

<18.5 12 (6.0) 11 (4.0) 0.10

18.5-<25 119 (57.0) 187 (68.0)

25-<30 50 (24.0) 47 (17.0)

>30 28 (13.0) 31 (11.0)

Maternal pregestational diabetes

(Continued)
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Genetic risk score results

We calculated genetic risk scores (GRS) for hypertension, T2D, and obesity for the mothers

and fathers using previously published GRS formulas [27]. Our main analyses were performed

among the full analytic group (i.e., pooled CHOP and PCGC cohort data). There were no sta-

tistically significant differences in the mean for the combined genetic risk scores (HTN+T2D

Table 1. (Continued)

PCGC N (%)

N = 225�
CHOP N (%)

N = 466

P values

Yes 2 (1.0) 3 (1.0) 0.11

No 221 (98.0) 463 (99.0)

Unknown 2 (1.0) 0 (0.0)

Maternal gestational diabetes

Yes 13 (6.0) 21 (4.0) 0.39

No 209 (93.0) 432 (93.0)

Unknown 3 (1.0) 13 (3.0)

Maternal preeclampsia

Yes 6 (7.0) 4 (1.0) <0.01

No 76 (93.0) 449 (96.0)

Unknown 0 (0.0) 13 (3.0)

Maternal HTN med during pregnancy

Yes 2 (2.0) 5 (1.0) 0.10

No 80 (98.0) 440 (94.0)

Unknown 0 (0.0) 21 (5.0)

CHOP indicates Children’s Hospital of Philadelphia; PCGC, Pediatric Cardiac Genomics Consortium; CHD, congenital heart defect; CTD, conotruncal defect; BMI,

body mass index; HTN med, hypertension medication

� The study was designed to be limited to Caucasian trios

† The numbers for each variable may not sum to the total due to missing information

‡ Any major abnormality outside of cardiac defect, including dysmorphic features

https://doi.org/10.1371/journal.pone.0216477.t001

Table 2. Results of single SNP analysis: SNPs with suggested association (p<0.05).

Nearest Gene SNP Location P value

Hypertension-related SNPs�

GUCY1A3 rs13139571 Intron 0.01

CYP17A1-NT5C2 rs11191548 Non coding variant 0.01

ARHGAP42 rs633185 Intron 0.03

ADRB1 rs1801253 Exon 0.01

Obesity-related SNPs †

NEGR1 rs2815752 Intron 0.004

KCTD15 rs29941 Non coding variant 0.04

Diabetes-related SNPs ‡

HNF4A rs4812829 Intron 0.03

MAEA rs6819243 Intron 0.03

�SNP indicates single nucleotide polymorphism; GWAS, genome wide association study

†Bonferroni significance p-value threshold � 0.002 (30 obesity SNPs, 31 HTN SNPs)

‡Bonferroni significance p-value threshold �0.001 (46 T2D SNPs)

https://doi.org/10.1371/journal.pone.0216477.t002
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+obesity scores) between mothers (mean score: 26.0) and fathers (mean score: 25.8) (Table 3).

Similarly, there was no significant difference between the mothers’ and fathers’ mean genetic

risk score for each individual condition (i.e., HTN, T2D and obesity) (Table 3).

When the genetic risk scores were analyzed as dichotomous variables, where mothers and

fathers of cases with CTDs were categorized as having either high (>95th percentile) or low

(�95th percentile) scores, mothers had almost two times the odds of having a high versus low

combined genetic risk score as compared to fathers (OR 1.78, 95% confidence interval [CI]

1.1, 2.94). Mothers also had almost two times the odds of having a high versus low genetic risk

score compared to fathers for both HTN (OR 1.7, 95% CI 1.0, 2.8) and T2D (OR 1.8, 95% CI

1.1, 3.1). Although mothers also had increased odds of having a high versus low obesity genetic

risk score, the difference was not statistically significant (OR 1.5, 95% CI 0.9–2.6). Similar

results were found when segregating the top 10th percentile from the lower 90th percentile

using the methods described; however, no associations were detected when comparing the top

25th percentile to the lower 75th percentile (S3 and S4 Tables).

To further understand these associations in the combined cohort, we performed sub-analy-

ses within each separate cohort (i.e., PCGC and CHOP). Among the PCGC subgroup, results

were similar to those among the full analytic group, although the associations with all four

genetic risk scores were stronger, and the association with the obesity genetic risk score

became significant in the categorical analysis (OR 2.8, 95% CI 1.2, 7.6) (Table 3). Among the

CHOP subgroup, results for T2D were similar to those among the full analytic group, but the

associations with the HTN and the combined genetic risk scores were no longer statistically

significant (Table 3). However, the direction of association with each of the four genetic risk

scores were similar (i.e. OR>1) across the CHOP and PCGC cohorts.

Table 3. Comparison of mothers’ versus fathers’ genetic risk scores (GRS) for adult conditions.

GRS Type Mean � Mean

P-value

†

95th %ile OR

(95% CI)‡

Mean Mean

P-

value

95th %ile OR

(95% CI)

Mean Mean

P-

value

95th %ile OR

(95% CI)

Full cohort analysis PCGC subgroup analysis CHOP subgroup analysis

Combined § (107

SNPs)

Mothers’:

26.0

Fathers’:

25.8

0.24 1.78 (1.10, 2.94) Mothers’: 26.2

Fathers’: 25.8

0.03 2.74 (1.23, 6.54) Mothers’: 25.8

Fathers’: 25.8

0.96 1.35 (0.71, 2.60)

Obesity

(30 SNPs)

Mothers’:

3.8

Fathers’: 3.8

0.79 1.54 (0.94, 2.56) Mothers’: 3.9

Fathers’: 3.8

0.12 2.84 (1.17, 7.57) Mothers’: 3.8

Fathers’: 3.8

0.41 1.1 (0.60, 2.00)

HTN (31 SNPs) Mothers’:

17.8

Fathers’;

17.7

0.29 1.70 (1.04, 2.83) Mothers’: 17.9

Fathers’: 17.6

0.08 2.49 (1.10, 6.01) Mothers’: 17.7

Fathers’: 17.7

0.94 1.35 (0.71, 2.60)

Type II Diabetes

(46 SNPs)

Mothers’:

4.4

Fathers’: 4.4

0.64 1.84 (1.12, 3.07) Mothers’: 4.4

Fathers’: 4.4

0.81 1.86 (0.85, 4.25) Mothers’: 4.4

Fathers’: 4.4

0.63 1.86 (1.00, 3.69)

GRS indicates genetic risk score; SNPs, single nucleotide polymorphisms; OR, odds ratio; CI, confidence interval

�Mean GRS of mothers’ and fathers’ for each adult condition

†P-value for comparison between mothers’ mean GRS to fathers’ mean GRS for each adult condition

‡ Categorical analysis of the number of mothers versus the number of fathers that have a GRS above the 95th percentile, based on the fathers’ score. The 95th percentile

cutoffs for the GRS for each condition are as follows: Combined SNPs GRS cutoff, 28.9; Obesity SNPs GRS cutoff, 4.6; Hypertension SNPs GRS cutoff, 20.4; Type II

Diabetes SNPs GRS cutoff, 5.0

§ Combined genetic risk scores for body mass index, hypertension and type 2 diabetes

https://doi.org/10.1371/journal.pone.0216477.t003
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To address the extent to which the corresponding overt maternal phenotypes may have

contributed to risk, we conducted a sub-analysis, excluding mothers from the full cohort who

had preeclampsia, hypertension (treated with medication), or pregestational diabetes. The

results from this sub-analysis were similar to our main results (data not shown). BMI was not

considered in this sub-analysis, due to accuracy concerns related to the observed BMI distribu-

tion. These results suggest that effects of hypertension and diabetes genetic risk scores were

independent of the corresponding overt maternal phenotypes.

When we analyzed trios with infants with tetralogy of Fallot, the magnitude of association

with the hypertension genetic risk score was larger (OR: 3.6, 95% CI: 1.4–9.5) and the other

magnitudes of association were similar or attenuated compared to those seen in the full cohort

(Table 4).

Discussion

In this study, we tested whether a maternal genetic predisposition for adult conditions that are

themselves associated with CTD in offspring is also associated with CTDs in offspring. We

used published genetic risk scores for these adult conditions to focus our analysis on known,

risk-related variants. Our results suggest that maternal genetic risk for common chronic adult

conditions may be associated with the risk of having a child with a CTD. In particular, mothers

had an increased odds of having a higher genetic risk score for HTN and T2D as compared to

fathers when the parents were dichotomized into high and low subgroups. There was no differ-

ence between the mean maternal and paternal genetic risk score for each condition. Thus, our

findings suggest that mothers with the highest genetic risk scores (i.e., >90th percentile) may

be at increased risk for having affected offspring due to a maternal genetic effect, though the

exact threshold of the genetic risk score remains to be defined.

We combined data from the CHOP and PCGC cohorts to augment power to detect a

genetic association, based on the assumption that the two were very similar cohorts, with simi-

lar case phenotype definitions, as well as similar case ascertainment, family recruitment, and

genotyping methods. However, the two groups were ascertained sequentially (CHOP:1992–

2010; PCGC: 2010–2012) and in somewhat diverse geographic locations and there were

Table 4. Sub-analysis in trios with a child with tetralogy of Fallot. Comparison of mothers’ versus fathers’ genetic

risk scores (GRS) for adult conditions.

GRS Type Mean � Mean p-value † 95th %ile OR (95% CI)‡

Combined § (107 SNPs) Mothers’: 26.0

Fathers’: 25.7

0.06 2.58 (1.04, 6.43)

Obesity (30 SNPs) Mothers’: 3.8

Fathers’: 3.8

0.88 1.73 (0.82, 3.64)

HTN (31 SNPs) Mothers’: 17.9

Fathers’; 17.5

0.04 3.64 (1.39, 9.54)

Type II Diabetes (46 SNPs) Mothers’: 4.4

Fathers’: 4.4

0.46 1.22 (0.64, 2.31)

GRS indicates genetic risk score; SNPs, single nucleotide polymorphisms; OR, odds ratio; CI, confidence interval

�Mean GRS of mothers’ and fathers’ for each adult condition.

†P-value for comparison between mothers’ mean GRS to fathers’ mean GRS for each adult condition

‡ Categorical analysis of the number of mothers versus the number of fathers that have a GRS above the 95th

percentile, based on the fathers’ score. The 95th percentile cutoffs for the GRS for each condition are as follows:

Combined SNPs GRS cutoff, 28.9; Obesity SNPs GRS cutoff, 4.6; Hypertension SNPs GRS cutoff, 20.4; Type II

Diabetes SNPs GRS cutoff, 5.0.

§ Combined genetic risk scores for body mass index, hypertension and type 2 diabetes

https://doi.org/10.1371/journal.pone.0216477.t004
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differences in the prevalence of extracardiac defects and distribution of cardiac phenotypes in

the cases. These differences may, at least in part, explain any observed variation in the magni-

tudes of the odds ratios across the two groups. For example, it may be that a maternal genetic

predisposition for common adult conditions may increase risk for only certain types of CTD

defects. Our tetralogy of Fallot sub-analysis may partially support this notion, as the magnitude

of association with the hypertension genetic risk score was higher compared to the corre-

sponding association with all CTDs. Future work focusing on specific sub-phenotypes may be

worthwhile.

Not surprisingly, a combination of disease-risk SNPs represented by the genetic risk score

rather than individual SNPs were associated with disease risk for affected offspring. This obser-

vation is consistent with the known genetic complexity of disease risk for CTDs. Although

these genetic risk scores are the most predictive for the adult conditions, we do not know

whether a different subset of SNPs would be associated with an even greater risk for CTDs in

offspring. Further, the maternal phenotype for each of these conditions, be it overt or subclini-

cal, in conjunction with genetic predisposition, might modify disease risk to offspring. When

we repeated our analysis removing mothers with overt preeclampsia, hypertension (treated

with medication) and pregestational diabetes, we saw no difference in our results, which sug-

gests that the overt maternal phenotype was likely not solely responsible for our findings.

All three maternal chronic diseases studied here (HTN, T2D, and obesity) have been associ-

ated with congenital heart defects in epidemiologic studies, but the mechanisms underlying

these association are undetermined [13,15,16,33,34]. Many studies have theorized that mater-

nal HTN causes changes in blood flow to the uterus during pregnancy, which results in abnor-

mal cardiac development, based on the fact that medications that lead to hypotension, such as

ACE inhibitors, have been associated with cardiac defects [9,35,36]. Yet, no animal studies

have been performed to demonstrate an association between changes in blood flow to the

uterus due to maternal hypertension and cardiac defects in the fetus [9,18,19]. Alternatively,

several animal studies have shown that epigenetic modifications caused by an adverse prenatal

environment (e.g. maternal HTN) may affect angiogenesis and placental growth, which are

processes that influence fetal cardiac development [33,34,37]. It could be hypothesized that it

is not only the phenotypic effect of hypertension causing abnormal flow, but rather an inde-

pendent genetic trigger, that increases risk for abnormal fetal cardiac development.

Similarly, mothers with a genetic predisposition for chronic adult diseases may be suscepti-

ble to subclinical changes in glucose, adipose production and vascular development in the pla-

centa. Such changes might alter fetal cardiac development, which would help to explain the

associations with maternal obesity and diabetes. In fact, mild derangements in lipid produc-

tion and hyperglycemia in early embryogenesis have been shown to alter expression of the

genes of the offspring in the developing fetal heart, increasing risk for congenital heart disease

[16,20]. These observations may suggest complex interactions are at play between the maternal

genotype, maternal phenotype, and the offspring genotype. While our estimates of individual

SNPs accounted for both maternal and offspring genes, our data and study design did not

allow for a formal evaluation of all of these complex main effects and interactions (discussed

further below), and a better delineation of the underlying mechanisms involved in genetic risk

is needed.

Maternal genotypes have been associated with CTDs and other congenital heart defects in

the fetus. For example, previous studies have demonstrated a possible association between

maternal variants in SLC22A24 and MTHFR and having a child with a CTD[28,38–40]. It is

likely that additional maternal genetic risk factors remain to be identified. Further, the concept

of maternal genetic predispositions to common chronic adult diseases affecting the offspring

has been demonstrated previously. A recent study found that these same maternal genes and
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genetic risk scores we evaluated were also associated with infant birth weight [27]. Thus, our

results may help elucidate maternal genetic pathways that increase risk for a variety of adverse

phenotypes in offspring.

Limitations to the study include limited phenotypic data on the mothers ascertained during

their pregnancy. However, very few mothers reported using HTN medications during preg-

nancy (N = 7) or having pregestational diabetes (N = 5). We also repeated our analysis after

removing these trios, and had similar findings. Unfortunately, we were unable to control for

offspring genotype when evaluating the genetic risk scores because there are no statistical tools

currently available to analyze multiple weighted SNPs using a trio-based design [32]. However,

if the results were only due to the offspring genotype, the parental genotypes would contribute

only as a result of the alleles transmitted to the child, and the parental mating combinations

would be expected to be symmetrical. In addition, data on smoking and alcohol use were not

consistently collected for both groups (e.g., many subjects were recruited well after the preg-

nancy). Thus, we did not have the necessary data to evaluate for potential effect modification

of the maternal genetic risk scores by smoking or alcohol use. Major strengths of our study

include use of a relatively large study sample for evaluating congenital heart defects and evalua-

tion of both single and group-level effects of SNPs.

Conclusions

We found that groups of T2D and HTN-related SNPs in the mother may be associated with

risk for CTDs in offspring. This aids in our understanding of the complex genetic mechanisms

that underlie the established associations between the presence of these overt maternal condi-

tions and heart defects in children.
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