
ORIGINAL RESEARCH
published: 11 July 2022

doi: 10.3389/fnins.2022.832503

Frontiers in Neuroscience | www.frontiersin.org 1 July 2022 | Volume 16 | Article 832503

Edited by:

Yifeng Wang,

Sichuan Normal University, China

Reviewed by:

Seok Jun Hong,

Sungkyunkwan University,

South Korea

Takuya Ito,

Yale University, United States

Aditya Nanda,

Vanderbilt University, United States

*Correspondence:

Catherine Sibert

catherine.l.sibert@gmail.com

†Present address:

Catherine Sibert,

Bernoulli Institute for Mathematics,

Computer Science, and Artificial

Intelligence, University of Groningen,

Groningen, Netherlands

Specialty section:

This article was submitted to

Brain Imaging Methods,

a section of the journal

Frontiers in Neuroscience

Received: 09 December 2021

Accepted: 17 June 2022

Published: 11 July 2022

Citation:

Sibert C, Hake HS and Stocco A

(2022) The Structured Mind at Rest:

Low-Frequency Oscillations Reflect

Interactive Dynamics Between

Spontaneous Brain Activity and a

Common Architecture for Task

Control. Front. Neurosci. 16:832503.

doi: 10.3389/fnins.2022.832503

The Structured Mind at Rest:
Low-Frequency Oscillations Reflect
Interactive Dynamics Between
Spontaneous Brain Activity and a
Common Architecture for Task
Control
Catherine Sibert*†, Holly Sue Hake and Andrea Stocco

Cognition and Cortical Dynamics Lab, Department of Psychology, University of Washington, Seattle, WA, United States

The Common Model of Cognition (CMC) has been proposed as a high level framework

through which functional neuroimaging data can be predicted and interpreted. Previous

work has found the CMC is capable of predicting brain activity across a variety of

tasks, but it has not been tested on resting state data. This paper adapts a previously

used method for comparing theoretical models of brain structure, Dynamic Causal

Modeling, for the task-free environment of resting state, and compares the CMC against

six alternate architectural frameworks while also separately modeling spontaneous

low-frequency oscillations. For a large sample of subjects from the Human Connectome

Project, the CMC provides the best account of resting state brain activity, suggesting the

presence of a general purpose structure of connections in the brain that drives activity

when at rest and when performing directed task behavior. At the same time, spontaneous

brain activity was found to be present and significant across all frequencies and in

all regions. Together, these results suggest that, at rest, spontaneous low-frequency

oscillations interact with the general cognitive architecture for task-based activity. The

possible functional implications of these findings are discussed.

Keywords: brain architecture, cognitive architecture, computational models, Dynamic Causal Modeling, fMRI,

resting state

1. INTRODUCTION

Despite a shared goal of understanding the underlying mechanisms of the brain, research that
focuses on high-level, large-scale structural models of cognition, such as cognitive architectures,
remains largely isolated from efforts to interpret direct measurements of brain activity. Many
neuroscientists are reluctant to rely on the results and conclusions from cognitive architectures
because, while the behavior of the models often closely matches observed human data, the
mechanisms driving that behavior are primarily rooted in computer science and information
theory. Moreover, while efforts have been made to connect components of cognitive architectures
to corresponding brain regions (Just and Varma, 2007; Anderson et al., 2008; Webb et al., 2013;
O’Reilly et al., 2016; Samsonovich, 2020) direct, biological brain functions are rarely well-captured
by the more conceptual architecture modules. In particular, these architectures may be making
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incompatible assumptions about the basic functional
components needed to support cognition, and often struggle
to capture the basic patterns of neuronal signaling. Thus, a
challenge for these architectural network models is accounting
for spontaneous, or resting state, brain activity, which occurs
outside the constraints of task events that invoke activity in
specific brain regions.

The spontaneous activity observed in the brain at rest
exhibits many remarkable characteristics. It is oscillatory in
nature (Fox et al., 2005) and concentrated in the low frequency
band (< 0.1 Hz). Because it is widespread and persistent, low
frequency oscillations (LFOs) are believed to account for most of
a neuron’s energy expenditure, much more so than the localized
bursts of activity that occur during task performance (Pezzulo
et al., 2021). This burdensome metabolic cost suggests that LFOs
must play a functionally important, if yet unknown, role in
cognition. In addition, spontaneous activity at rest appears to
be spatially and temporally organized. Specifically, LFOs are
organized into different networks of regions, with regions within
a network being more correlated than regions across networks
(Fox et al., 2005; Power et al., 2011), and with rapid transitions
that resemble task-related activity (Kang et al., 2019).

One major question on the nature of LFOs is the degree
to which they are functionally related to a high level network
architecture of the brain. As mentioned above, architectural
models of cognition rely on the presence of some kind of
underlying network system, but the structure and mechanisms
are often only loosely tied to structures present in the brain.
There is some evidence to suggest that a single high level network
structure is supporting activity across tasks (Stocco et al., 2021;
Rawls et al., 2022), and lower level analyses have found structural
similarities in network activity across both states (Cole et al.,
2014; Krienen et al., 2014; Bolt et al., 2017), but the degree
to which a single, broad scope architecture is involved in the
patterns of LFO activity at rest is still unclear.

Many hypotheses have been put forward to explain the
functional nature of spontaneous LFOs, and most can be
framed in terms of the relationship between localized, regional
oscillations, and the larger network architecture of the brain.

The simplest explanation is that spontaneous LFOs are just
noise from non-neural signals, such as changes in blood flow,
that are introduced into the BOLD recording. According to this
hypothesis, functional correlations between regions are merely a
consequence of the synchronized noise driving them (Murphy
et al., 2009; Wen and Liu, 2016; Das et al., 2021). However, once
spontaneous LFOs are properly modeled and accounted for at
the regional levels, the contributions of intrinsic connectivity
between regions is null.

A second group of hypotheses assumes that spontaneous
brain activity aims to re-process events and maintain generic
priors (Raichle and Snyder, 2007). According to this family of
hypotheses, regions spontaneously rehearse patterns of activity
they have previously learned in order to maintain connections
and prevent catastrophic interference. In this view, functional
correlations between different areas would reflect the probability
of co-occurrence of these events, due to one pattern of activity in
one region spontaneously spreading over to a different region.

Therefore, once regional fluctuations of activity are modeled,
there might still be residual intrinsic connectivity between
regions, but such residual connectivity would not necessarily
resemble the overall brain architecture needed for goal-oriented,
task-based activity.

A third group of hypotheses suggests that spontaneous brain
activity is a different cognitive state. That is, spontaneous
brain activity could simply be “spontaneous thought,” such as
the natural occurrence of mind-wandering events that intrude
during task-based activity and likely dominates the idle periods
of rest (e.g., Gruberger et al., 2011; Vago and Zeidan, 2016). In
this view, resting-state activity is mostly top-down processing
that idles while waiting for stimuli, and the intrinsic connectivity
network that drives task-based activity will dominate the patterns
of low-frequency oscillations during any period of directed
activity. If this is the case, then once it is modeled, few (if any)
regional sources of spontaneous brain activity should remain.

Finally, a fourth group of hypotheses suggests that both local
events and the intrinsic task-based activity are jointly necessary
to explain the complex patterns of spontaneous brain activity at
rest. For example, Pezzulo et al. (2021) recently proposed that
spontaneous brain activity is used to refine the brain’s predictive
models during rest; as such, it requires both local sources that
generate plausible inputs (which account for the region-specific
nature of LFOs) and the general architecture for task-based
connectivity (which is used to make generative predictions and
is refined during resting-state activity).

These explanations can be distinguished on the basis of
the relationship between spontaneous oscillations and task-
based activity and, specifically, by separately modeling LFOs
and network connectivity during rest. If this were possible, the
first, “noise” hypothesis would entail that intrinsic oscillatory
dynamics are sufficient to explain region patterns of activity
without the need to include network connectivity. Furthermore,
the weights and phases of different oscillators should be
highly correlated because they would likely reflect underlying
physiological signals. The second hypothesis (i.e., the “priors”)
also entails that network connectivity is either not needed or
does not resemble the network structure of task-based activity,
since all the regional variance in activity could be explained
by different regions being synchronized over different rhythms.
The weights of different frequencies and phases, however, would
not be similar across networks, and the different correlations
between regions belonging to different networks would be shown
by different weights of regressors modeling different frequencies
and phases.

The third hypothesis (i.e., the “alternative cognitive state”)
suggests that activity during rest and tasks are separate states of
cognition, each with a structured, but distinct pattern of network
connectivity. The fourth hypothesis (i.e., the “predictive model”)
also requires a notion of underlying network connectivity during
both task activity and rest, but here the LFO activity serves to
update and refine the network structure used during a task, and
the network structure should be the same for both states, along
with similar patterns of activity.

One obstacle to disentangling these hypotheses is the inherent
ambiguity in the term “network connectivity observed at task.”
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FIGURE 1 | The Common Model of Cognition (CMC; Adapted from

Laird et al., 2017).

As noted by Pezzulo, task-based activity tends to be different
based on the specific requirements of the task. Thus, to properly
answer this question, one needs a valid model of what a general
“task-based” network of regions is.

A possible answer comes in the form of the Common Model
of Cognition (CMC); a high-level, large-scale consensus model
drawn from decades of research in cognitive architectures (Laird
et al., 2017). The CMC is a computational framework that can
serve as a blueprint to understand the organization of a human-
like mind. Abstract computations are categorized into five
functional components (perceptual systems, procedural memory,
long-term memory, working memory, and action systems) with
specific directional relationships between them (Figure 1).

Although it was not proposed specifically as a brain
architecture, a number of studies have found that the CMC is
surprisingly effective at modeling brain activity across tasks and
individuals (Steine-Hanson et al., 2018; Stocco et al., 2021). In this
interpretation, the CMC’s functional components are mapped
onto large-scale brain regions and their relations are translated
into predicted patterns of functional connectivity. In other
words, the neural counterparts of the functional components
and their connections serve as a simplified architecture for the
human brain. Furthermore, the same broad architecture has
been shown to successfully capture the large-scale organization
of brain activity across a wide range of cognitive domains,
such as response inhibition, problem solving (Steine-Hanson
et al., 2018), working memory, emotion recognition, decision-
making, analogical reasoning, language, mathematical cognition,
and social inference (Stocco et al., 2021). In fact, these studies
found that not only did the CMC capture brain activity across
tasks and domains but that it provided a comparatively better fit
than multiple alternate architectures derived from the cognitive
neuroscience literature.

Because of its generality across tasks, the CMC offers a unique
opportunity to understand the functional dynamics of LFOs in
the resting brain and their relationship to the intrinsic network
activity that governs cognition in the task-state. To this aim, this
paper extends the work of Stocco et al. (2021) by testing the CMC
on brain activity at rest using a pre-defined network of brain
regions. Specifically, this paper compares the CMC against six
other exemplar network structures in an effort to capture the
underlying structure of the mind at rest.

Using the CMC as a framework through which to predict
resting state activity can provide a high-level context in which
to interpret the role of LFOs in the resting state. First, it can help
examine the question of whether or not a network structure is
present at all in the resting state. If not, all candidate models of
network structure, including the CMC, should provide equally
sufficient, or more likely, equally poor, accounts of brain activity
during rest. If this is the case, examining the weights assigned
to the input oscillators could distinguish between the noise
hypothesis (where the weights and phases should be highly
correlated to reflect the external driving forces) and the generic
priors hypothesis (where weights and phases should be distinct).
Alternatively, if a candidate model structure does provide a
significantly better account of activity than the others, this would
suggest the presence of an underlying network structure driving
LFO activity. If the alternate state hypothesis is true, and resting
state is a distinct cognitive mode, the best network structure
should not be the same network that provided the best account of
task-based activity, the CMC (Stocco et al., 2021). However, if the
predictive model hypothesis is correct, and LFO activity serves to
refine a single network structure, then the CMC should provide
the best account of brain activity in resting state as well as in tasks.

2. MATERIALS AND METHODS

2.1. Dynamic Causal Modeling
To separate the effects of intrinsic network connectivity between
regions from spontaneous oscillations, regional brain activity
was modeled using Dynamic Causal Modeling (DCM; Friston
et al., 2003). DCM is a model-based technique used to estimate,
fit, and compare hypothetical network models to fMRI data.
Because it is a top-down, hypothesis-drivenmethod that provides
directional estimates of connectivity, it is particularly suited for
this investigation (Stocco et al., 2021). Furthermore, DCM offers
additional robustness in the face of regional differences because it
explicitly estimates the parameters of the hemodynamic response
function for each region (Friston et al., 2013). The DCM
framework is a point-mass neural modeling approach in which
changes in the activity in a set of brain regions is modeled
through a linear combination of the effects of other regions and
external factors:

dy/dt = Ay+ Cx (1)

In this equation, hemodynamic brain activity, represented by
vector y, is multiplied by matrix A, which contains a set
of parameters capturing the proposed directional connectivity
between regions. Thus, the structure of matrix A can be adapted
to test alternative connectivity architectures. C is a matrix of
the parameters that specify how external or driving inputs elicit
changes in brain activity, and x defines the design matrix of task
inputs. In typical, task-based analyses, the C matrix contains
the onsets and durations of external events corresponding to
different task conditions. For task-free resting state data, where
there are no external inputs driving activity, the C matrix
was adapted to model low frequency fluctuations at different
frequencies and phases.
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FIGURE 2 | The Common Model of Cognition (CMC) and six alternate model architectures. Alternate models consist of three variations of Hub-and-Spoke (hub)

models, and three variations of Hierarchical (hier) models. Arrows: “same,” connections present in both CMC and candidate models (solid blue); “removed,”

connections present in CMC and removed in candidate models (dotted blue); “added,” connections added to candidate models and absent in CMC (red).

2.2. Alternate Model Architectures
As pointed out in Stocco et al. (2021), DCM is a strictly top-
down, theory-driven method, and cannot be used to infer an
architecture from the data. Instead, to evaluate the CMC as an
architecture, its predictions were compared against a collection
of alternative networks that consist of the same components,
but different connection patterns (Stocco et al., 2021). These
alternatemodels are not exact implementations of other cognitive
architecture systems, like ACT-R or SPAUN, but instead
represent the space of possible theoretical neural architectures.

The alternate architectures fall into two broad categories,
or families. In the “Hub-and-Spoke” family (Figure 2), a single
region of interest (ROI) is designated as the central “Hub,” and
is bidirectionally connected to all other ROIs. However, none
of the “Spoke” ROIs are connected to any other—all activity
must travel through the “Hub.” Three different Hub-and-Spoke
models are considered, based on whether the role of the hub is
played by the Prefrontal Cortex, mapped to Working Memory
(as proposed by Cole et al., 2012), the basal ganglia, mapped to
Procedural Memory (as proposed by Anderson, 2007), or the
temporal lobe, mapped to Long Term Memory (as proposed by
Visser et al., 2010). The “Hierarchical” family of models proposes
an alternate structure, wherein brain connectivity implements
hierarchical levels of processing that initiate with Perception
and culminate with Action (Figure 2). Networks in this family
conceptualize the brain as a feedforward neural network model
in which different regions perform progressively greater levels
of representational abstraction (Huntenburg et al., 2018). Three
different hierarchical architectures are generated based on the
relative position of the basal ganglia (mapped to Procedural
Memory) in the hierarchy. Specifically, the basal ganglia can
be placed between perception and long-term memory (as in
models of procedural categorization: Seger, 2008; Kotz et al.,
2009), between long-term memory and working memory (as
in models of memory retrieval: Scimeca and Badre, 2012), or
between working memory and action (as in models of action
selection: Houk et al., 2007).

Broadly speaking, the CMC can be considered as a “Hub-
and-Spoke” structure, using Working Memory (mapped to the

Prefrontal Cortex) as the “Hub” ROI, with an additional direct
connection between Perception and Action.

2.3. The Human Connectome Project
Dataset
The data used in this analysis was drawn from the Human
Connectome Project (HCP), a large-scale effort to collect
neuroimaging data from healthy young adults. This study in
particular analyzed a subset (N = 168) of rsfMRI data exclusively.
For each subject, 14 min of rest data (eyes open with fixation)
were recorded prior to a run of task data collection. A second rest
run was recorded after the task battery, and was not included in
this analysis. Between the two collection days, each subject had a
total of 28 min of data. Each day’s data was modeled separately,
and then combined in the final analysis.

2.4. Data Processing and Analysis
2.4.1. Image Acquisition and Preprocessing
MRI images were acquired and minimally preprocessed
according to HCP guidelines (Poldrack et al., 2011; Barch et al.,
2013; Essen et al., 2013). Scans were taken on a 3T Siemens
Skyra using a 32-channel head coil with acquisition parameters
set at TR = 720 ms, TE = 33.1 ms, FA = 52◦, FOV = 208 × 180
mm. Each image contained 72 2.0 mm oblique slices with an
in-plane 2.0 × 2.0 mm resolution. Images were acquired with
a multi-band acceleration factor of 8X. These raw images then
underwent minimal preprocessing including unwarping, motion
realignment, and normalization to the standard MNI template.
Motion artifacts were removed through linear regression, using a
model that included the three axial (over x, y, and z dimensions)
and the three rotational (pitch, yaw, and roll) volume-by-volume
movement estimates as well as their first-order derivatives (Ciric
et al., 2017). The images were then smoothed with an isotropic
8.0 mm full-width half maximum Gaussian kernel, which is the
same amount of smoothing used in Stocco et al. (2021).

2.4.2. Low-Frequency Oscillations
Both general linear modeling (GLM) and DCM analysis
require a design matrix that specifies the timing of external
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FIGURE 3 | Oscillatory waves of different frequencies (dotted lines) are and phases (not shown) translated into binarized “box-car” plots of events (solid lines). Each

event is then simulated as a driver of activity in all ROIs.

events that drive brain activity. Traditionally, these events
are task-related and describe the onset and duration of some
experimental stimuli. Rest data, by contrast, is collected without
any specific task structure, and the recorded activity must be
driven by internal and unobservable patterns. Following Di and
Biswal’s (2014) method, a series of slow oscillatory waves of
different frequencies were created as input “events” that simulate
background brain activity (Figure 3). Specifically, eight different
driving waves were generated as sine and cosine waves with
frequencies of 0.01, 0.02, 0.04, and 0.08 Hz, respectively. The
frequencies of these oscillations capture the canonical frequency
range (0.1–0.01 Hz) of spontaneous low-frequency fluctuations
in brain activity (Fox et al., 2005). Because DCM only allows
binary regressors, each wave was subsequently binarized, with all
the values in the positive cycle of the wave set to 1 and the others
set to 0.

Thus defined, these regressors capture a large range of possible
oscillatory effects across frequencies and phases, covering the
entire timeline of the experiment even after being discretized
(Figure 3). Note that, because DCM analysis does not rely on the
partition of variance across regressors, the simulated oscillatory
events do not need to be orthogonal (Friston et al., 2003; Murphy
et al., 2009), in fact, in the most noteworthy cases, they are not;
they just need to adequately capture the hypothetical drivers of
neural activity.

An important assumption in a DCM analysis concerns
how different simulated events affect the different regions. In
task-based DCM analysis, it is possible to make reasonable
assumptions about which regions are affected by which events
based on functional specialization. For example, one might
reasonably assume that the presentation of visual stimuli would
directly affect only the perceptual region, and affect other regions
only downstream and indirectly. In resting-state fMRI, however,
the functional role of each region cannot be used as a guideline
for associating events to ROIs, and a different strategy must be
found. In their previous work, Di and Biswal’s (2014) explored a
subset of possible regressor-by-region combinations to determine

the most appropriate. Here, we followed the procedure of
Wapstra et al. (2022) and let each region be potentially affected by
each oscillatory regressor (Figure 3). We chose this approach for
two reasons. First, it is themost general, and permits us to directly
examine whether each region’s activity includes fluctuations that
cannot be fully explained by the effects of other regions. Second,
this approach goes against our hypotheses that spontaneous
brain activity would follow a structured architecture, as it gives
every region the greatest opportunity to have its time series
modeled by external inputs rather than by the network effects of
other regions.

2.4.3. Regions of Interest Definition
Previous DCM analyses relied on task-based activity to define
specific regions for each model component, but in the absence
of a task structure for rest data, an alternate method was
needed to determine regions based on prior assumptions. One
possibility could be to use large-scale networks derived from
functional parcellations of brain anatomy, such as those proposed
by Power et al. (2011) and Yeo et al. (2011). Indeed, and as
noted in Stocco et al. (2021), both methods identify a number
of networks that is roughly on par with the components of the
CMC, with some of them having straightforward translations
within the CMC’s functional components (e.g., the sensorimotor
network in Yeo and the motor component in the CMC). The
use of these networks, however, has some drawbacks. The first is
that, although some networks can be associated with functional
components, such associations are necessarily post-hoc labels and
might not cover exactly the scope of the corresponding function.
For example, although the Long-Term Memory component
should certainly encompass the medial temporal lobe (Stocco
et al., 2021), should it extend to the Default Mode Network?
And should theWorking Memory component be associated with
the Frontoparietal Network, the Dorsal and Attention networks,
or both? A second problem is that, being derived from resting-
state functional connectivity itself, the use of a priori parcellated
networks in this analysis runs the risk of “double-dipping”
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FIGURE 4 | Original (non-thresholded, top), and Optimized (final, bottom) regions of interest derived from Neurosynth activity masks. Individualized ROIs were

created by identifying voxels responding significantly (p < 0.05) to any of the waveform regressors, within these predefined areas for each subject.

(Kriegeskorte et al., 2009): a network architecture derived from
resting state activity would naturally be better off explaining
resting state activity.

Instead, in this paper we took the more agnostic approach of
identifying large-scale ROIs from a priori, top-down functional
associations derived from meta-analysis of task-based neural
activity. Specifically, initial region masks were created using
NeuroSynth (www.neurosynth.org), a platform that combines
the results of thousands of published fMRI results and produces
meta-analysis images of activity associated with various higher
level conceptual category terms. For each of the five components
of the CMC model, a corresponding term was chosen from
NeuroSynth’s database, and a summary statistical mask was
produced for each term, with each voxel having an associated
Z-value representing the probability that the voxel would show
up in a study associated with the term. The following terms were
searched in Neurosynth: Perception = “Visual,” Action = “Motor,”
Working Memory = “WM,” Procedural Memory = “Learning,”
Long TermMemory = “LTM.” These individual masks, however,
were large and produced significant overlap when combined,
meaning that activity in a particular voxel could belong to more
than one region. To solve this problem, two thresholds were
applied to the original masks, one height threshold applied to
each individual voxel statistic and a minimal extent threshold

applied to each cluster size. Both thresholds were calculated
proportionally for each region, i.e., as a proportion of the highest
Z-score and of the largest cluster within an image, respectively.
The proportional adjustment was done to prevent regions with
large clusters and high statistics, like perception, from overtaking
regions with comparatively low Z score levels, like procedural
memory. The Nelder and Mead (1965) optimization algorithm
was then applied to find thresholds in the two-parameter space
that would produce the largest possible regions without any
overlapping voxels. The final values identified by the Nelder-
Mead algorithm were a proportional height threshold H =

0.5359, and a proportional extent threshold E = 0.4164. The
final ROIs masks are shown in Figure 4. To account for residual
differences in individual functional anatomy, individualized
ROIs were created by applying the Neurosynth-derived mask to
all the voxels that showed a significant (p < 0.05) response to any
of the oscillatory regressors. These voxels were identified with an
F-test, using the procedure described in Section 3.

Finally, for each subject and individualized ROI, a
representative time-series was created by extracting the
eigenvariate (i.e., first principal component) of the time-
series of all voxels within that mask. The use of the first
principal component or the eigenvariate, as opposed to other
dimensionality-reduction methods (such as simple average
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across voxels) is recommended and is standard practice in
the DCM literature (Friston et al., 2003). It is also particularly
important in this context, since the first principal component is
a more robust estimator in the presence of spurious voxels that
behave significantly different from the others within the ROI. We
reasoned that such spurious voxels were significantly likely to
occur in our analysis because our regions had been created from
a meta-analysis of various functional studies and were defined at
the group level, with only minor adjustments to the individual
functional anatomy.

2.4.4. Model Fitting
For each subject in each resting state session, a time-series
signal was extracted from each of the five regions defined in the
previous section. These regions were connected according to the
specifications of each model structure (Figure 2), creating seven
possible accounts of network structure. Using the oscillatory
signals as input, each model generated a predicted time course
of the BOLD signal by applying a biologically-plausible model of
neurovascular coupling to the simulated neural activity of each
region. Activity in each region was affected by oscillatory inputs
as well as the propagation of activity through the network of
connections specified by eachmodel, andmodified by parameters
representing the strength of each connection, as encoded in
the A and C matrix terms of Equation (1). An expectation-
maximization procedure (Friston et al., 2003) was then iteratively
applied to modify the parameters and reduce the difference
between the predicted time course of the BOLD signal in each
ROI produced by the model simulation and the actual BOLD
time course extracted from the subject.

2.4.5. Model Comparison
The models were compared on the basis of their likelihood
function. The likelihood of a model m given data x, denoted as
L(m|x), is formally expressed as the probability of it producing
the observed data x; that is, L(m|x) = P(x|m). Assuming
that participants are independent, the group-level likelihood
values for a model m can then be expressed as the product
of the likelihood of that model fitting each participant p, i.e.,∏

p L(m|xp). The log-likelihood is the sum of all of the individual

log-likelihoods:
∑

p log L(m|xp). Although more sophisticated

model comparison procedures have been proposed (e.g., Stephan
et al., 2009), the log-likelihood based metric used here is not only
the most easily interpretable, but also the most relevant, as it
specifically applies to cases in which it is assumed that the model
is constant or architectural across individuals (Kasess et al., 2010).

3. RESULTS

3.1. Regressor Quality Analysis
Before proceeding with our analysis of the DCM data, we
first conducted a GLM analysis to ensure that our oscillatory
regressors successfully captured brain activity. This is important
because our analysis is predicated on the assumption that
our simulated oscillatory regressors do successfully capture the
patterns of spontaneous brain activity at rest, despite their highly
simplified nature (Figure 3). To ascertain that this was the

FIGURE 5 | T-test showing voxels whose brain activity was significantly

captured by the oscillatory regressors.

case, we calculated an omnibus ANOVA across all oscillatory
regressors at the participant level. This test captures any variance
that can be accounted for by any of the oscillatory regressors.
The resulting F-statistic map was then log-transformed, yielding
a measure of the difference between the variance explained
by regressors and the residual variance (i.e., noise). Finally, a
group-level T-test was performed on the individual-specific log-
transformed F-maps. The result of this analysis is a statistical
test of whether the variance captured by the regressors was
significantly greater than the variance of the residuals. The
results are shown in Figure 5, thresholded at a value of t(160) >

5.212, which corresponds to p < 0.05 when corrected for
multiple comparisons through the conservative Family Wise
Error correction procedure.

As Figure 5 shows, most of the gray matter voxels exhibit
oscillatory activity that was captured by our regressors.
Importantly, the significant voxels encompass regions in all
of our predefined ROIs, including the medial temporal lobes
(long-term memory ROI in Figure 4) and the subcortical
basal ganglia (procedural memory ROI in Figure 4), which are
notoriously affected by lower signal-to-noise ratios in high-
density neuroimaging protocols.

3.2. New ROI Analysis
In addition to examining the amount of variance explained by
our regressors, we conducted a second analysis to examine the
extent to which the newly generated ROIs were comparable with
the task-derived regions. This was done to ensure that our results
remained compatible with the findings of Stocco et al. (2021)
despite the different methods to identify the regions of interest.
To this aim, we computed group-level ROIs from the original
data from Stocco et al. (2021). For each task and ROI, a group-
level inclusion region was created by first creating a binary mask
of the corresponding ROI in each participant and then summing
up all of the resulting masks. The resulting ROIs include all
voxels that were present in at least one individual for that task.
Figure 6 shows that the newly generated resting state ROIs are
highly overlapping with the task-based ROIs. In the majority
of cases, all task-specific ROIs overlap at least partially with the
meta analysis-derived ROIs, with the overlap over sensorimotor
regions (Perception and Action components) being the largest.
The only exceptions are associated with LTM and WM regions.
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FIGURE 6 | A comparison of the meta-analytic resting-state ROIs (gray) and the group-inclusive task-based ROIs (colored contours) from Stocco et al. (2021).

The LTM regions are strictly localized in the hippocampus for
the resting-state but more broadly distributed to other medial
temporal lobe regions for the task-based ROIs. This is likely due
to a bias inherent in the localization method used for task-based
fMRI (Stocco et al., 2021), which focuses on peaks of activation
and penalizes regions with low signal-to-noise ratios, such as
the hippocampus (Stark and Squire, 2001, <0). The WM task-
based regions are centered over the left dorsal prefrontal region
that corresponds to an homologous right-hemisphere cluster for
the resting-state WM region. This is likely due to the original
choice made by Stocco et al. (2021) to include only left-lateralized
ROIs in their analyses. In addition, the resting-state WM region
includes other dorsal and caudal prefrontal clusters that were not
included in the original study, but more closely correspond to the
fronto-parietal network that supports working memory function
(Stocco et al., 2021). Overall, the high degree of overlap between
the task-based ROIs and our meta-analytic ROIs suggests that
our results are comparable to those of Stocco et al. (2021).

3.3. Comparison of Architectures
Having ascertained the validity of the oscillatory regressors and of
the similarity of the neurosynth-derived ROIs with the previous
task-based results, we proceeded to examine the relative fit
of different functional brain architectures to the resting-state
data. Given that the different architectures contain different
numbers of parameters, it is possible that higher relative log-
likelihood is simply due to higher degrees of freedom. Because
log-likelihood is not sensitive to model complexity, it is common

to compute log- likelihood in some penalized form. For example,
the common Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC) penalize likelihood by the number
of parameters. Both measures assume, however, that parameter
values are independently distributed, which is not the case for
DCM models (for example, connectivity values for the same
node tend to be correlated). For this reason, as in agreement
with the DCM literature, we used a different, penalized form of
likelihood known as Free Energy (Penny, 2012), which accounts
for non-independent parameters.

For the comparison analysis, each session was modeled
individually, and then both sessions were combined on a subject-
level basis. Figure 7 illustrates the group-level penalized log-
likelihoods of the different architectures in the rest condition.
Note that the figure presents relative log-likelihoods: the lowest
log-likelihood is subtracted from all the others. As a result,
the worst-fitting architecture always has a relative log-likelihood
value of zero, with the best-fitting architecture having the highest
positive value.

Across both sessions, the CMC provides the best account of
resting state brain activity when compared against each of the six
alternate structures.

3.4. Analysis of Bayes Factors
Although the evidence in favor of the CMC is apparent, one
might wonder exactly how significant the difference in log-
likelihood is. To express log-likelihood in an interpretable form,
we will use Bayes Factors (BF). The BF1,2 between two modelsm1
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FIGURE 7 | The penalized log-likelihood (Free energy) of the CMC architecture

compared to six alternate architectures across both sessions of rsfMRI data.

andm2 is defined as:

BF1,2 = P(m1|x)/P(m2|x)

In other words, the value of BF1,2 represents the odds of model
1 fitting the data better than model 2. Given the definition of
likelihood as L(m|x) = P(x|m), BF1,2 can be expressed as:

BF1,2 = e1L

where 1L = log L(m1|x) − log L(m2|x) is the difference in log-
likelihoods between model 1 and model 2. As a guideline, Kass
and Raftery (1995) suggest that values of BF > 20 correspond to
a value of p< 0.05 in a canonical null-hypothesis test and provide
“strong” evidence in favor of model 1 over model 2, while values
of BF > 150 provide “very strong” evidence. All of the BF values
for the comparisons of the CMC against all the other models
exceeded 10250, indicating that the evidence in favor of the CMC
is, in fact, overwhelming.

3.5. Random-Effects Analysis
Although the results provide strong evidence in favor of the
CMC, it should be noted that they are not directly comparable
with the model comparison approach reported by Stocco et al.
(2021). In the original paper, the authors compared the different
architectures by measuring the relative probabilities that each
architecture would fit any given participant (Stephan et al., 2009).
This approach is conceptually different from the log-likelihood
approach because it is based on relative, rather than absolute, fit
to the data and because participants are considered as a random
factor, thus giving different architectures the opportunity to fit
different subgroups of participants.

To provide a better comparison to the original findings,
we replicate the analysis method of Stocco et al. (2021) with
the current resting-state data. The results are reported in

FIGURE 8 | Probability densities that each architecture would best fit the data

from a participant in our sample. Numeric labels represent the exceedance

probabilities associated with each distribution.

Figure 8. In the figure, the curves represent the densities of
the relative probabilities that each architecture would fit a
participant. The superiority of the CMC is shown by the fact
that its probability density function lies to the right of all other
architectures. Architectures can be quantitatively compared in
terms of exceedance probabilities, i.e., the probability that a point
randomly sampled from their density distributions would have a
higher probability than any other architectures. In this case, the
CommonModel had an exceedance probability of 96.4%, further
confirming its superiority.

3.6. Effects of LFO Regressors
Unlike Di and Biswal’s (2014) original study, in this analysis all
the LFO regressors were left free to affect every region in the
model equally. Although this could have, in principle, reduced
the efficacy of intrinsic connectivity and altered the relative
fit of the model, our results show that it did not. This raises
the question of whether the eight LFO regressors were jointly
needed, and, perhaps most interestingly, whether all frequencies
do indeed affect all regions at rest. It is entirely possible, for
example, that spontaneous brain activity arises in a subset of
regions and propagates to others only through the whole-brain
architecture; in Di and Biswal’s (2014) paper, for example, low-
frequency signals originate in the medial frontal cortex and
propagate to the rest of the default-mode network from there.

To test this, we examined the connectivity matrix C that
defines the effects of regressors on regional activity. Individual
parameter values for each entry in the matrix were averaged
across participants using Bayesian Parameter Average, which
takes into account the uncertainty associated with each individual
parameter estimate. The resulting group-level averages are
depicted in Figure 9, with the colors in each cell representing the
mean weight value and the numbers that associated probability
that such value is different than zero. All LFOs were found to
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FIGURE 9 | Mean average weights of the LFO drives on each region. The

matrix visually depicts the mean estimated value of the matrix C in Equation (1).

Colors represent the mean values, while the numbers on each cell represent

the expected probability that each weight w is different than zero, P(|w| > 0).

have significant effects on all regions. Furthermore, different
frequencies and phases turned out to have different effects on
the five regions (Figure 9). This pattern of results is incompatible
with the hypothesis that the LFOs are simply due to extrinsic,
correlated physiological sources and suggests, instead, that LFOs
might be intrinsic and specific to each region. In turn, this
view is compatible both with the hypothesis that resting state
represents generic priors and the view that LFOs might be jointly
interacting with top-down processes to refine predictive models.
To distinguish between these two hypotheses, the next section
will examine the role of intrinsic connectivity.

3.7. Intrinsic Network Connectivity at Rest
Given that all LFO regressors had significant effects on all regions,
it is important to examine the intrinsic connectivity parameters
(matrix A in Equation 1). Although the likelihood analysis and
the random effects analysis have yielded results similar to the
previous findings (Stocco et al., 2021), the large amount of LFO
drives could potentially explain most, if not all, of the variability
in the BOLD signal at rest. Thus, it is important not only to see the
relative fit of the model, but also whether all of the connectivity
parameters between regions are significant and their values are
comparable to those that were found in the original study.

Figure 10 shows the connectivity parameters (averaged across
participants with the same Bayesian procedure that was used for
matrix C in the previous section) for all of the HCP tasks used
in Stocco et al. (2021), as well as the same parameters for the
resting state analysis described here. As in Figure 9, colors in
Figure 10 represent the estimated weights of each connection,

while the numbers represent the probability that the weight is
different from zero.

The data in Figure 10 shows that all of the connections
between regions were significant, implying that the inter-region
communication between regions along the network explained
additional variance in the regional time-series that was not
explained by the LFO regressors.

In addition, the relative weights of the connections seem
indistinguishable from those of the task-based data; specifically,
the characteristic positive weights for the connectivity from the
WM hub to the other regions is present in both the resting-state
data and the task-based data. For ease of comparison, Figure 11
visualizes the different estimated values of the 14 connections
across the six different HCP tasks of Stocco et al. (2021)
(in different shades of blue) together with the corresponding
resting-state parameter highlighted in red. A 2-by-14 ANOVA,
with Paradigm (Task-based vs. Resting State) and Connection
as factors, found an expected main effect of the Connection,
[F(1,13) = 15.413, p < 0.0001, highlighting the difference in
strength in the directional connectivity between regions] but no
main effect of Paradigm and no interaction (F < 0.95, p >

0.51), confirming that the resting state parameter of the intrinsic
connectivity did not differ significantly between task-based and
resting-state recordings.

Although Figure 11 shows that all of the resting-state
connectivity parameters were indeed within the range of
variations of task-based parameters, it remains possible that
their relationship was significantly different than what expected
in during task. For example, one could expect that, compared
to all task-based connectivity parameters, connectivity between
perceptual regions and working memory is reduced in resting-
state while connectivity between working memory and long-
term memory is enhanced. To test whether this was the
case, we calculated the mean Pearson correlation of the 14
connectivity parameters of the CMC architecture between all
tasks and between all tasks and resting-state data. Because
correlation coefficients are not normally distributed, mean values
were computed by first transforming the Pearson correlation
coefficients into Z-scores using Fisher’s transform, then averaging
the corresponding Z-scores, and eventually transforming the
resulting mean Z-value back into a Pearson coefficient using the
inverse transform. The mean correlation between all of the six
task-based recordings was r = 0.84, ranging between 0.07 and
0.90. The mean correlation of resting state parameters with the
task-based parameters was r = 0.83, almost identical to the
expected correlations across tasks.

Finally, to further visualize the degree of similarity between
resting-state and task-based parameter, we carried out a multi-
dimensional scaling (MDS) analysis, using the matrix of
correlations between each paradigm as its similarity matrix. MDS
results in a planar representation in which each paradigm is
represented as a dot on a plane, and the axes of the plane are two
abstract dimensions generated so that the Euclidean distances on
the plan reflect the underlying similarity between recordings. The
MDS results, shown in Figure 12, clearly illustrate that the resting
state parameters do not differ significantly (that is, do not stand
visually apart) from the task-based ones.
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FIGURE 10 | A comparison of intrinsic connectivity between regions (matrix A in Equation 1) during task-based activity (top; from Stocco et al., 2021) and during rest

(bottom). Cell colors represent connection weights; numbers in the cells represent posterior probabilities that the weights are different from zero.

4. DISCUSSION

The major finding of this paper is the apparent presence of
an underlying structure of brain connectivity that accounts for
activity even during undirected and task free behavior. The
implications of these results are broad.

4.1. Implications for the Common Model of
Cognition
The major finding of this paper is the apparent presence of
an underlying structure of brain connectivity that accounts for
activity even during undirected and task free behavior, and the
similarity of that structure to the one that appears to underlie
activity in tasks (Stocco et al., 2021). The CMC provides the best
account of activity both in tasks and at rest, and this suggests that
a single structure is responsible for the pattern of signals recorded
in both states. The weights assigned to each network connection
differ across tasks and between task and rest, indicating the
flexible nature of a structure that adapts to the demands of
a particular environment or task, but the configuration of

connections appears to be consistent. The implications of these
results are broad.

4.2. Implications for the Common Model of
Cognition
First, these results demonstrate how the approach proposed
by Stocco et al. (2021) to test general theories about the
architecture of cognition through Dynamic Causal Modeling
could be generalized to resting state through the use of simulated
task events and meta-analytic ROIs, paving the way for future
explorations of resting state data. In particular, the use of fMRI
meta-analyses to determine ROIs presents the opportunity to
explore increasingly complex model structures involving more
specific brain areas. This approach to ROIs opens the door
to examining each component in greater detail; separating
visual perception from auditory perception, for example, or
decomposing the long term memory component into semantic
and episodic memory. The DCM framework also allows models
to account for modulatory connections between regions, which,
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FIGURE 11 | A comparison of the group-averaged intrinsic connectivity

parameters derived from task-based recordings (blue) and resting-state

sessions (red). The blue error bars represent the standard deviation of the

task-based parameters.

while not used in this paper, provide further opportunities to
define and specify a general purpose framework of cognition.

While specific ROIs will always differ slightly across subjects
and tasks, the meta-analytic ROIs used in the present study
represent amuch smaller search space than the broad parcellation
used to define ROIs in the original CMC study. While the
original masks in Stocco et al. (2021) were task-specific, the
new ROI masks are optimized to include voxels that are most
consistently active across a variety of different tasks tested in the
literature. However, it should be acknowledged that the ROIs
used in this analysis provide a very sparse map from which
to locate the precise regions used in the modeling processes,
and while they were selected to roughly correspond to the
CMC’s theoretical components, these are both very broad and in
some cases incomplete. The Perception component, for example,
incorporated only visual areas of the brain. This was done for
the sake of simplicity, but future applications of this method
of ROI generation should include additional sensory regions,
either as part of a compound Perception ROI or as individual
components. The application of the Nelder-Mead optimization
also creates the possibility that the strongest signals originate
from “contested” areas and are thus discounted, but serves
the counter purpose of preventing spatially large clusters (like
Perception and Action) from overwhelming signals from smaller
clusters (like Procedural Memory). The advantage of combining
meta-analytic initial masks fromNeurosynth with a standardized
method of optimization allows for future analyses based on
networks of greater complexity than the CMC without the need

FIGURE 12 | Multi-dimensional scaling of the correlations between effective

connectivity parameters across all recording paradigms (six task-based and

one resting-state). Note that Resting state does not significant stand apart

from the task-based data, being, in fact, closer to the other tasks than the

working memory paradigm.

to hand create region masks for each variation, but further
exploration is required to judge the validity of this approach.

An additional weakness of this study lies in the simplicity
of the model structure. The CMC provides the best account of
underlying connectivity both in tasks and at rest, but it remains
only the best model of those that we have tested so far, and is
deliberately composed of a few, high level components. This top-
down approach was partially constrained by the choice of using
Dynamic Causal Modeling, which depends on a fundamental
assumption of the brain’s underlying architecture and its relevant
connections and requires a predefined model structure, like
the CMC, in order to make its predictions. As a test of
convergent validity of the CMC, a data-driven approach was
implemented (Hake et al., 2022) in an effort to derive potential
network structure directly from brain activity. Granger Causality
Modeling (GCM) of low-level functional brain activity was used
to find causal connections between brain regions associated with
the high-level cognitive components of the CMC. These new
CMC model variations were then compared with the original
CMC. The CMC was shown to have the greatest similarity to the
network architecture uncovered by the GCM analysis, suggesting
that the GCM architecture may be a variant of the CMC, as
opposed to being intrinsically different. However, the possibility
remains that the CMC is independently similar to a subset of
task-specific networks and rest activity, rather than representing
a single underlying framework used by both.
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A third weakness of our approach is the small and
limited number of components considered. Specifically, our
architectures counted only five independent ROIs, corresponding
to the five components of the CMC. While each ROI is large
enough to encompass multiple, non-contiguous, bilateral brain
regions (and is thus more similar to a functional network
than a traditional ROI), large portions of the brain and
many hypothetical components remain unmodeled. Notably,
regions corresponding to the dorsal and ventral attentional
networks in Power et al. (2011) and Yeo et al. (2011) and
to the cingulo-opercular network in Power et al. (2011) are
missing and their functional interpretation in terms of the CMC
structure is difficult to establish. These conceptual difficulties
might provide guidelines for the expansion and evolution
of the CMC.

4.3. Implications for the Functional Role of
Resting-State Activity
One of the goals behind this study was to test the applicability
of large-scale architectures for task-based brain activity in
a task-free paradigm, using only signals originating from
spontaneous neural activity that would capture the intrinsic
organization of the brain (Fox et al., 2005). The results
suggest that, even at rest, the architecture that best accounts
for the observed pattern of brain activity is the same one
that was previously found to best fit task-based data across
different domains (Stocco et al., 2021). This finding suggests
a functional connection between task-based and resting-state
activity. Furthermore, our findings suggest that spontaneous
regional activity arises from the combination of region-specific
oscillations and the general architecture that is used for task-
based activity.

Taken together, these findings exclude some of the
possible explanations for the functional role of resting-state
activity. Specifically, the diversity of LFO effects across
regions and the strong influence of the top-down cognitive
architecture go against the hypothesis that spontaneous
brain activity is due to either common noise or non-neural
physiological sources, which would likely produce correlated
LFOs across regions without a significant component of
the common architecture. Instead, once the common
architecture is accounted for, the residual oscillations that
remain seem to be region-specific in terms of both phase
and frequency.

In principle, the region-specific nature of LFOs is
compatible with the hypothesis that spontaneous brain
activity is used to maintain generic priors. The significant
residual effect of intrinsic connectivity and the fact that
it so strongly resembles the general architecture of task-
based activity, however, go against it. Similarly, the fact
that intrinsic connectivity so clearly resembles task-
based effective connectivity suggests that resting-state
activity is not a form of neural activity that is completely
alternative to task-based activity, going against the alternate
state hypothesis.

The only remaining hypothesis is that spontaneous brain
activity is functionally related to the rehearsing and refining
of generative, predictive activity (Pezzulo et al., 2021). This
hypothesis is compatible with, and would indeed predict, our
findings that spontaneous brain activity is best modeled as an
interaction between a general-purpose network for task-based
control and local low-frequency oscillation activity representing
region-specific priors.

Our analysis, however, cannot pinpoint the specific
mechanisms more precisely. In Pezzulo’s conception, resting-
state activity is produced by the spontaneous generation of
signals by the set of brain networks responsible for top-down,
predictive processing. While our results are certainly compatible
with this view, they are also compatible with an alternative
view, according to which spontaneous brain activity originates
in the region-specific oscillations, and is then processed by the
task-general cognitive architecture as a form of vicarious external
stimuli. Future research will be needed to distinguish between
these alternative views.
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