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Simple Summary: Prostephanus truncatus (Horn) (Coleoptera: Bostrychidae) is a major insect pest
of stored maize and dried tubers of cassava, but also a wood-boring species. In the current study,
we evaluated two chlorantraniliprole formulations, WG (wettable granule) and SC (suspension
concentrate), as maize protectants against P. truncatus adults at 20, 25 and 30 ◦C. Both formulations
performed similarly. The highest mortality was noted in chlorantraniliprole WG, at 10 ppm and
30 ◦C (98.9%), followed by chlorantraniliprole SC (96.1%), at the same dose and temperature. WG
formulation was more effective at 10 ppm and 25 ◦C (92.8%) than SC formulation (89.4%). No progeny
production was noted on maize treated the WG formulation at 20 and 30 ◦C. The SC formulation
caused complete offspring suppression at 10 ppm at all three tested temperatures. The results indicate
that chlorantraniliprole is an effective compound with a high insecticidal activity against T. truncatus
that depends on temperature, dose and exposure.

Abstract: The larger grain borer, Prostephanus truncatus (Horn) (Coleoptera: Bostrychidae) is one of the
most destructive insect pests of stored maize and dried tubers of cassava, and a wood-boring species.
In the present study, we examined two chlorantraniliprole formulations, WG (wettable granule)
with 350 g/kg active ingredient (a.i.) and SC (suspension concentrate) with 200 g/L a.i., as maize
protectants against P. truncatus adults. Chlorantraniliprole formulations were applied as solutions at
0.01, 0.1, 1 and 10 ppm, and tested at 20, 25 and 30 ◦C. Both formulations performed similarly. After
7 days of exposure, the overall mortality provided by both formulations was very low (<17%). Seven
days later, mortality was remarkably increased on maize treated with 1 and 10 ppm at 25 and 30 ◦C
for both formulations. The highest mortality was noted in chlorantraniliprole WG, at 10 ppm and
30 ◦C (98.9%), followed by chlorantraniliprole SC (96.1%), at the same dose and temperature. WG
formulation was more effective at 10 ppm and 25 ◦C (92.8%) than SC formulation (89.4%). No progeny
production was noted on maize treated with the WG formulation at 20 and 30 ◦C. The SC formulation
caused complete offspring suppression at 10 ppm at all three tested temperatures. The results of
the present work indicate that chlorantraniliprole is an effective compound with a high insecticidal
activity against T. truncatus on stored maize that depends on temperature, dose and exposure interval.
The fact that chlorantraniliprole is a broad-spectrum insecticide, exhibiting low toxicity to mammals
and beneficial arthropods, could be a valuable management tool in storage facilities.

Keywords: larger grain borer; anthranilic diamide; formulations; stored maize; grain protectants

1. Introduction

The novel insecticide, chlorantraniliprole belongs to the chemical class of anthranilic
diamides [1,2] that exhibits low toxicity to mammals [3] or to beneficial arthropods [4,5]
and high toxicity to insect targets [6]. This insecticide has a unique mode of action, i.e., it
activates the ryanodine receptor in insects’ muscles causing the release of cellular calcium
that provokes termination of feeding, lethargy, paralysis of muscles and eventually leads to
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death [2,3,7]. Its insecticidal activity has been proved very effective against pests belonging
to Coleoptera [8,9], Diptera [10], Hemiptera [11], Isoptera [12], Lepidoptera [13–15] and
Thysanoptera [16]. However, an extensive examination in the international bibliography
revealed few data about the insecticidal activity of chlorantraniliprole against insect pests
of stored products. For example, Saglam et al. [17] examined this compound as surface
treatment on concrete, against different life stages (i.e., egg, young and old larvae, pupae
and adults) of the confused flour beetle, Tribolium confusum Jacquelin du Val (Coleoptera:
Tenebrionidae). Kavallieratos et al. [18] reported that two chlorantraniliprole formulations
were effective against the Mediterranean flour moth, Ephestia kuehniella Zeller (Lepidoptera:
Pyralidae), the psocid Liposcelis bostrychophila Badonnel (Psocoptera: Liposcelididae), the
lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae), the rice weevil,
Sitophilus oryzae (L.) (Coleoptera: Curculionidae) and T. confusum on six different commodi-
ties (i.e., barley, maize, oats, peeled rice, whole rice and wheat).

The larger grain borer, Prostephanus truncatus (Horn) (Coleoptera: Bostrychidae) is one
of the most destructive insect pests of stored maize and dried tubers of cassava [19–23].
Prostephanus truncatus is also a dangerous wood-boring species to several forest plants [23–25].
It is native to Central and South America [26] from where it was accidentally introduced
to Africa, and first recorded in Tanzania in the late 1970s [27–29]. Afterwards, P. truncatus
spread in many African countries has been very rapid [23,30–32] as it has been favored by
the fact it was able to remain in forest habitats for short periods [33]. This dangerous species
exhibits high potential to become further spread in other continents [23]. Prostephanus
truncatus may survive marginally on triticale, rice and whole oat flakes, and on different
types of flour, i.e., whole barley flour, white soft wheat flour, whole soft wheat flour,
white hard wheat flour and whole rye flour, indicating its undetected dispersion in the
warehouses [34]. On the other hand, maize infestation by P. truncatus can occur before
harvest [35], when its presence is not easy to detected, and therefore it can be easily
introduced in the storage facilities with the infested seeds [35,36].

Prostephanus truncatus has developed resistance to several insecticidal compounds
used for the protection of cereals during storage, such as organophosphorus compounds
and pyrethroids [23,37]. It is also tolerant to various diatomaceous earths (DEs) used
as maize protectants [38,39]. Therefore, it is vital to examine new and environmentally
friendly substances, with a broad-spectrum insecticidal activity for the control of this
species, taking into account that abiotic conditions are crucial for its development and
damage potential [40]. Thus, the objective of the present study is to evaluate the insecticidal
efficacy of two commercial formulations of chlorantraniliprole on stored maize, against P.
truncatus under different temperatures: 20, 25 and 30 ◦C. Progeny production of P. truncatus
has been estimated as well.

2. Materials and Methods
2.1. Insect, Commodity and Insecticidal Formulations

Prostephanus truncatus was cultured on whole maize seeds at 30 ◦C, 65% relative
humidity and continuous darkness. The adults used in the experiments were unsexed
and <2 weeks old. All individuals were taken from a colony maintained since 2014 in the
Laboratory of Agricultural Zoology and Entomology, Agricultural University of Athens.
Clean and free of infestation and pesticides maize, Zea mays L. (var. Dias) was used in
the experiments. The moisture content of maize was 11.6% as determined by a moisture
meter (mini GAC plus, Dickey-John Europe S.A.S., Colombes, France). The following two
chlorantraniliprole formulations were used for the experiments: Altacor® WG (wettable
granule) with 350 g/kg active ingredient (a.i.) and Coragen® SC (suspension concentrate)
with 200 g/L a.i., both provided by Dupont (Halandri, Greece).

2.2. Bioassays

The chlorantraniliprole formulations were applied as solutions at 0.01, 0.1, 1 and
10 ppm a.i. based on Kavallieratos et al. [18]. One kg lots of maize were laid out on different
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trays and sprayed with 3 mL of an aqueous solution that contained the appropriate volume
of WG or SC. For that purpose, an AG-4 airbrush (Mecafer S.A., Valence, France) was
used. The airbrush was cleaned with acetone after the application of each dose of each
formulation. The treated lots were then put into 5 L glass jars and were manually shaken
for 10 min in order to achieve equal distribution of the insecticide in the entire maize
mass [18]. Two additional lots of 1 kg maize each were treated with 3 mL of distilled water,
using a different AG-4 airbrush, and served as controls. Three samples of 20 g each were
taken from each treated or untreated lot and put into small glass vials (7.5 cm diameter by
12.5 cm height) with a different scoop that was inside each jar. Samples were weighed with
a Precisa XB3200D compact balance (Alpha Analytical Instruments, Gerakas, Greece) using
a different thin layer for each weighing. The lids of the vials had a 1.5 cm diameter hole in
the middle, which was covered by gauze to allow sufficient aeration inside the vial. Then,
20 adults of P. truncatus were separately put inside each vial. The upper internal part of
each vial was coated by polytetrafluoroethylene (60 wt % dispersion in water) (Northern
Products Inc., Woonsocket, RI, USA) to prevent insect escape. Subsequently, all vials were
placed inside an incubator set at 20 ◦C and 65% relative humidity. After 7 and 14 days of
exposure, mortality was determined under an Olympus stereomicroscope (Olympus SZX9;
Bacacos S.A., Athens, Greece) by prodding each insect gently with a brush (Cotman 111
No. 000, Winsor and Newton, London, UK) to detect any movement. Different brushes
were used per dose/formulation and controls. At the 14 day evaluation of mortality, all
alive or dead parental individuals were discarded and the vials were placed again inside the
incubator for an additional period of 45 days. Then, the vials were opened and the progeny
production (dead or alive) was estimated as described. The experiment was replicated
three times by preparing a new series of insects, vials and maize lots each time. The entire
procedure was repeated for 25 and 30 ◦C at 65% relative humidity as aforementioned. Each
bioassay for each temperature was prepared within a three-day period.

2.3. Data Analysis

Mortality was very low in the control vials (<5%), therefore any correction was not
necessary for the mortality counts. Prior to analysis, the mortality data were arcsine
square root-transformed to normalize variance [41,42]. Statistical analysis was carried out
according to the repeated-measures model [43]. The repeated factor was the exposure
interval and mortality was the response variable. Formulation, temperature and dose were
the main effects. The associated interactions of the main effects were incorporated in the
analysis. Progeny production counts were subjected to a three-way ANOVA. Formulation,
temperature and dose were the main effects. Number of progeny was the response variable.
The associated interactions of the main effects and progeny production in the control vials
were considered into the analysis. Means were separated by the Tukey–Kramer honestly
significant difference (HSD) test at 0.05 level of significance [44]. JMP 14 software [45] was
used to perform all analyses.

3. Results
3.1. Mortality of P. truncatus Adults

Between exposure intervals, all main effects and the associated interactions formulation
× dose and temperature × dose were significant (Table 1). Within exposure intervals, all main
effects and the associated interaction exposure × temperature × dose were significant.

After 7 days of exposure, the overall mortality provided by both formulations was
very low. At 30 ◦C, mortality was slightly higher than at 25 or 20 ◦C, reaching 14.4 and
16.7% for chlorantraniliprole WG and SC, respectively (Tables 2 and 3). Seven days later,
mortality was remarkably increased on maize treated with 1 and 10 ppm at 25 and 30 ◦C
for both formulations. At 20 ◦C, moderate mortality was recorded at the same doses, not
exceeding 40.0 and 45.6% for chlorantraniliprole WG (Table 2), and 36.7 and 46.1% for
chlorantraniliprole SC (Table 3). The highest mortality was noted on maize treated with
chlorantraniliprole WG at 10 ppm and 30 ◦C (98.9%), followed by chlorantraniliprole SC
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(96.1%), at the same dose and temperature. Furthermore, WG formulation was also more
effective (92.8%) than SC formulation (89.4%) at 10 ppm and 25 ◦C.

Table 1. Multivariate Analysis of Variance (MANOVA) parameters for main effects and associated in-
teractions for mortality levels of Prostephanus truncatus adults between and within exposure intervals
(total degrees of freedom, DF = 192).

Between Exposure Intervals

Source DF F p
Formulation 1 6.4 0.01
Temperature 2 131.1 <0.01

Dose 3 232.3 <0.01
Formulation × temperature 2 1.6 0.21

Formulation × dose 3 5.3 0.01
Temperature × dose 6 11.4 <0.01

Formulation × temperature × dose 6 1.4 0.21

Within Exposure Intervals

Source DF F p
Exposure × formulation 1 9.8 0.01
Exposure × temperature 2 43.7 <0.01

Exposure × dose 3 187.7 <0.01
Exposure × formulation × temperature 2 1.6 0.21

Exposure × formulation × dose 3 2.1 0.10
Exposure × temperature × dose 6 7.4 <0.01

Exposure × formulation × temperature × dose 6 0.5 0.91

Table 2. Mean mortality (% ± SE) of Prostephanus truncatus adults after 7 and 14 days on maize
treated with the WG formulation of chlorantraniliprole, at four doses (0.01, 0.1, 1 and 10 ppm)
under three temperatures (20, 25 and 30 ◦C). Within each column, means followed by the same
lowercase letter are not significantly different (in all cases DF = 3, 35, Tukey–Kramer HSD test at 0.05).
Within each row, means followed by the same uppercase letter are not significantly different (in all
cases DF = 2, 26, Tukey–Kramer HSD test at 0.05). Where no letters exist, no significant differences
were recorded.

Exposure: 7 Days

Temperature 20 ◦C 25 ◦C 30 ◦C

Dose (ppm) F p
0.01 1.1 ± 0.7 AB 0.0 ± 0.0 Bb 6.1 ± 2.5 Ab 5.3 0.01
0.1 2.2 ± 0.9 B 4.4 ± 1.6 Bab 10.6 ± 2.7 Aab 6.6 0.01
1 2.7 ± 1.2 B 6.1 ± 2.5 ABab 11.7 ± 2.2 Aab 5.5 0.01

10 3.9 ± 1.4 B 9.4 ± 2.9 ABa 14.4 ± 1.6 Aa 6.4 0.01
F 0.9 4.7 4.1
p 0.45 0.01 0.01

Exposure: 14 Days

F p
0.01 7.2 ± 1.7 b 11.1 ± 4.5 d 25.0 ± 9.5 b 2.6 0.10
0.1 12.8 ± 1.2 Bb 34.4 ± 5.2 Ac 49.4 ± 7.4 Ab 13.4 0.01
1 40.0 ± 3.6 Ca 78.9 ± 3.8 Bb 92.2 ± 2.1 Aa 51.9 <0.01

10 45.6 ± 2.9 Ba 92.8 ± 2.8 Aa 98.9 ± 2.3 Aa 64.7 <0.01
F 41.0 59.1 33.0
p <0.01 <0.01 <0.01

3.2. Progeny Production of P. truncatus Adults

The main effects, temperature and dose, and the associated interaction temperature × dose,
were significant (Table 4).
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Concerning the controls for both formulations, the highest progeny production was
recorded at 30 ◦C, followed by 25 ◦C and 20 ◦C (Tables 5 and 6). The increase of dose reduced
the progeny emergence for both formulations. The highest progeny production was noted at
0.01 and 0.1 ppm for both formulations. No progeny production was noted at 20 ◦C on maize
treated with 1 ppm of chlorantraniliprole WG. The WG formulation suppressed completely
the offspring emergence on maize treated with 10 ppm at 20 and 30 ◦C, while 0.2 adults per
vial were found at 25 ◦C (Table 5). Regarding SC formulation, complete offspring suppression
was achieved only at 10 ppm and all three tested temperatures (Table 6).

Table 3. Mean mortality (% ± SE) of Prostephanus truncatus adults after 7 and 14 days on maize treated
with the SC formulation of chlorantraniliprole, at four doses (0.01, 0.1, 1 and 10 ppm) under three
temperatures (20, 25 and 30 ◦C). Within each column, means followed by the same lowercase letter
are not significantly different (in all cases DF = 3, 35, Tukey–Kramer HSD test at 0.05). Within each
row, means followed by the same uppercase letter are not significantly different (in all cases DF = 2,
26, Tukey–Kramer HSD test at 0.05). Where no letters exist, no significant differences were recorded.

Exposure: 7 Days

Temperature 20 ◦C 25 ◦C 30 ◦C

Dose (ppm) F p
0.01 1.1 ± 0.7 1.7 ± 0.8 b 3.9 ± 1.1 b 2.4 0.11
0.1 2.2 ± 0.9 2.2 ± 0.9 ab 5.0 ± 1.2 b 2.0 0.16
1 2.8 ± 0.9 B 6.1 ± 1.6 Bab 15.6 ± 2.8 Aa 10.5 0.01

10 3.3 ± 1.2 B 7.2 ± 1.5 ABa 16.7 ± 3.2 Aa 9.6 0.01
F 1.0 4.6 9.0
p 0.43 0.01 0.01

Exposure: 14 Days

F p
0.01 7.8 ± 1.2 b 8.9 ± 1.1 b 12.8 ± 2.5 b 1.5 0.25
0.1 10.0 ± 1.4 b 11.1 ± 2.2 b 17.2 ± 2.2 b 2.8 0.08
1 36.7 ± 4.2 Ba 76.7 ± 5.0 Aa 90.6 ± 1.6 Aa 35.5 <0.01

10 46.1 ± 5.3 Ba 89.4 ± 3.5 Aa 96.1 ± 1.4 Aa 39.9 <0.01
F 32.5 78.9 207.7
p <0.01 <0.01 <0.01

Table 4. ANOVA parameters for progeny production of Prostephanus truncatus (total DF = 269).

Source DF F p

Formulation 1 0.3 0.59
Temperature 2 9.0 0.01

Dose 4 89.7 <0.01
Formulation × temperature 2 0.7 0.50

Formulation × dose 4 0.5 0.72
Temperature × dose 8 2.0 0.05

Formulation × temperature × dose 8 0.6 0.81
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Table 5. Progeny production (adults per vial ± SE) of Prostephanus truncatus on maize treated with
the WG formulation of chlorantraniliprole at five doses (0, 0.01, 0.1, 1 and 10 ppm) under three
temperatures (20, 25 and 30 ◦C) 45 days after the removal of parental adults. Within each column,
means followed by the same lowercase letter are not significantly different (in all cases DF = 4, 44,
Tukey–Kramer HSD test at 0.05). Within each row, means followed by the same uppercase letter are
not significantly different (in all cases DF = 2, 26, Tukey–Kramer HSD test at 0.05). Where no letters
exist, no significant differences were recorded.

Temperature 20 ◦C 25 ◦C 30 ◦C

Dose (ppm) F p
0 8.8 ± 2.2 a 12.4 ± 2.3 a 15.0 ± 1.5 a 3.2 0.06

0.01 7.1 ± 2.1 ab 7.8± 1.4 ab 11.2 ± 2.6 a 0.5 0.60
0.1 2.3 ± 1.3 Bbc 4.4 ± 1.5 ABbc 9.6 ± 1.8 Aa 4.6 0.02
1 0.0 ± 0.0 c 0.8 ± 0.5 cd 0.3 ± 0.2 b 1.2 0.31

10 0.0 ± 0.0 c 0.2 ± 0.2 d 0.0 ± 0.0 b 1.0 0.38
F 10.4 20.9 25.6
p <0.01 <0.01 <0.01

Table 6. Progeny production (adults per vial ± SE) of Prostephanus truncatus on maize treated with
the SC formulation of chlorantraniliprole at five doses (0, 0.01, 0.1, 1 and 10 ppm) under three
temperatures (20, 25 and 30 ◦C) 45 days after the removal of parental adults. Within each column,
means followed by the same lowercase letter are not significantly different (in all cases DF = 4, 44,
Tukey–Kramer HSD test at 0.05). Within each row, means followed by the same uppercase letter are
not significantly different (in all cases DF = 2, 26, Tukey–Kramer HSD test at 0.05). Where no letters
exist, no significant differences were recorded. Where dashes exist, no analysis was performed.

Temperature 20 ◦C 25 ◦C 30 ◦C

Dose (ppm) F p
0 8.7 ± 1.8 a 12.3 ± 3.6 a 14.8 ± 2.0 a 2.0 0.16

0.01 5.2 ± 1.5 a 6.9 ± 2.5 ab 13.2 ± 2.6 a 2.0 0.15
0.1 3.2 ± 0.7 ab 4.3 ± 0.9 ab 7.8 ± 2.0 a 1.0 0.38
1 1.8 ± 1.4 bc 2.4 ± 1.6 bc 0.4 ± 0.3 b 0.6 0.56
10 0.0 ± 0.0 c 0.0 ± 0.0 c 0.0 ± 0.0 b - -
F 13.7 6.8 23.8
p <0.01 0.01 <0.01

4. Discussion

Due to the high importance of P. truncatus and the elevated risk of its further expansion,
previous research efforts have been conducted for the effective management of this species.
For instance, an insecticidal formulation of spinosad, which is based on the secondary
metabolites spinosyns A and D of the bacterium Saccharopolyspora spinosa Mertz and
Yao (Actinomycetales: Pseudonocardiaceae) [46,47] at 0.5 ppm, was able to kill >90% of
P. truncatus adults after 7 days on maize, at 25 or 30 ◦C and 55 or 75% relative humidity [48].
The pyrrole chlorfenapyr has also been proved very effective after 7 days of exposure
against P. truncatus by causing 100% mortality on maize treated with 5 ppm at 30 ◦C and
55 or 75% relative humidity [49]. Similarly, 0.5 ppm of the pyrethroid deltamethrin killed
97.8% of the exposed adults, at 20 ◦C, while complete mortality (100%) was recorded
at 25 and 30 ◦C, at the same exposure interval [50]. According to our findings, both
chlorantraniliprole formulations became highly toxic against P. truncatus at 10 ppm after
14 days of exposure at 25 and 30 ◦C or at 1 ppm at 30 ◦C by killing >90% of the exposed
adults, indicating that chlorantraniliprole may cause complete mortality to this species
favorably at longer exposure intervals (>14 days). The enhanced diatomaceous earths
(DEs), or the mixture of a DE with another active ingredient could be used as alternative
compounds for the protection of stored maize against P. truncatus. For instance, the
enhanced DE, DEA-P which is a mixture of abamectin and freshwater DE, caused almost
complete mortality in all tested combinations of temperature and relative humidity at
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150 ppm after 7 days of exposure [39]. More recently, Kavallieratos et al. [51] reported the
high insecticidal efficacy (≥98%), at low doses (75 and 150 ppm) of DEA-P, on five different
maize hybrids against P. truncatus after 7 days of exposure. Similar results were noted
by Kavallieratos et al. [52] for S. oryzae and R. dominica. Furthermore, the combination of
the DE Protect-It with spinosad or the pyrethroid deltamethrin at low doses, caused high
mortalities (84.5–99.5%) on treated maize against P. truncatus adults, even after 7 days of
exposure [53]. Consequently, the combination of a chlorantraniliprole formulation with
DEs at low doses may be more effective than the separate application of each formulation
for the control of P. truncatus, even in shorter exposure intervals (<14 days), an issue that
merits further experimentation.

In the present study, both chlorantraniliprole formulations have been very effective
and performed almost equally. This similar trend was also recorded by Kavallieratos
et al. [18] for E. kuehniella larvae, L. bostrychophila adults, R. dominica adults, S. oryzae adults
and T. confusum larvae. However, the efficacy of each formulation among species was
influenced by the type of the commodity, dose and exposure. In this study, we found that
temperature played an important role in their insecticidal efficacy. According to our results,
the increase of temperature from 20 to 30 ◦C resulted in significantly higher mortalities
for both formulations in the majority of the tested combinations. Temperature is a crucial
factor on the effectiveness of several insecticides that are used as grain protectants against
stored-product insects [54,55]. For example, Kavallieratos and Boukouvala [56] reported
higher mortality levels to the khapra beetle, Trogoderma granarium Everts (Coleoptera:
Dermestidae), at 35 ◦C than at 30 ◦C on concrete treated with a mixture of acetamiprid plus
d-tetramethrin plus piperonyl butoxide. In a recent study, Kavallieratos et al. [57] found that
the insecticidal activity of pirimiphos-methyl against the yellow mealworm, Tenebrio molitor
L. (Coleoptera: Tenebrionidae), was influenced by temperature. Concretely, the authors
recorded the highest mortality rates of this species at 35 ◦C, followed by 30, 25 and 20 ◦C.
The high effectiveness of insecticides at elevated temperatures can be explained by the fact
that insects, due to their high mobility, come into contact with treated grains more often [52].
In addition, increasing the significant metabolic activities of insects when exposed to high
temperatures may render them more vulnerable to toxic agents [58]. However, in the case
of P. truncatus, there is no clear pattern about the influence of temperature on the activity
of various a.i. applied on maize. Based on previous studies, chlorfenapyr, chlorpyriphos-
methyl, deltamethrin, fipronil, pirimiphos-methyl, spinosad and spinetoram performed
variably among 20, 25 and 30 ◦C depending on the combinations of dose, relative humidity
and exposure interval [48–50,58,59]. Our results indicate that in the vast majority of
the tested combinations, mortality increased with the rise in temperature regardless of
the chlorantraniliprole formulation. This may be happening because chlorantraniliprole
belongs to a different class of insecticides than the aforementioned a.i. [60–70]. For example,
pyrethroids perform differently than organophosphates in changes of temperature given
that, generally, the former are negatively while the latter are positively associated with the
increase of temperature [57,71,72]. Further studies are needed to clarify this issue.

In our study, the progeny production of P. truncatus was very low for both formulations
at 10 ppm. No offspring were noted on maize treated with chlorantraniliprole SC at any
temperature, while in the case of chlorantraniliprole WG, 0.2 adults per vial were found at
25 ◦C. This is an important finding since chlorantraniliprole suppressed both the exposed
adults and progeny production regardless of temperature. The suppression of progeny
production at 25 and 30 ◦C is associated with the high adult mortality 14 days post-exposure.
However, previous studies have shown that offspring emergence was not totally avoided
even when the mortality was 100% or close to 100% on maize treated with chlorfenapyr [49]
or pirimiphos-methyl and spinosad [50] or spinosad and spinetoram [58]. Most likely,
females oviposited before dying, therefore some progeny were produced that eventually
died [50]. The lethargy and paralysis that chlorantraniliprole induced to the exposed
adults [1,2] may have not allowed them to lay eggs before their death, an issue that could
further explain the absence of offspring in our experiments. This could also be the case for
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20 ◦C since parental mortality ranged between 45.6 and 46.1% for both chlorantraniliprole
formulations at 10 ppm. Additionally, 20 ◦C does not favor the activity of P. truncatus [73],
thus its development becomes slow at this temperature level.

5. Conclusions

To conclude, the present study indicates that chlorantraniliprole is a promising a.i. for
the management of P. truncatus because it provides high insecticidal activity to parental
adults but also suppresses progeny production on stored-maize. However, temperature,
exposure and dose should be taken into account if control measures against P. truncatus
include chlorantraniliprole, regardless of WG or SC formulations. Since chlorantraniliprole
exhibits activity against several other stored-product pests [18] and presents a friendly
toxicological profile [3–5], it could be considered as an additional tool for the protection of
stored-grain commodities.
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