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ABSTRACT

High-throughput sequencing enables an unprece-
dented resolution in transcript quantification, at the
cost of magnifying the impact of technical noise. The
consistent reduction of random background noise
to capture functionally meaningful biological signals
is still challenging. Intrinsic sequencing variability
introducing low-level expression variations can ob-
scure patterns in downstream analyses. We intro-
duce noisyR, a comprehensive noise filter to assess
the variation in signal distribution and achieve an
optimal information-consistency across replicates
and samples; this selection also facilitates mean-
ingful pattern recognition outside the background-
noise range. noisyR is applicable to count matri-
ces and sequencing data; it outputs sample-specific
signal/noise thresholds and filtered expression ma-
trices. We exemplify the effects of minimizing tech-
nical noise on several datasets, across various se-
quencing assays: coding, non-coding RNAs and in-
teractions, at bulk and single-cell level. An immedi-
ate consequence of filtering out noise is the conver-
gence of predictions (differential-expression calls,
enrichment analyses and inference of gene regula-
tory networks) across different approaches.

INTRODUCTION

High-throughput sequencing (HTS) became a new stan-
dard in most life science studies yielding unprecedented in-
sights into the complexity of biological processes. The in-
crease in sequencing depth and number of samples, across
both bulk and single cell experiments, facilitated a greater
diversity in biological questions (1), at the same time allow-
ing a higher sensitivity for the detection of perturbations in
gene expression levels between samples (2). This increased
accuracy greatly assists with the biological interpretation of

results such as identification and characterization of differ-
ential expression (DE) at tissue and cellular levels (3) or the
inference and characterization of gene regulatory networks
(4). However, HTS may exhibit high background noise lev-
els resulting from non-biological/technical variation, intro-
duced at different stages of the RNA-seq library prepara-
tion, or from amplification/sequencing bias (5) to random
hexamer priming during the sequencing reaction (6). These
technical alterations of signal can affect the accuracy of the
downstream DE results or create spurious patterns biasing
downstream interpretations. Statistical methods developed
to date (7,8), focused mainly on batch/background correc-
tion, normalization, and evaluation of DE, have been de-
signed to mitigate the impact of these biases on DE anal-
yses (9). A noise filter for pre-processing of the data be-
fore these steps would ensure a reduction of further am-
plification of these biases. Here, we introduce a new high-
throughput noise filter to remove random technical noise
from sequencing data and illustrate the downstream infor-
mation consistency that is achieved.

While technologies may exhibit different technical biases,
the sequencing bias across an experiment was expected to
be uniform. This expectation was based on the assumption
that sequencing reads would uniformly cover the expressed
transcripts, with the algebraic sum of reads from each gene
being proportional to the expression of that gene (10). How-
ever, in practice we observe a reproducible, yet uneven dis-
tribution of signal across transcripts (10); moreover, highly
abundant genes show a higher consistency of transcript-
coverage than lower abundance genes. This coverage bias of
lower abundance genes is one of the main origins of techni-
cal noise (11). The latter can be attributed to the stochastic-
ity of the sequencing process, the limits of sequencing depth,
and alignment inaccuracies during the mapping procedure.
To further explore the coverage bias of lower abundance
genes, we define genes whose quantification is characterized
by such a lack of coverage-uniformity as “noisy”.

The presence of noise in HTS data has been widely ac-
knowledged, and there have been several attempts to un-
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derstand and quantify it. A recent study (12) presented a
variety of common experimental errors that may increase
sequencing noise and proposed ways to alleviate their effect
such as using a mild acoustic shearing condition to min-
imise the occurrence of DNA damage. Fischer-Hwang and
colleagues (13) presented a denoizing tool that can be ap-
plied on aligned genomic data with high fold-coverage of
the genome to improve variant calling performance. The re-
cent prevalence of single-cell sequencing technologies has
further highlighted the issue of noise, as the lower sequenc-
ing depth per cell leads to more uncertainty of the quantifi-
cation of (low abundance) genes. Efforts have been made to
reduce the noise levels experimentally, such as by utilizing a
different barcoding approach (14).

On the computational side, several imputation and de-
noizing algorithms have been proposed, e.g. a machine
learning (ML) based deep count autoencoder (15). Other
tools focus on DE analysis, such as TASC (16), which uses
a hierarchical mixture model of the biological variation.
However, successful methods usually rely on assumptions
specific to the biological experiment and are tailored to par-
ticular settings or model systems, thus leaving most large-
scale sequencing efforts, lacking such specific experimental
design, exposed to random technical noise. To our knowl-
edge, there is little focus on bulk experiments, where techni-
cal noise still exists at low abundances, independent of bio-
logical assumptions; for these experiments the low number
of replicates hinders imputation-based approaches.

Existing approaches for calling DE genes mitigate to var-
ious extents the presence of noise, however these are not
designed to identify and assess the impact of genes show-
ing random, low-level variation. As a result, some of these
are detected by the DE analyses, biasing the biological in-
terpretation of the results. In addition, the choice of tools
used for pre-processing steps may influence the relative tran-
script expression estimation accuracy (17). These analyti-
cal biases mainly arise from differences in the detection and
handling of transcript isoforms or processing of unmapped
and multi-mapping reads (3). Such variation in abundance
estimation can in turn strongly affect the downstream anal-
yses (18).

We developed noisyR, a denoizing pipeline to quantify
and exclude technical noise from downstream analyses, in a
robust and data-driven way. The approach underlines con-
sistency of signal over a user-defined threshold. noisyR is
applicable on either the original, un-normalized count ma-
trix, or alignment data (BAM format). Noise is quantified
based on the correlation of expression across subsets of
genes for the former, or distribution of signal across the
transcripts for the latter, in different samples/replicates and
across all gene abundances (Methods). We illustrate the ap-
proach on bulk and single cell RNA-seq datasets and high-
light the impact of the noise removal on refining the biolog-
ical interpretation of results.

MATERIALS AND METHODS

Materials

The bulk mRNA-seq used to illustrate noisyR was gener-
ated by Yang et al. (19). The dataset comprises 16 sam-
ples across 8 time points [0–72 h post stem cell induction].

The raw data (fastq files and metadata) were downloaded
from GEO (accession numbers GSE117896, GSM3314677–
GSM3314692).

Next, sRNA data was retrieved from Paicu et al. (20) for
the plant dataset (2 samples, a wildtype and DCL1 knock-
down, with three biological replicates each, in Arabidop-
sis thaliana, GSM2412286–GSM2412291) and from Wal-
lach et al. (21) for the animal dataset, 6 samples gener-
ated for the identification of microRNAs as TLR-activating
molecules in Mus musculus (PMID: 31940779, GSE138532,
GSM4110737 - GSM4110742). For both datasets, the reads
were aligned to mature and hairpin miRNAs, downloaded
from miRBase (22) and TEs, downloaded from TAIR and
Ensembl, for M. musculus.

For assessing the impact of noise on direct biologi-
cal interpretations and predictions, such as the interac-
tion of miRNAs and mRNAs, we selected a PARE (par-
allel analysis of RNA ends, also known as degradome se-
quencing) dataset, consisting of three biological replicates
(GSE113958) presented in Thody et al. (23).

The single-cell mRNA-seq dataset used to illustrate
noisyR was generated by Cuomo et al (study of stem
cell differentiation) (24). The data is available on ENA,
ERP016000–PRJEB14362. The six donors with the high-
est number of cells (hayt, naah, vils, pahc, melw, qunz) were
selected, cells in time point 3 were included.

The reference genomes used for alignment were:
Homo sapiens.GRCh38.98 (Ensembl version 98),
Mus musculus.GRCm38.98 (Ensembl version 98) and
A. thaliana (25).

Methods, bulk mRNAseq data

Data pre-processing and quality checking. Initial quality
checks were performed using fastQC (version 0.11.8) and
summarized with multiQC (version 1.9) (26). Alignments
to reference genomes were performed using STAR (ver-
sion 2.7.0a) with default parameters (27); the count matri-
ces were generated using featureCounts (version 2.0.0) (28)
against the M. musculus exon annotations obtained from
the Ensembl database (genome assembly GRCm38.p6). Ad-
ditional quality checks included density plots, (compara-
ble distributions are a necessary but not sufficient condition
for comparability), MA plots for the sufficiency check (ex-
pected to have a funnelling shape; observed outliers are can-
didates for differentially expressed transcripts), incremental
dendrograms and PCA plots to evaluate the similarity of
distributions (11,29).

Data post-processing and biological interpretation of re-
sults. The differential expression analysis was performed
after quantile normalization of the count matrix using the
standard functions from edgeR, version 3.28.0 (30) and
DESeq2, version 1.26.0 (7). The thresholds for DE were
|log2(FC)| > 1 and adjusted P-value < 0.05 (Benjamini–
Hochberg multiple testing correction). The enrichment
analysis was performed using g:profiler (R package gpro-
filer2, version 0.2.0) (31), against the standard GO terms,
and the KEGG (32) and reactome (33) pathway databases.
The observed set consisted of the DE genes, the background
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set comprised all expressed genes, using the full or denoised
count matrix respectively.

To assess the effect of noise correction across the multi-
ple options of mRNA quantification, the sequencing reads
were aligned to the reference genome using Bowtie2 (ver-
sion 2.4.2) (34) and HISAT2 (version 2.1.0) (35). Aligners
were run both with default parameters and with parameters
set to match the STAR functionality of searching for up to
10 distinct, valid alignments for each read (“bowtie2 -end-
to-end -k 10” and “hisat2 -q -k 10”). The transcript expres-
sion was quantified using featureCounts. The robustness of
the quantification was assessed by investigating the overlap
between edgeR and DESeq2 analyses. The genes with ad-
justed P-value <0.05 (Benjamini–Hochberg multiple test-
ing correction) and |log2(FC)| > 1 were considered before
and after noise correction.

Gene regulatory network inference. To assess the implica-
tions of the noise filter on downstream biological interpre-
tations, we used the bulk and single-cell datasets as inputs
for various gene regulatory network (GRN) inference tools
and compared the results for filtered and unfiltered inputs.
For this purpose, we selected several gene subsets, ranging
in size from 49 to 996 genes for the bulk dataset and from 57
to 246 genes for the single-cell dataset, based on enrichment
analyses performed on the DE genes according to their in-
clusion in annotated pathways (Supplementary Table S1).

We chose a subset of the GRN inference tools bench-
marked by BEELINE (36): GENIE3 (37), GRNBoost2
(38), and PIDC (39). We packaged the tools as Singularity
containers (https://github.com/drostlab/network-inference-
toolbox) and then assembled them into a custom pipeline
(https://github.com/drostlab/network-inference-pipeline).

This pipeline extracts the subsets of genes corresponding
to selected pathways and uses them as inputs for the GRN
inference tools. The results are rescaled, binarized and com-
pared using the edgynode package (v0.3.0, https://github.
com/drostlab/edgynode). The edge weights and node de-
gree distributions for all genes across the selected subsets
are then visualized.

In detail, the similarity assessment of network topolo-
gies was performed using the edgynode function net-
work benchmark noise filtering() and was visualized us-
ing plot network benchmark noise filtering(). For this pur-
pose, the inferred networks were converted to a binary
format (presence/absence of an edge) using the overall
median edge weight per network as a threshold. In net-
work benchmark noise filtering() four different types of
matrices are used as input: a weighted adjacency matrix re-
turned by a network inference tool where (i) no noise fil-
ter and no quantile normalization (original) was performed
(denoted in the figures as −F −N), (ii) a noise filtering but
no quantile normalization was performed (+F −N), (iii) no
noise filtering but a quantile normalization was performed
(−F +N) and (iv) both, noise-filtering and quantile normal-
ization were performed (+F +N).

In a pairwise all versus all comparison, for each gene,
the Hamming distance over the binary edge weight vectors
was computed using the hamming.distance() function from
the R package e1071 v1.7-4, yielding a distribution of dis-
tances, which captures how many genes gained or lost their

connection with other genes. A Kruskal–Wallis Rank Sum
Test was performed using the stats::kruskal.test() function
in R to assess whether comparisons of Hamming distance
distributions between original, noise-filtered, and normal-
ized combinations were statistically significantly different.
Furthermore, visualizing these distributions across compar-
isons and for all network inference tools facilitated an eval-
uation of the overall change of network topologies driven
by the network inference tool or the normalization/noise-
filtering that was applied. These visualizations were then
used to assess the impact and robustness of our noise-filter
on the interpretation of biological network topologies. We
applied the pipeline, including edgynode, with the same pa-
rameter configurations to both bulk (Yang et al.) and single-
cell (Cuomo et al.) data to retrieve comparable results for
direct comparisons. Computationally reproducible analysis
scripts to perform all inference steps, data transformations,
and visualizations, including the ones used in this study can
be found at https://github.com/drostlab/network-inference-
pipeline.

Methods, sRNAseq data

The six A. thaliana sRNA samples were assessed using mul-
tiQC version 1.9 (26). Next, the sequencing adapters (both
standard and HD) were trimmed using Cutadapt (version
3.2) (40) and the UEA sRNA Workbench (41). The larger
three samples were subsampled without replacement to 8M
reads (11); the smaller three samples were left unchanged.
The read/sRNA-length distributions were bimodal with
peaks at 21nt and 24nt, corresponding to miRNAs and
TE sRNAs, respectively. These sRNAs were aligned (us-
ing STAR (version 2.7.0a) (27)) to both microRNA hair-
pins (miRBase Release 22.1) (22) and TEs (obtained from
TAIR10) (25).

The six M. musculus sRNA samples were processed in
a similar way as the plant samples and subsampled with-
out replacement to 3.5M sequences (11). The distribution of
read lengths was bimodal with peaks at 22nt and 30nt cor-
responding to microRNAs and piRNAs respectively. The
sRNAs were aligned to microRNA hairpins (miRBase Re-
lease 22.1) (22) and TEs (Ensembl release 101).

Methods, PARE data

The three A. thaliana PARE samples (GSE113958) were
QCed (multiQC version 1.9) (26) and the reads trimmed
to 20nt; next, all samples were randomly subsampled with-
out replacement to 25M (11). The subsampled reads were
aligned to the reference genome (obtained from TAIR10
(25)) using STAR (using STAR (version 2.7.0a) (27)), with
default parameters. The reads aligned to each position
along a transcript were grouped on sequence and sum-
marized by frequency. Each summarized fragment was
matched (as reverse complement) to A. thaliana miRNAs.
To visualize the distribution of signal across transcripts,
t-plots were created, where each point corresponds to a
summarized PARE fragment; the points for which a cor-
responding miRNA was identified were highlighted using
the miRNA label (23).

https://github.com/drostlab/network-inference-toolbox
https://github.com/drostlab/network-inference-pipeline
https://github.com/drostlab/edgynode
https://github.com/drostlab/network-inference-pipeline
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Methods, single cell data

For the single cell SmartSeq2 data, the cellranger software
version 3.0 (42) was used for pre-processing, initial quality
checks, and to generate the count matrix (it internally uses
the STAR aligner). Further quality checks included distri-
bution plots for the number of features, counts, mitochon-
drial and ribosomal reads per cell; significant outliers were
removed during pre-processing. Dimensionality reduction
and clustering were performed with the Seurat R package
version 3.2 (43). The UMAP reduction method (44) was
used for visualization and assessment of results.

Methods, noise quantification

Two approaches were implemented for the identification
of noise. (i) The “count matrix approach” is a simple, fast
way to obtain a threshold utilizing solely the un-normalized
count matrix (m genes x n samples). (ii) The “transcript ap-
proach” is more refined, as it takes into account the distribu-
tion of signal across the transcript obtained by summarizing
the aligned reads from the BAM alignment files. For both
approaches, a variety of correlation and distance measures
are used to assess the stability of signal across samples (45).
Most results were obtained using Pearson Correlation Co-
efficient (the default); similar results are obtained with other
similarity or inverted dissimilarity measures such as Spear-
man Correlation, Euclidean distance, Kulback-Leibler di-
vergence, and Jensen-Shannon divergence.

Count matrix approach. For each sample in the count ma-
trix, the genes are sorted, in descending order, by abun-
dance. A sliding window approach is used to scan the
sorted genes (genes with similar abundances are grouped
into “windows”). The window length is a hyper-parameter
that can be user-defined or a single value inferred from
the data using a Jensen–Shannon entropy based approach
(Supplementary methods 1). The sliding step can be var-
ied to reduce computational time at the cost of reducing
the number of data points and potentially losing accuracy.
For each window, the correlation of the abundances of the
genes from the sample of interest and all other samples
is calculated and averaged using the arithmetic mean. Per
sample, the variation in correlation coefficient (y-axis) is
represented versus the average window abundance (x-axis).
A correlation threshold (as a hyper-parameter) is used to
determine a corresponding abundance threshold as a cut-
off––the noise threshold. The correlation threshold is in-
ferred from the data to minimize the variance of noise
thresholds across the different samples. Several available ap-
proaches are based on the (smoothed) line plot or a binned
boxplot of abundance against correlation (Supplementary
methods 2). Genes with abundances below the sample spe-
cific noise thresholds across samples were excluded from
downstream analyses; the average of the thresholds were
added to the count matrix, to avoid further biases. By in-
creasing the minimum values in the count matrix from zero
to the noise threshold, methods that are based on fold-
changes will not emphasise small differences in abundance
at very low values, which becomes especially problematic
for genes that are seemingly absent in some samples but

present and lowly expressed in others. This effect is partic-
ularly striking in single-cell data.

Transcript approach. Using the transcript coordinates of
the aligned reads as input, the expression profile for each
individual transcript was built as an algebraic point sum of
the abundances of reads incident to any given position (46);
if the alignment was performed per read, the corresponding
abundance for every entry was set to +1. For each sample j,
and for each transcript T, the point-to-point Pearson Cor-
relation between the expression profile in j and the one in all
other samples is calculated. The noise detection is based on
the relative location of the distribution of the point-to-point
Pearson Correlation Coefficient (p2pPCC) versus the abun-
dances of genes and is specific for each individual sample.
For low abundance transcripts the stochastic distribution of
reads across the transcript leads to a low p2pPCC; the aim
of the approach is to determine the range where the distribu-
tion of correlation coefficients (used as proxy for the distri-
bution of reads across a transcript) are above a user-defined
threshold; to approximate the signal-to-noise threshold a
binning on the abundances was performed. For all exam-
ples presented in this study, the binning was done on log2
ranges; the signal-to-noise thresholds were defined as the
abundance above which the first quartile of the p2pPCC
distribution consistently remains >0.25 (IQR method - see
Supplementary methods 2). Once a noise threshold was de-
termined for each sample, the original count matrix was
then filtered analogous to the count matrix approach. The
BAM files can also be filtered directly by removing all genes
which fall below the noise threshold in every sample. Down-
stream analysis that is not based on the count matrix, such
as alternative splicing analysis can also be informed by the
noise threshold by setting a lower bound of expression ac-
ceptance.

To benchmark the noisyR pipeline, for both the count-
matrix and transcript-based approaches, we used a server
with 32 cores, specifying 16 and 32 cores as noisyR pa-
rameters, respectively. The specification of the server used
for benchmarking is: Kernel: Linux 4.19.0-6-amd64 #1
SMP Debian 4.19.67-2+deb10u2 (2019-11-11), Hardware:
Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz; RAM:
756GB

The benchmarking focused on several covariates: the
number of samples from two to 16, the number of ex-
ons used for the transcript approach and the sequencing
depth/number of mapped reads for the transcript approach.

RESULTS

Noise quantification in bulk RNA-seq data

To exemplify the impact of denoizing on the biological in-
terpretations from bulk RNA-seq experiments, we applied
noisyR on mRNA-seq and smallRNA-seq data. First, we
illustrated the advantages of using the pipeline on a sub-
set of mRNA-seq samples from a 2019 study by Yang et al.
(19). To assess the distributions of signal we used density
plots (Figure 1A) and summaries of Jaccard similarity in-
dices (Figure 1B) across all samples. For the former, we ob-
served a multi-modal distribution that suggests a signal to
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Figure 1. Overview of QC measures and original versus denoised outputs on standard components of an mRNA-seq pipeline. (A) Distributions of gene
abundances by sample; the RHS distribution corresponds to the biological signal, the LHS distribution to the technical noise; the aim of noisyR is the
identification of biologically meaningful values for the signal/noise threshold in between. (B) JSI on the 100 most abundant genes per sample; the replicates,
and consecutive time points share a larger proportion of abundant genes. (C) MA plot of the raw abundances for the two 12h biological replicates; a larger
proportion of low abundance genes exhibit high fold-changes, potentially biasing the DE calls. (D) Volcano plot of differentially expressed genes on the
original, normalized count matrix; the colour gradient is proportional to the gene abundance. (E) Line plot of the PCC calculated on windows of increasing
average abundance for the count matrix-based noise removal approach. (F) MA plot of the denoised abundances for the two 12 h biological replicates; the
low-level variation is significantly reduced. (G) Volcano plot of differentially expressed genes on the denoised count matrix. (H) Box plot of the PCC binned
by abundance for the count matrix-based noise removal approach. (I) Box plot of the PCC binned by abundance for the transcript-based noise removal
approach. (J) Histogram of the differentially expressed genes found by applying DESeq and edgeR on the original and denoised count matrix respectively,
binned by abundance; counts are on a log-scale for visualization. (K) Violin plot of the precision (intersection size divided by the query size) for the results
of the enrichment analysis performed on the differentially expressed genes found for the original (raw) and denoised (noNoise) matrices (log-scale). In the
Gene Ontology set (GO) the terms from Biological Process, Cellular Component and Molecular Function were grouped; in the Pathway set (path) the Kegg
and Reactome terms were grouped; in the Regulatory terms (reg) the enriched Transcription Factors and microRNA entries were grouped.
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noise transition range between [3,7] on log2 scale; for the lat-
ter, the high similarity along the diagonal mirrors the tem-
poral component of the time series. To reduce the number
of low abundance, high fold change DE calls (Figure 1C,
Supplementary Figure S1A for sample similarity and the
secondary DE distribution visible in Figure 1D and Supple-
mentary Figure S1C), we used first the noisyR count-based
pipeline, on default parameters: window length = 10% ×
#genes and sliding step = 5% × window length (Figure 1, E
and H, Supplementary Figure S1E). We used a correlation
threshold of 0.25 and the boxplot median method, a com-
bination of hyper-parameters producing the smallest coeffi-
cient of variation across abundance thresholds for the con-
sidered samples (Methods); the interquartile ranges (IQRs)
of noise thresholds for the different samples ranged between
39 and 63, with an average of 58, for sequencing depths
varying between 58M and 82M (Figure 1E, Supplementary
Figure S1E). We detected an outlier with a low threshold
of 18 (corresponding to a sequencing depth of ∼77M) and
three with values of over 100, corresponding to sequencing
depths of 73M, 71M and 96M respectively. Next, we ap-
plied the transcript approach focusing on the correlation of
the expression profiles across exons/transcripts (Methods);
despite the higher runtime compared to the count-based
approach, the transcript-approach was more robust, as il-
lustrated by the lower variance in signal/noise thresholds
across samples (Figure 1I). The parameters that minimized
the coefficient of variation were: correlation threshold =
0.26 and the boxplot median method; the resulting noise
threshold IQRs ranged between 64 and 79, with an average
of 75 and one outlier at 104. The signal/noise thresholds
were similar for the two options, with an increased level of
detail for the transcript-based approach.

These thresholds were used to exclude noisy genes from
the count matrix (∼44k genes were excluded out of ∼56k
genes expressed); the number of retained genes were 19.7k
and 15.6k for the counts and transcript approaches, re-
spectively. As a DE pre-processing step, the averaged noise
threshold was added to all entries in the count matrix
(Methods). The effect of the noise removal is illustrated by
the narrower distribution in the MA plots (Figure 1F, Sup-
plementary Figure S1B). Next, we performed a DE analy-
sis between the 0 h and 12 h samples of the Yang dataset
using the denoised matrix. Following the noise correction,
we saw a 46% reduction in the number of DE genes - from
3,607 to 1,952. A large number of low abundance genes
with spuriously high fold-changes were no longer called DE
(11). Moreover, when comparing the outputs of two stan-
dard DE pipelines, edgeR (30) and DEseq2 (7), we noticed
that the number of genes identified as DE by both methods
only marginally decreased when the noise corrected input
is used, whereas the number of DE genes called only with
edgeR or only with DeSeq2 decreased significantly (Fig-
ure 1J, Supplementary Figure S1F); therefore we observed
an increase in output consistency across methods when the
noise filtered inputs were used. Moreover, the fold-changes
and P-values of denoised genes correlated better and we
no longer saw a large set of DE genes with (adjusted) P-
values marginally below the DE threshold (Figure 1D ver-
sus G; Supplementary Figure S1C versus D). This step was
followed by a functional enrichment analysis focusing on

the DE genes, with the genes expressed (post filtering) as
background set (31). The number of enriched terms was
lower in the denoised data, 1108 versus 4671 in the origi-
nal analysis; ∼24% of the terms were retained and the terms
found with the denoised dataset were approximately a sub-
set of the ones found without the noise correction (∼99.6%
of terms found after denoizing were also found prior to
noise removal). In addition, the noise-correction terms cor-
responded to a higher percentage of genes assigned per
pathway (Figure 1K). Thus, applying noisyR focused the in-
terpretation of results on the enrichment terms with highest
confidence, ensuring biological relevance.

The noisyR transcript approach was also applied on two
small RNA (sRNA) datasets, from plants (A. thaliana)
and animals (M. musculus), respectively. In contrast to the
mRNAseq data, sRNAs samples had different correlation
vs abundance distributions. Overall low abundance sRNA
transcripts/loci contained more noisy entries (47). Also,
we observed a sharper increase to high correlation entries
highlighting the transition from degraded transcripts to
precisely excised sRNAs (48, 49). For both model organ-
isms, miRNA hairpins and transposable elements (TEs)
were analysed separately. For the former, we observed over-
all higher correlations than for mRNAs, likely because of
the precise cleavage of the mature duplex and the lack of
signal outside the duplex region (50); this characteristic is
stronger for the animal case (Supplementary Figure S2C).
For both animals and plants, the increasing distribution
was clearly detectable (Supplementary Figure S2, A and
C). The TE distributions also reflected the characteristics
of the underlying sRNAs; for the animal example (Sup-
plementary Figure S2D) we saw a sharper increase along
the abundance bins, specific for the piRNAs (51), whereas
in plants (Supplementary Figure S2B), the distribution of
signal (expressed siRNAs) mirrored the biogenesis of hete-
rochromatin siRNAs (52).

Effect of noise on single cell (smartSeq) data

To illustrate the broad applicability of noisyR on different
HTS data, we present its output on single cell (smartSeq2)
sequencing output focusing on a subset of samples from
the dataset presented by Cuomo and colleagues (24); we fo-
cused on 6 donors, and one time-point, the number of cells
per donor varied between 45 and 107. A common difficulty
in single-cell experiments is that due to the higher number
of samples/cells, the runtime is much higher if the pipeline
is applied without modification, making the transcript ap-
proach intractable in practice, for higher number of cells;
we also assessed whether the inferred signal/noise thresh-
old was informative.

First, we applied noisyR using the count matrix approach
on all cells with default parameters; we observed that corre-
lation values rose to a weakly positive plateau (0.2–0.4) and
remained stable over a wide range of abundances (Figure
2A). Our interpretation of this result is that lower sequenc-
ing depths and higher resolution of smart-seq compared to
bulk data induces more dissimilarity across medium abun-
dance values. To alleviate this effect, we grouped cells into
a small number of pseudo-samples (similarly as in 53,54),
both randomly selected and according to the sample origin
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Figure 2. Overview of noise filtering on smartSeq data and impact on biological interpretation of results. (A) PCC calculated on windows of increasing
average abundance for the count-matrix based noise removal approach applied to the full count matrix of all cells (four cells shown). (B) PCC calculated
on windows of increasing average abundance for the count-matrix based noise removal approach applied to the “pseudo-samples” formed by grouping all
cells from each donor. (C) Box plot of the PCC binned by abundance for the transcript-based noise removal approach applied to five groups of five cells
each obtained by concatenating the corresponding BAM files. (D) UMAP representation of the cells using the raw count matrix grouped by donor (left)
and by inferred cluster (right). (E) UMAP representation of the cells using the denoised count matrix grouped by donor (left) and by inferred cluster (right)
(F) Contingency matrix of the clusters formed before and after the noise removal; the shade of each tile represents the proportion of the cluster from the
raw matrix (row) that belongs to the corresponding cluster of the denoised matrix (column). (G) Heatmap of the Jaccard similarity index between the 50
most significant markers identified for each cluster on the raw matrix (rows) and denoised matrix (columns). (H) Violin plot of the precision (intersection
size divided by the query size) for the results of the enrichment analysis performed on the marker genes found for each cluster of the raw and denoised
matrix respectively (log-scale).
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(i.e. donor). In the random grouping, each pseudo-sample
summarized the expression of 87 cells, using arithmetic
means (five pseudo-samples were generated from 435 cells);
for the grouping by donor, the number of cells summarized
per pseudo-sample varied between 45 and 107, i.e. all cells
from a donor were summarized into a pseudo-sample.

For each pseudo-sample, we applied the count-based ap-
proach on the averaged expression of genes. In the resulting
noisyR output, we observed a clearer step in the abundance-
correlation plot (Figure 2B, Supplementary Figure S3A),
especially when the cells were grouped by donor. This in-
dicates that an effect of the summarization is a reduction
in cell-to-cell variability which also focuses the noise iden-
tification procedure. The thresholds obtained via pseudo-
sample summarization and count-based noise identification
varied between 2 and 4 with an average of 2.6 (correspond-
ing to a sequencing depth per pseudo-sample between 590K
and 689K, representative of the average sequencing depth
per cell of 640K); these were used in a similar manner as for
the bulk data, to produce a denoised count matrix.

As the transcript approach is more computationally in-
tensive, we applied it on a subsampled set of 25 cells. The
subsamples were chosen randomly, and the process was reit-
erated five times, with the requirement that the summarized
cells originate from the same donor. Formatting the data
for noisyR was achieved by concatenating the BAM files for
the selected cells and treating them as one sample. Whereas
for the count approach, the results were highly variable be-
tween the cells, with several instances of low or negative cor-
relations observed even at high abundances (Figure 2A), the
results obtained using the transcript approach with the con-
catenated BAM files were more consistent, with an expected
increasing trend in the distribution of correlations (Figure
2C). The correlation distributions were high, even at low
abundances, which may be a consequence of the summa-
rization; a suitable threshold may be selected on the median,
IQR, or 5–95% range to infer a signal to noise threshold, as
the distributions are stable for low values and increase as
the abundance increases above ∼2 on a log2-scale.

To assess the impact of noisyR on the biological interpre-
tation of results, we performed some downstream analyses
before and after the noise removal and compared the re-
sults. In this study, we focus on the structure and mathemat-
ical characteristics of the outputs, rather than specific bio-
logical interpretations. The gene abundances were normal-
ized and the cells were clustered using the Seurat R pack-
age (43) (see Methods). The different clusterings were vi-
sualized using the UMAP (non-linear) dimensionality re-
duction (44) (Figure 2D and E, Supplementary Figure S3B
and C). We observed that cells clustered into three groups
of two donors each when original data was used, suggest-
ing a batch effect; However, cells corresponding to the four
donors are mixed across clusters, when the denoised data
was analysed, suggesting that some of the putative initial
batch effect may had been alleviated with the noise cor-
rection. We also observed a better separation of clusters
in the denoised data, especially on the first UMAP com-
ponent, which may be an indication of robustness. We fur-
ther assessed the similarity of the two clustering results us-
ing a cell-centred contingency table (Figure 2F). We ob-
served a good correspondence between the original and de-

noised matrices i.e. clusters 1 and 4 largely merged into clus-
ter 0, and cluster 0 remains intact and turns into cluster
1. While the total number of clusters remained the same
(under default parameters), the partitioning of cells was al-
tered, which led us to believe that the results obtained with
the original and denoised matrices may be qualitatively dif-
ferent, potentially affecting the downstream biological in-
terpretations. To evaluate the changes in interpretation, we
compared the clusters obtained prior to and post noise fil-
tering by identifying the (positive) markers and computing
the JSI between the top 50 markers of each cluster (Fig-
ure 2G, Supplementary Figure S3D, E). Similarly as for
the contingency table, the JSI heatmap shows an analo-
gous correspondence between clusters, albeit weaker. Fi-
nally, we performed a functional enrichment analysis of the
markers identified pre/post noise filtering. Similarly to the
bulk results, there were fewer DE genes (markers per clus-
ter) identified in the denoised dataset, with the precision be-
ing higher on average across the different GO terms, path-
ways, and regulatory terms (Figure 2H). This strengthens
our conclusion that the noise filtering process can add focus
to the downstream biological analysis without significantly
altering the overall composition of the data.

Effects of noise filtering on the biological interpretation of
regulatory interactions

One of the main aims of high-throughput sequencing
projects, besides the identification of differentially expressed
genes (the effect), is to infer the complex interactions of
genes that lead to biological functions, the cause (e.g. dis-
ease, development or stress response). Understanding these
interactions between genes and the corresponding regula-
tory elements (at transcriptional level, such as transcrip-
tion factors (55, 56), or post-transcriptional, small RNAs
(57)) allows us to unveil the molecular mechanisms encod-
ing phenotypic outcomes, including causes of diseases.

Effect on PARE data on predicting regulatory
miRNA/mRNA interactions. First, we sought to un-
derstand the effect of noise removal on the identification
of miRNA/mRNA interactions. We applied the noisyR
transcript approach to a Parallel Analysis of RNA Ends
Sequencing (PAREseq) dataset (23). The distribution of
degraded fragments across transcripts showed the same
distribution of correlation vs abundance as we earlier
observed for the bulk RNAseq data (Figure 3A). Using a
correlation threshold of 0.25, we determined a signal/noise
threshold of 60 for this dataset. Next, we matched the
highly abundant reads to known miRNAs (Methods,
Figure 3B) and illustrated that by removing the noisy reads,
having abundance less than the noise threshold (Figure 3C
and D), the prediction of interactions is simplified (58), i.e.
for most genes only a few peaks were left. In some cases
(e.g. Figure 3C), only a very clear peak was retained after
the noise removal, while for other transcripts some sec-
ondary interactions were kept. These results illustrate that
noise-filtering is a crucial step for producing biologically
meaningful mRNA/targeting predictions.

Effect on the inference and interpretation of gene regulatory
networks. Characterizing direct interactions between reg-
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Figure 3. Effect of noisyR on PARE-Seq and GRN inference. (A) Box plot of the PCC binned by abundance for the transcript-based noise removal
approach applied to PARE-Seq data. (B) Schematic overview of the microRNA/mRNA interaction; cleavage of the mRNA transcript occurs between the
10th and 11th nucleotide of the microRNA; (C, D) PARE t-plot illustrating the distribution of degradation products (each point) across the transcripts
AT2G28350 and AT3G53420, respectively. All reads with summarised abundance less than the signal/noise thresholds are represented in red; degradation
products corresponding to the signal, consistently identified across replicates, are represented in blue. The ones potentially generated by miRNAs are
labelled. (E) node degree distributions (total number of edges connected to a node/gene) of 102 genes assigned to the neuron differentiation pathway from
the Yang et al dataset. The four input data variants are shown: original (–F –N, purple); not noise-filtered but normalized (–F +N, green); noise-filtered
but not normalized (+F –N, red); and noise-filtered and normalized (+F +N, blue) sorted by increasing values using −F −N as sorting key. (F–H) Pairwise
hamming distance comparisons for each gene between all combinations of original (–F –N), noise-filtered (+F), and normalized (+N) input datasets using
102 Neuron differentiation genes from the bulk RNAseq (Yang et al.) dataset (Methods) show a comparable pattern across different gene regulatory
network inference tools: (F) GENIE3; (G) GRNBoost2; (H) PIDC. The results consistently show that across network inference tools, noise-filtering has
refining effects on the inferred network topologies in original or normalized data, further illustrating the advantages of noise-filtering to magnify biological
signals by reducing technical noise.
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ulatory elements and their targets is only feasible for a lim-
ited set of interactions (such as the miRNA/mRNA inter-
action in plants, leading to mRNA degradation (23)). To
capture more of the vast complexity of gene interactions, for
thousands of genes in tandem, Gene Regulatory Networks
(GRNs) have been proposed as a systems biology tool to in-
fer (direct and indirect) regulatory interactions from high-
throughput sequencing data (expression data). In a Gene
Regulatory Network, nodes represent individual genes (e.g.
transcription factors) and edges denote the regulatory in-
teraction between connected genes. When edge-weights are
considered, they encode the relative strength of the modeled
interaction between two genes. After the network inference
step, the resulting topology of GRNs can be used as a proxy
for capturing the underlying biological and regulatory com-
plexity of the studied process which in combination with en-
richment analyses based on various Gene Ontologies gen-
erates a comprehensive model of the investigated process.

We evaluate the impact of noise-filtering on the inference
of GRNs on particular network modules (subnetworks), as-
sociated with annotated pathways; we quantify the impact
of random noise in altering network topologies and subse-
quent biological interpretations. To achieve this, we run our
Network Inference Pipeline (NIP) and edgynode network
analytics package (Materials and Methods) on bulk RNA-
seq datasets using non-noise-filtered original, non-noise-
filtered normalized, and noise-filtered normalized count
matrices. Bulk RNAseq data has been widely used despite
its well-known effect to dilute expression signals of individ-
ual cells or tissue types. However, in the context of techni-
cal noise, the averaging across cells and tissues may buffer
the noise effect on general patterns while reducing the pos-
sibility to detect weak, but biologically meaningful, expres-
sion signals (e.g. transcription factor (59) or transposable
element expression (60)).

Using the Yang dataset (19) in four different setups (origi-
nal, –F(iltered) –N(normalized); noise-filtered but not nor-
malized, +F –N; not filtered but normalized, –F +N; and
noise-filtered and normalized, +F +N) and subsetted on
five biological pathways (Placenta development, 46 genes;
Neuron differentiation, 102 genes; Cell differentiation, 249
genes; Phosphorus metabolic process, 493 genes; and Mul-
ticellular organism development 996 genes), we ran NIP
to infer GRNs using three inference approaches GENIE3,
GRNBoost2, and PIDC, detailed in Methods. The inferred
weighted correlation networks were imported into edgyn-
ode and rescaled to the range [0, 100] to allow comparisons
across inference tools.

Next, all rescaled weight matrices (Supplementary Fig-
ure S4E and F) were converted to binary format, using the
median value over the entire weight matrix as threshold; a
zero was assigned if the weight was below the median value,
and a one, if the weight was above the median value. The re-
sulting binary adjacency matrices were then used as input to
compute the gene-specific node degrees and to calculate the
pairwise Hamming distances for each gene between combi-
nations of original, noise-filtered, and normalized datasets
(Figure 3F, Supplementary Figure S4A–D) (Materials and
Methods). This per-gene Hamming distance is a direct as-
sessment of the number of edges that differ between infer-
ences and captures both edge gain and loss. A low Hamming

distance illustrates a robust network, whereas a high Ham-
ming distance is proportional to large changes in the over-
all GRN topology. Panels Figure 3F–H illustrate pairwise
comparisons between all combinations of input datasets:
(i) original –F –N; (ii) not noise-filtered but normalized –F
+N; (iii) noise-filtered but not normalized +F –N; and (iv)
noise-filtered and normalized +F +N exemplified for 102
genes corresponding to the neuron differentiation pathway
and shown for all three network inference tools (GENIE3,
Figure 3F; GRNBoost2, Figure 3G; and PIDC Figure 3H).
For all network inference tools, a common pattern is the re-
fining effect of noise-filtering on the overall network topolo-
gies. Interestingly, the normalization step has, in most cases,
much greater impact on the network topology than noise-
filtering. This result implies that the filtering procedure can
detect and remove technical noise without disrupting the
global network topology.

In addition, (Supplementary Figure S4E and F) shows
a comparison between rescaled weight matrix distributions
for an original and a noise-filtered and normalized net-
work inferred with GENIE3. In this analysis, most genes
had a large number of low-weight values within their edge-
weight distributions that would result in thousands of bio-
logically meaningless, weakly supported, connections with
other genes. Noise-filtering in this bulk RNAseq dataset al-
lows the exclusion of noisy genes as these fall below the
median-threshold level which results in a more refined and
biologically meaningful network topology after binariza-
tion was applied (Methods).

Together, these results suggest that across network infer-
ence tools noise-filtering has refining effects on the inferred
network topologies in original or normalized data, further
illustrating the advantages of noise-filtering to magnify bi-
ological signals by reducing technical noise (58).

noisyR package

The noisyR package is available on CRAN (https://CRAN.
R-project.org/package=noisyr) and comprises an end-to-
end pipeline for quantifying and removing technical noise
from HTS datasets (Figure 4). The three main pipeline steps
are (i) similarity calculation across samples, (ii) noise quan-
tification and (iii) noise removal; each step can be finely
tuned using hyper-parameters; optimal, data-driven val-
ues for these parameters are also determined. Functions
for individual steps are available and fully documented
in the package. Also included is a black-box function,
noisyr::noisyr() that performs all processing steps, with de-
fault parameters. The package is written in the R (ver-
sion 4.0.3) programming language and is actively main-
tained on https://github.com/Core-Bioinformatics/noisyR.
Also available is a detailed vignette, illustrating the func-
tionality of the pipeline: https://core-bioinformatics.github.
io/noisyR/articles/vignette noisyr counts.html.

For the sample-similarity calculation, two approaches are
available. The count matrix approach uses the original, un-
normalized count matrix, as provided after alignment and
feature quantification; each sample is processed individu-
ally, only the relative expressions across samples are com-
pared. Relying on the hypothesis that the majority of genes
are not DE, most of the evaluations are expected to point

https://CRAN.R-project.org/package=noisyr
https://github.com/Core-Bioinformatics/noisyR
https://core-bioinformatics.github.io/noisyR/articles/vignette_noisyr_counts.html
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Figure 4. Workflow diagram of the noisyR pipeline. (A) Workflow diagram describing the series of steps comprising the noisyR pipeline. Individual algo-
rithms, finely tuned through hyper-parameters, are highlighted in blue. Optional steps are indicated through higher transparency. Common data pre- and
post- processing steps not included in the package are indicated in grey. The steps for the count-matrix- and transcript- approaches are sketched in detail
in subplots (B) and (C).

towards a high similarity across samples. Choosing from a
collection of >45 similarity metrics (45), users can select
a measure to assess the localized consistency in expression
across samples (11). A sliding window approach is used to
compare the similarity of ranks or abundances for the se-
lected features between samples. The window length is a hy-
perparameter, which can be user-defined or inferred from
the data (Supplementary methods 1). The transcript ap-
proach uses as input the alignment files derived from read-
mappers (in BAM format). For each sample and each exon,
the point-to-point similarity of expression across the tran-
script is calculated across samples in a pairwise all-versus-
all comparison. The output formats for the two approaches
are the same; the number of entries varies, since the count
approach focuses on windows, whereas for the transcript
approach we calculate a similarity measure for each tran-
script.

The noise quantification step uses the abundance-
correlation (or other similarity measure) relation calcu-
lated in step (i) to determine the noise threshold, repre-
senting the abundance level below which the gene expres-
sion is considered noisy, e.g. if a correlation threshold is
used as input then the corresponding abundance from a
(smoothed) abundance-correlation line plot is selected as
the noise threshold for each sample. The shape of the distri-
bution can vary across experiments; we provide functional-
ity for different thresholds and recommend the choice of the
one that results in the lowest variance in the noise thresholds
across samples. Options for smoothing, or summarizing the

observations in a box plot and selecting the minimum abun-
dance for which the interquartile range (or median) is con-
sistently above the correlation threshold are also available.
Depending on the number of observations, we recommend
using the smoothing with the count matrix approach, and
the boxplot representation with the transcript option. A de-
tailed overview of benchmarking analyses is presented in
Supplementary Table S2.

The third step uses the noise threshold calculated in step
(ii) to remove noise from the count matrix (and/or BAM
file). The count matrix can be calculated by exon or by gene;
if the transcript approach is used, the exon approach is em-
ployed. Genes/exons whose expression is below the noise
thresholds for every sample are removed from the count ma-
trix. The average noise threshold is calculated and added to
every entry in the count matrix. This ensures that the fold-
changes observed by downstream analyses are not biased by
low expression, while still preserving the structure and rel-
ative expression levels in the data. If downstream analysis
does not involve the count matrix, the thresholds obtained
in step (ii) can be used to inform further processing and po-
tential exclusion of some genes/exons from the analysis.

A direct side-by-side comparison with other methods is
challenging since some are based on wet-lab validations (e.g.
qPCR validations that are restricted to the data presented in
the original manuscript) (12–14) and the other methods are
mainly focusing on single-cell data with the aim of imput-
ing noise and missing values (15,16). The single cell dataset
currently presented is smartSeq, with characteristics similar
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to mini-bulk samples. We have not found a noise removal
method that can be applied to bulk data with a similar aim
as noisyR.

In addition, a pivotal characteristic of noisyR is the cal-
culation of the signal/noise threshold per sample, then used
to remove all genes with counts less than the threshold.
The second part of the filtering is the averaging of thresh-
olds across samples and adding the resulting value to the
whole matrix (to simulate the effect of an offset (61)). This
approach marks the difference between this pipeline and
the usage of a fixed threshold across all samples. To illus-
trate this, we compared the consistency of DE calls obtained
using the standard pipelines, edgeR and DESeq2, and the
subsequent enrichment results obtained with the noisyR-
threshold and using a fixed threshold, varied between 0
(no noise correction) and 100. The results are presented
in Supplementary Figure S5A and B. The DE results ob-
tained using noisyR-thresholds were in line with the results
of using comparable, fixed noise thresholds. In addition,
we observed a local minimum of the specific differences of
edgeR and DESeq2, achieved using the noisyR approach.
The larger intersection between the two methods also led to
more enriched terms found for the noisyR-corrected data.

DISCUSSION

User-defined or data-driven options for the hyperparameters

noisyR hyperparameters can be used to finely tune the iden-
tification of the signal/noise thresholds. To optimize the
noise filtering procedure and dampen the stochastically in-
duced differences between samples (e.g. derived from vari-
ation in sequencing depth or sample read-complexity) the
noise removal step is performed by adding the average
of the signal/noise thresholds across samples, on the raw
count matrix. Nevertheless, comparable thresholds across
the dataset are essential for a meaningful filtering; we rec-
ommend the use of consistency and robustness checks
throughout the pipeline to ensure that the input samples
are comparable, coupled with the data-driven selection of
threshold values for setting hyper-parameters. The option
of user-defined values is available, however the selected val-
ues should be based on observations from the input dataset,
rather than exclusively following default recommendations.
Next, we discuss in detail the options available for select-
ing the hyperparameters for a more adaptive noise-filtering
based on the structure of the input data.

For the count matrix approach, the length of the slid-
ing windows plays a significant role in assessing the simi-
larity across samples. Smaller windows require more com-
putational time; however the intended level of detail may
not always be preferable, as small gene expression fluctu-
ations, from sample to sample, would reduce the across-
sample similarity if the abundance range is not wide enough
(Figure 5A). Even for medium-high abundances, expression
or rank inconsistencies characterize smaller windows, in-
directly leading to higher (and more variable across sam-
ples) signal/noise thresholds. If the window size is too large,
less information is captured by the similarity measure and
the accuracy of the noise threshold identification is also re-
duced (Figure 5B). We recommend medium-sized windows

that cover the abundance range in small incremental steps
as larger overlaps between windows result in a more robust
estimation of similarity-variation. An intuitive approach for
determining an informative window size for a dataset relies
on monotony changes of the similarity measure, quantified
as the number of times the derivative of the correlation (as
a function of abundance) changes sign. On several datasets,
this resulted in a window length of 1/10th of the total num-
ber of expressed genes and a sliding window step size of
1/20th of the total gene number. A different tactic, also
implemented in noisyR, tackles this task from a different
direction; it relies on optimizing the window length using
an entropy-based approach with the Jensen-Shannon diver-
gence to assess the stability achieved as the window length
is increased (Supplementary methods 1). The shape of the
distribution of correlations changes as the window length
increases; however the change is less significant (evaluated
using a t-test) for larger windows. The first point of stabil-
ity is selected as the optimal window length, as it provides
the largest possible granularity while maintaining robust-
ness. The results from this approach are also consistent with
earlier, empirical findings when applied to the Yang dataset
(19).

Yet another hyperparameter is the similarity measure; we
compared the results for different correlation and distance
metrics. We aim to achieve a high consistency in quantifying
the signal/noise thresholds that is independent of the simi-
larity measure. We tested the standard parametric and non-
parametric correlation measures as well as the ones imple-
mented in the philentropy package (45), which provides a va-
riety of >45 distance measures. Dissimilarity measures are
inverted for comparison purposes (Figure 5C–F illustrates
the Spearman correlation, Euclidean distance, Kulback-
Leibler divergence, and Jensen–Shannon divergence). Some
measures have fixed ranges (e.g. the correlation coefficients),
while others are semi- or unbounded. This raises the ques-
tion of how to choose a similarity threshold when the range
of values resulting from the similarity measure is unknown.
Inspired by the correlation threshold, which provides a
good separation at 0.25 for many datasets, we focus, as a
starting point, on the naive assumption to use a quarter
of the full range of the observed similarity values as a first
cut-off approximation. Picking a threshold in a data-driven
manner is, however, preferable and, in this case, achievable.
Selecting from a variety of threshold values that minimize
the coefficient of variation (standard deviation divided by
the mean) of the corresponding noise thresholds in differ-
ent samples is an empirical approach that works in prac-
tice. If the samples are semantically grouped, e.g. replicates
or time points, it may be better to minimize the variation
in each individual group rather than across the full experi-
mental design.

Effect of aligner choice on noise quantification

The choice of the read-aligner was shown to influence
the downstream DE analyses when the same quantifica-
tion model was applied (17). To assess the effect of dif-
ferent alignment approaches on the quantification and ob-
served levels of noise, mRNA quantification using feature-
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Figure 5. Effects of hyperparameter selection on noise quantification. (A) PCC-abundance plot for a window length of 1,000 genes, ∼1/5th of the default.
(B) PCC-abundance plot for a window length of 20 000 genes, ∼4 times the default. (C) Spearman correlation plotted against abundance for the default
window length of ∼5500. (D) Inverse of the Euclidean distance plotted against abundance for the default window length of ∼5500. (E) Inverse of the
Kulback–Leibler divergence plotted against abundance for the default window length of ∼5500. (F) Inverse of the Jensen-Shannon divergence plotted
against abundance for the default window length of ∼5500.



e83 Nucleic Acids Research, 2021, Vol. 49, No. 14 PAGE 14 OF 18

Counts (28) was performed on reads aligned with STAR
(27), HISAT2 (35) and Bowtie2 (34). The latter two were
run both using their default parameters and with parame-
ters set to match STAR functionality. For the count-based
approach, the distribution of the Pearson Correlation Coef-
ficients across abundance bins (Figure 6A) shows that noise
levels were relatively consistent regardless of the applied
alignment algorithm. Similarly, for the transcript-based ap-
proach, the correlation distributions across abundance bins
(Figure 6B) illustrate little variation across aligners (addi-
tional examples in Supplementary Figure S7A and B). The
estimated signal/noise thresholds were also comparable be-
tween the datasets generated by different aligners (Figure
6C), with transcripts-based noise results being less vari-
able. Once the noise correction was applied, the substan-
tial peak in the abundance distributions around zero (Fig-
ure 6D) was removed or significantly diminished and a sec-
ond peak corresponding to the true signal was revealed
around log2(abundance) of five using both counts and tran-
scripts based approaches (Figure 6E and F respectively).
The similarity of the abundance distributions across the
datasets produced by the different aligners was observable
both before and after the noise correction. This demon-
strates that the proposed correction approaches are non-
destructive and preserve the underlying biological signal. To
further validate this point, the overlap between edgeR and
DESeq2 analyses was investigated. The differentially ex-
pressed (DE) genes (adjusted P-value < 0.05 and |log2(FC)|
> 1) detected by the two methods were compared for out-
puts produced using STAR (Figure 1J), Bowtie2 (Figure
6G) and HISAT2 (Figure 6H). In all cases, there were fewer
DE genes in total after noise correction was applied, and
the specific differences for each DE method were reduced.
The same conclusions were reached for the processing with
Bowtie2 and HISAT2 applied with their default parameters
(Supplementary Figure S7C).

The effects of noise-filtering on GRN inference for single cell
RNAseq data

The recent emergence of single-cell sequencing technolo-
gies enabled the simultaneous assessment of expression
variation between individual cells across thousands of
cell-lineages. Although conceptually powerful, sequencing
depths remain constrained by cost and in comparison to
bulk RNAseq experiments the total number of reads is now
shared among these (hundreds-) thousands of individual
cells expressing thousands of genes each. This limit on the
sequencing depth per cell underlines, yet again, the tech-
nical noise, whereby the quantification of low-abundance
transcripts can be the result of either low biological expres-
sion or due to stochastic effects (likelihood) of read captur-
ing. The requirement of an adaptive noise-filtering pipeline
is fulfilled by noisyR; the retained gene expression lev-
els increases the robustness of quantification of single-cell
data.

Analogous to the Yang et al. dataset, we used the Cuomo
(24) dataset in four different setups (original, –F –N; noise-
filtered but not normalized, +F –N; not filtered but nor-
malized, –F +N; and noise-filtered and normalized, +F

+N) and subsampled into three distinct biological pathways
(Metabolism, 57 genes; Catalytic activity, 133 genes; Cellu-
lar metabolic process, 246 genes), we ran the Network In-
ference Pipeline to infer GRNs using the same three infer-
ence methods GENIE3, GRNBoost2 and PIDC (Materials
and Methods) as used for bulk RNAseq data. The inferred
weighted correlation networks were imported into edgynode
and rescaled (Supplementary Figure S6C and D) analogous
to the bulk RNAseq data shown in Results and Methods.
The resulting pairwise Hamming distances for each gene be-
tween combinations of original, noise-filtered, and normal-
ized datasets and for genes corresponding to various bio-
logical pathways (Figure 7A–C, Supplementary Figure S6A
and B) show that total Hamming distances over all genes
are larger in single-cell data. This implied that noise-filtering
had a more significant/refining impact on the inference and
biological interpretations drawn from single-cell data when
compared with analogous bulk RNA data.

Figure 7D–F illustrates such analogous pairwise compar-
isons between all combinations of input datasets: (i) orig-
inal –F –N; (ii) not noise-filtered but normalized –F +N;
(iii) noise-filtered but not normalized +F –N and (iv) noise-
filtered and normalized +F +N exemplified for 133 genes
corresponding to catalytic activity pathways derived from
single-cell RNAseq data (Cuomo et al.) and also shown
for all three network inference tools (GENIE3, Figure 7A;
GRNBoost2, Figure 7B; and PIDC Figure 7C). Analogous
to the bulk RNAseq results, noise-filtering has smaller ef-
fects on changes in network topologies than the normal-
ization step. Interestingly, it seems that the overall effect of
noise-filtering in single-cell data has a stronger impact than
in bulk RNAseq data (Figure 3F–H). Together, these con-
clusions hint toward a more useful effect of noise-filtering
in single-cell data as is particularly expected for datasets
with limited sequencing depth, but high individual cell
numbers.

These highlight the positive effects of noise-filtering
on magnifying meaningful biological signals in single-cell
RNAseq data, with more significant effects in single-cell
data due to the nature of technical noise induced by se-
quencing depth-constraints in combination with technical
variation.

Using noisyR, we demonstrate that unfiltered RNAseq
quantifications can cause spurious false positive effects in
various standard expression-based data analysis steps. To
overcome these limitations, we introduce an R package
to equip life scientists with a flexible solution, applicable
across different bulk and single cell datasets, for exclud-
ing inconsistent transcript quantifications that would other-
wise introduce stochastic variability in processed datasets. A
comprehensive selection of automatic and semi-automatic
threshold detection options provided by noisyR allows
the robust inference of noise-thresholds to exclude low-
confidence transcripts from processed RNAseq data. We il-
lustrate the importance of such a noise-filtering procedure
by assessing the convergence of DE identification and by in-
ferring and comparing gene regulatory networks from var-
ious biological pathways, across gold-standard network in-
ference tools. As a result, we find that noise-filtering is in-
deed able to significantly reduce stochastic effects magni-
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Figure 6. Assessment of aligner choice on noise quantification. (A) The distribution of PCC across abundance bins in datasets for a single mRNAseq
sample obtained by STAR, Bowtie2 and HISAT2 alignment followed by featureCounts quantification using a counts-based noise removal approach.
(B) The distribution of PCC across abundance bins in aligned read counts obtained by the five aligners for the same sample in the transcript-based
noise correction approach. (C) The detected signal-to-noise thresholds in the four mRNAseq samples varied when the counts or transcripts-based noise
correction methods were applied. (D) The distribution of abundance of reads aligned by the five algorithms and quantified by featureCounts. (E) The
distribution of abundance of the quantified counts after counts-based noise correction (F) The distribution of abundance of the quantified counts after
transcripts-based noise correction. (G) The number of the differentially expressed genes found by applying DESeq and edgeR on the original and denoised
(using transcripts-based approach) count matrices obtained by Bowtie2 alignment. (H) The overlap between the DESeq and edgeR analyses performed
on the original and denoised counts matrices obtained by HISAT2.
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Figure 7. Node degree distributions and pairwise Hamming distance distributions between combinations of original, noise-filtered, and normalized input
smartSeq datasets. (A–C) Pairwise Hamming distance comparisons for each gene between all combinations of original (–F –N), noise-filtered (+F), and
normalized (+N) input datasets using 133 genes associated with catalytic activity pathways from the smartSeq (Cuomo et al.) dataset (Methods) show a
comparable pattern across different gene regulatory network inference tools: (A) GENIE3; (B) GRNBoost2; (C) PIDC. The results consistently show that
across network inference tools noise-filtering has refining effects on the inferred network topologies in original or normalized data, further illustrating the
advantages of noise-filtering to magnify biological signals by reducing technical noise. (D–F). For the smartSeq (Cuomoet al.) dataset the node degree
distributions (total number of edges connected to a node/gene) of three sets of genes corresponding to different pathways are shown: (D) 57 genes associated
with metabolism pathways; (E) 133 genes associated with catalytic activity pathways; (F) 246 genes associated with the cellular metabolic process. All four
input data variants are shown: original (–F –N, purple); not noise-filtered but normalized (−F +N, green); noise-filtered but not normalized (+F –N, red);
and noise-filtered and normalized (+F +N, blue) sorted by increasing values using –F –N as sorting key.

fying underlying biological signals, thereby yielding more
robust biological interpretations.

DATA AVAILABILITY

The noisyR package is available on CRAN (https://CRAN.
R-project.org/package=noisyr) and comprises an end-to-
end pipeline for quantifying and removing technical noise
from HTS datasets. The package is written in the R (version
4.0.3) programming language and is actively maintained on
https://github.com/Core-Bioinformatics/noisyR.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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