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Abstract

In the Maasai Steppe, public health and economy are threatened by African Trypanosomia-

sis, a debilitating and fatal disease to livestock (African Animal Trypanosomiasis -AAT) and

humans (Human African Trypanosomiasis—HAT), if not treated. The tsetse fly is the primary

vector for both HAT and AAT and climate is an important predictor of their occurrence and

the parasites they carry. While understanding tsetse fly distribution is essential for informing

vector and disease control strategies, existing distribution maps are old and were based on

coarse spatial resolution data, consequently, inaccurately representing vector and disease

dynamics necessary to design and implement fit-for-purpose mitigation strategies. Also, the

assertion that climate change is altering tsetse fly distribution in Tanzania lacks empirical evi-

dence. Despite tsetse flies posing public health risks and economic hardship, no study has

modelled their distributions at a scale needed for local planning. This study used MaxEnt spe-

cies distribution modelling (SDM) and ecological niche modeling tools to predict potential dis-

tribution of three tsetse fly species in Tanzania’s Maasai Steppe from current climate

information, and project their distributions to midcentury climatic conditions under representa-

tive concentration pathways (RCP) 4.5 scenarios. Current climate results predicted that G.

m. morsitans, G. pallidipes and G swynnertoni cover 19,225 km2, 7,113 km2 and 32,335 km2

and future prediction indicated that by the year 2050, the habitable area may decrease by up

to 23.13%, 12.9% and 22.8% of current habitable area, respectively. This information can

serve as a useful predictor of potential HAT and AAT hotspots and inform surveillance strate-

gies. Distribution maps generated by this study can be useful in guiding tsetse fly control

managers, and health, livestock and wildlife officers when setting surveys and surveillance

programs. The maps can also inform protected area managers of potential encroachment

into the protected areas (PAs) due to shrinkage of tsetse fly habitats outside PAs.
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Author summary

Spatial variation of African Trypanosomiasis burden depends on distribution of biotopes

necessary for tsetse flies to thrive. Therefore, mapping the occurrence of the tsetse fly

species is a useful predictor of African Trypanosomiasis transmission risk areas. Climate

is a major determining factor for occurrence and survival of tsetse flies, the vector respon-

sible for both HAT and AAT. Since resources for prevention and control of tsetse fly spe-

cies and the disease they transmit are generally scarce in endemic settings, understanding

potential impacts of climate change on tsetse fly species distribution in space and time is

essential for informing coherent strategies for vector and disease control at a local scale.

Introduction

Most climate change predictions show an upward trend in temperature for at least the next

nine decades [1], but there is uncertainty with different climate models predicting different

magnitudes of warming. On average, global temperature is expected to rise by 0.8–2.6˚C and

by 1.5–3˚C in Africa by the year 2050 [2]. Such increases have potential to cause species habitat

modification including range expansion or contraction in addition to altering their relation-

ships with the bio-physical environment. The influence of climate change on species distribu-

tion is supported by evidence from fossil records [3] and observed trends from the twentieth

to twenty-first centuries on species range shifts. For example, it is estimated that a change in

1˚C will lead to range shifts of 160km of the ecological zones on earth, implying that if the

globe will warm by 3˚C by the year 2100, the flora and fauna of the North Pole will move

approximately 480 km northward to remain within their thermal tolerances [4–5]. Some spe-

cies of butterflies in Europe have been reported to shift further north as those zones become

more habitable [6–8]. Predicted rise in temperature is also expected to transform dynamics of

vector-borne diseases including African Trypanosomiasis, either by altering the vectors’ and

pathogens’ geographical range, or their development and mortality rates [9–12].

Tsetse flies occur in Sub-Saharan Africa and their distribution is influenced by climate, veg-

etation and hosts. Climate, particularly temperature, is considered a major driver as it influ-

ences all others factors that determine tsetse occurrence. Trypanosomiasis remains a

debilitating and fatal disease to livestock and humans, if left untreated. For instance, trypano-

somiasis in livestock causes loss of over 4 billion USD due to 70% reduction of cattle density,

50% reduction in dairy and meat sales, 20% reduction in calving rates, and 20% increases in

calf mortality in Sub-Saharan Africa [13]. In Tanzania, tsetse flies occur in over 65% of range-

land savannah ecosystems [14], exposing about 4 million people in rural communities to the

risk of sleeping sickness and causing loss of approximately eight million USD annually due to

nagana (AAT) induced low livestock productivity [15–17]. Since dynamics of African Try-

panosomiasis is a function of tsetse fly competence, and the ecology and behavior of available

hosts, spatial variation of disease burden depending on the distribution of biotopes necessary

for tsetse flies to thrive is expected.

Trends in climate change and associated socioeconomic transformation is anticipated to

continue altering tsetse fly habitats in Tanzanian rangelands. Nonetheless, empirical evidence

to support the assertion about change in tsetse fly species distribution as a result of climate

change is lacking in the country. Also, information that could aid tsetse control planning for

future preparedness is rare to find in the country and absent at local scales. In the Maasai

Steppe, for instance, knowledge on tsetse fly spatial variation is often based on old and coarse

data and not publicly available.
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Various scientific approaches have been used to understand the potential impacts of climate

on spatial and temporal distribution of disease vectors. Some of the approaches include climate

envelope models and correlations between climatic variables and vectors [18–21]. Climate

envelopes are species distribution models that use climate data to define climate suitability for

species to occur [22]. Specifically, these models rely on statistical correlations between species

distributions points and their associated climate parameters to define a species’ envelope of tol-

erance around existing ranges, thereby delineating a ‘climate envelope’ within which species

thrive [19,22]. Compared to mechanistic models, climate envelope models do not incorporate

data other than occurrence and environmental related data; so they do not predict fitness vari-

ation across climate gradients [23].

There has been research that studied risk of African Trypanosomiasis and tsetse fly burden

in the Maasai Steppe [24–31]. However, none of these established potential impacts of climate

change on distribution of tsetse. To fill this gap, a general question on what is the potential

impact of climate change on the distribution of common Glossina species found in the study

area was investigated. This study adopted the general definition of climate envelopes in which

models were built using climate variables to define areas that have suitable climate for tsetse

flies and model their distribution based on current climate under which they have been

observed. Prediction for future distribution was carried out to understand how African Try-

panosomiasis transmission hotspots might change under future climate scenarios. This infor-

mation may help stakeholders to allocate scarce resources in preventing African

Trypanosomiasis by implementing more targeted interventions. This study also may form a

basis for a large national and regional scale prediction of future African Trypanosomiasis

transmission hotspots.

Methodology

Study area

This study was carried out in the Tanzanian Maasai Steppe, located between 1.5 to 5˚ South

latitude and 35 to 37˚ East Longitude (Fig 1). It covers an area of more than 60,000 km2 with a

population of over 600,000 people, mainly practising pastoralism and to a lesser extent, agro-

pastoralism and tourism [32]. The region is semi-arid and a human-wildlife-livestock system,

receiving up to 500 mm of rainfall per annum. Rainfall patterns dictate movement of pastoral-

ists and their herds and wildlife in search for water and pastures. These movements increase

the likelihood of disease transmission between domestic animals, people and wildlife [3].

Data collection

Species occurrence and background data. This study targeted three Glossina species G.

m. morsitans, G. pallidipes and G. swynnertoni commonly found in the Maasai Steppe [27–29].

Abundance data were collected through entomological field surveys carried out once in the

dry season, November 2015 and once in the wet season, May 2016. A total of 99 baited epsilon

traps [33] were placed in Simanjiro and Monduli districts. Traps were deployed in stratified

random subsampling of the major vegetation types [34] at a distance of at least 200m apart

[16,33]. At each trapping site, numbers of tsetse flies caught and geographical coordinates

were recorded using hand-held Global Positioning System (GPS). The collected abundance

data were converted to presence data for each of the GPS locations, yielding a total of 32, 59

and 29 unique occurrence points for G. m.morsitans, G. pallidipes and G. swynnertoni, respec-

tively, after eliminating duplicate records resulting from multiple entries for a particular sea-

son. Duplicate records were removed using ecological niche modelling tools (ENMTools)

software version 1.4.3 [35]. The occurrence data were used with climate predictor variables as
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input in MaxEnt (v 3.3.3k) [36], to create climate envelope models for the three species. Max-

Ent is a species distribution model developed to work with presence-only data, and has been

widely used in modelling the probability of occurrence of species across space and time in

areas that have not been sampled [36–38]. Since dispersal of tsetse flies is dependent on avail-

ability of suitable hosts, and the study area is home to numerous hosts (wildlife and livestock),

the study assumed that all districts of the Maasai Steppe had potential for attracting tsetse flies.

For this reason, background data were sampled from the whole study area [38–40].

Climate layers. Predictive models for tsetse fly species distribution were made using the

occurrence data and current climate variables (Table 1). The initial candidate layers considered

in the model were elevation, precipitation of the wettest month (April), mean maximum tem-

perature of the warmest month (February), mean maximum temperature of the driest month

(September) and mean minimum temperature of the coldest month (July). Both maximum

and minimum temperature affect tsetse fly activity patterns and play an important role in

determining the development of tsetse flies [41–42] and differentiation and proliferation of

trypanosomes and thus trypanosomes prevalence [27,43]. On the other hand, precipitation

affects tsetse fly development indirectly by maintaining vegetation “tsetse fly habitats” [44].

Fig 1. An extract of a map of Tanzania showing the study districts (Kiteto, Longido, Monduli and Simanjiro)

forming the Maasai Steppe.

https://doi.org/10.1371/journal.pntd.0009081.g001
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Apart from maintaining vegetation and humidity for tsetse fly to thrive, precipitation also

affects tsetse fly species indirectly by causing local flooding which may drown pupae that are

buried in loose soil [45], and so it was included in predictor variables. In addition, a number of

reports have indicated fluctuation of tsetse fly abundance during rainy season [25,27,46,47].

Elevation, which is a proxy for temperature, was also used as a predictor variable in order to

gain insight regarding the potential altitude limit for tsetse fly species to thrive. Although land

cover/use and density of animals also influence tsetse fly distribution in space and time [16],

this information was not included in the study due to inconsistency of available data. Models

created using current climate variables were mapped on to future climate layers to understand

how changing climate might influence tsetse distribution and thereby African Trypanosomia-

sis transmission risk. For the future climate projection scenario (year 2050), this study used

833.33m resolution Coupled Model Inter-comparison Project (CMIP5) global circulation

model (GCM).

Of the many possible GCMs to use, CMIP5 was chosen because the CMIP5 models are rela-

tively more advanced (fine-tuned) and they use RCP scenarios compared to previous GCMs

that were released in or before 2010. In particular, the climate system model from Beijing Cli-

mate Center (BCC-CSM1-1) was used and the RCP 4.5 was selected for this study. The

BCC-CSM1 was chosen for this analysis because it is among the models that have been sug-

gested to capture the key processes relevant to our study area [48]. Although there is uncer-

tainty associated with any future climate scenario, these data provide reasonable predictions

that can be useful for planning.

Modelling procedures. In order to minimize the use of correlated variables that may

mask the contribution of individual variables and cause difficulties in results interpretation

[37,49], pairwise collinearity tests of predictor variables was performed using ENMTool 1.4.3

[35–36]. Temperature variables and altitude were highly correlated but mean minimum and

maximum temperature of coldest and warmest month respectively were retained because of their

high biological relevance to tsetse fly species [46]. Altitude was also included in the model to gain

insights regarding the elevation limits of tsetse fly species distribution. Mean maximum tempera-

ture of the driest month was omitted from analysis because of the relatively lower knowledge of

effects of dryness on tsetse fly survival and development except when it is accompanied by other

parameters such as temperature and precipitation which were already candidate variables.

MaxeEnt was used to model the probability of species occurrence based on unique occur-

rence points [36–38]. A sample bias file was excluded from the model with the assumption

that tsetse flies are likely to be present in a large part of the study area due to wide distribution

of hosts [17,50]. Because there were more than 15 occurrence points, MaxeEnt was run using

linear, quadratic and hinge features [51]. The model was set to run with 500 iterations and 10

replicates with default parameters for regularization and the jackknife estimates (measure of

variable influence).

Model assessment. Four variables were included in MaxEnt along with the occurrence

data. An initial SDM was run in MaxEnt (one run; raw output setting) to acquire lambda

Table 1. Candidate covariates tested used in initial model runs, and the bolded ones used in the best-performing MaxEnt models.

Variable Type Units Resolution source

Precipitation of the wettest month (April) Continuous ml 833.33m http://www.worldclim.org

Mean maximum temperature of the warmest month (April) Continuous 0C�10 833.33m http://www.worldclim.org

Mean minimum temperature of the coolest month (July) Continuous 0C�10 833.33m http://www.worldclim.org

Altitude/elevation Continuous msl 833.33m http://www.worldclim.org

Mean maximum temperature of the driest month (September) Continuous 0C�10 833.33m http://www.worldclim.org

https://doi.org/10.1371/journal.pntd.0009081.t001
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values used in ENMTools v.1.4. 3 [35] to calculate Akaike’s Information Criterion (AICc; AIC)

and Bayesian Information Criterion (BIC) [52] for a model fit with four, three and two vari-

ables, respectively (Table 2). This method selects the most parsimonious model. The model

that was most parsimonious in this study (lowest AIC, AICc, BIC and high area under the

receiver operating curve (AUC) value) had all four variables. The best model for each species

was validated using 10-fold cross-validation, with the averages of 10 model runs representing

the final output. Model performance as well as the contribution of predictor variables were

assessed by using AUC, and variable importance was assessed using the relative gain contribu-

tion of each variable and jackknife tests compared using AUC, test gain and regularized train-

ing gain. Marginal and single variable response curves were used to depict the relationship

between tsetse fly species and predictor variables. Final outputs included predictive maps of

the probability of tsetse fly species presence based on climate suitability. The probability scores

(numeric values between 0 and1) were displayed in ArcGIS 10.5 to show the current and

future habitat suitability for each of the three tsetse fly species.

Results

Model selection

The distribution models for each tsetse fly species performed better than base/random

(AUC>0.5). The model that included all four predictor variables had the best fit (Table 2). The

results presented in all subsequent sections are based on this model.

Variable contribution and climate suitability map for G. m. morsitans
Altitude accounted for more than one third (35.1%) of the variation in the climate suitability

model for G. m. morsitans occurrence, followed by precipitation of the wettest month (32.1%),

maximum temperature of the warmest month (22.3%), and minimum temperature of the

coldest month (10.6%). Based on the 10 percentile training presence logistic threshold (10%

minimum threshold), the model showed that currently 32% (19,225 km2) of the entire Maasai

Steppe (� 60,000 km2) has suitable climate for G. m. morsitans (Fig 2), but this would shrink

to 7.4% (4,447.34 km2) by 2050’ (Fig 3).

Table 2. Model performance based on AUC, AIC, AICc and BIC values for tsetse fly species occurrence and different combinations of the environmental variables.

Species Model assessment Tmax of warmest month

Tmin of coldest month

Precipitation of the wettest month

Tmax of warmest month

Tmin of coldest month

Altitude

Precipitation of the wettest month

Tmax of warmest month

Tmin of coldest month

G.m.morsitans AUC 0.850 0.902 0.938

AIC 702.78 667.27 625.79

AICc 709.04 680.47 642.21

BIC 714.51 683.39 643.38

G. pallidipes AUC 0.818 0.919 0.959

AIC 1302.59 1198.26 1108.75

AICc 1304.79 1202.85 1115.54

BIC 1317.13 1219.04 1133.68

G. swynnertoni AUC 0.840 0.854 0.899

AIC 624.99 614.66 576.83

AICc 630.32 626.88 601.09

BIC 634.56 628.33 594.60

https://doi.org/10.1371/journal.pntd.0009081.t002
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Fig 2. Current climate suitability map for the best performing model with the G.m. morsitans occurrence data,

and all 4 environmental variables: elevation, precipitation of the wettest month (April), mean maximum

temperature of the warmest month (February), and mean minimum temperature of the coldest month (July).

https://doi.org/10.1371/journal.pntd.0009081.g002

Fig 3. Midcentury (2050) climate suitability map for the best performing model with the G.m. morsitans
occurrence data, and all 4 environmental variables: elevation, precipitation of the wettest month (April), mean

maximum temperature of the warmest month (February), and mean minimum temperature of the coldest month

(July). In these figure we see that the probability of occurrence decreases with time (comparing current and

midcentury) from the maximum values of 0.845 to 0.658, with contracted habitat.

https://doi.org/10.1371/journal.pntd.0009081.g003
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Variable response curves indicated that the probability of occurrence of G. m. morsitans
drops off dramatically above 1000m of altitude when all variables are included in the model,

but a very peaked response to altitude�1200msl (S1A Fig) and almost no probability of occur-

rence above 2500msl when that is the only variable considered (S2A Fig). Marginal and single

variable response curves were however similar for precipitation of the wettest month, showing

a preference (probability of presence� 0.6) for precipitation between 140-230mm per month

and almost no chance of occurrence below 100mm/month or above 350mm/month (S1B and

S2B Figs). The probability of occurrence of G. m. morsitans drops off dramatically above 28˚C

maximum temperature when all variables are included in the model (S1C Fig), but a peaked

response to maximum temperature of� 28˚C for the mean maximum temperature of the

warmest month, with minimal chances of occurrence below� 15˚C or above� 32˚C maxi-

mum temperature values when used as the only variable in the model (S2C Fig).

The probability of occurrence of G. m. morsitans drops off dramatically above 14˚C mini-

mum temperature when all variables are included in the model, reaching the peak response at

a minimum temperature of� 13˚C for the mean minimum temperature of the coldest month

(S1D Fig), with rare chances of occurrence below 0˚C or above 16˚C minimum temperature

when used as the only variable (S2D Fig). Altitude accounted for over one third of variation in

the climate suitability model for G. m. morsitans occurrence but maximum temperature of the

warmest month provided the best fit to the training model when used in isolation, while pre-

cipitation of the wettest month appeared to have the most information that is not captured by

other variables and thus decreases the gain the most when omitted (S3 Fig).

Variable contribution and climate suitability map for G. pallidipes
Precipitation of the wettest month accounted for almost two-thirds (60.4%) of the variation in

habitat suitability, followed by altitude (23.0%) and maximum temperature of the warmest month

(16.6%). Based on the 10 percentile training presence logistic threshold, the model showed that

current suitable habitat for G. pallidipes covers 11% (7113 km2) of the Maasai Steppe (Fig 4) and

by 2050, the model indicated only 918 km2 with suitable habitat for this species (Fig 5).

Variable response curves indicated that the probability of occurrence of G. pallidipes drops

off dramatically above 1,000m of altitude when all variables are included in the model, reaching

its peak response at altitude�1,200msl (S4A Fig) and almost no probability of occurrence

above 3,000msl when that is the only variable considered in the model (S5A Fig). Marginal and

single variable response curves were similar for precipitation of the wettest month, showing a

preference (probability of presence� 0.6) for precipitation between 140-180mm per month

(S4B Fig), and almost no chance of occurrence below 120mm/month or above 330mm/month

S5B Fig). The probability of occurrence of G. pallidipes drops off dramatically above 28˚C maxi-

mum temperature when all variables are included in the model (S4C Fig), and a peak response

was observed at a maximum temperature of� 28˚C for the mean maximum temperature of the

warmest month, and almost no chance of occurrence below 10˚C or above 34˚C maximum

temperature when used as the only variable (S5C Fig). The probability of occurrence of G. palli-
dipes drops off dramatically above 10˚C minimum temperature when all variables are included

in the model (S4D Fig), but a very peaked response to minimum temperature of� 13˚C for the

mean minimum temperature of the coldest month and almost no chance of occurrence below

-5˚C or above 17˚C minimum temperature when used as the only variable (S5D Fig).

Precipitation of the wettest month provided the best fit to the training data when used in

isolation and best predicted the distribution of the G. pallidipes. This variable also appears to

have the most information that is not present in the other variables, as it decreases the gain the

most when it is omitted (S6 Fig).
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Fig 5. Midcentury (2050) climate suitability map for the best performing model with the G. pallidipes occurrence

data, including all 4 variables. In these maps we see that the probability of occurrence decreases with time

(comparing current and midcentury) from the maximum values of 0.919 to 0.725, with shrunk habitat.

https://doi.org/10.1371/journal.pntd.0009081.g005

Fig 4. Current climate suitability map for the best performing model with the G. pallidipes occurrence data,

including all 4 variables.

https://doi.org/10.1371/journal.pntd.0009081.g004
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Variable contribution and climate suitability map for G. swynnertoni
Altitude contributed almost half (47.5%) of the variation in climate suitability for G. swynner-
toni occurrence, followed by precipitation of the wettest month (27.4%), minimum tempera-

ture of the coldest month (22%), and maximum temperature of the warmest month (3.1%).

Based on the 10 percentile training presence logistic threshold, it was revealed that current

suitable climate for G. swynnertoni covers 32,335 km2 (Fig 6), but is predicted to shrink to

7,374 km2 by the year 2,050 (Fig 7).

Variable response curves indicated that the probability of occurrence of G. swynnertoni
drops off dramatically above 1000m of altitude when all variables are included in the model

(S7A Fig) but a very peaked response to altitude�1300msl and almost no probability of occur-

rence above 2500msl when that is the only variable considered (S8A Fig). Variable response

curves indicated that the probability of occurrence of G. swynnertoni drops off dramatically

above 140mm of rainfall when all variables are included in the model (S7B Fig), but a very

peaked response to precipitation�160mm for the precipitation of the wettest month and

almost no probability of occurrence above 400mm/month or below 90mm/month when that

is the only variable considered (S8B Fig). The probability of occurrence of G. swynnertoni
drops off dramatically above 28˚C maximum temperature when all variables are included in

the model (S7C Fig), but a peaked response to maximum temperature of� 28˚C for the mean

maximum temperature of the warmest month, and almost no chance of occurrence below

10˚C or above 34˚C maximum temperature when used as the only variable (S8C Fig).

The probability of occurrence of G. swynnertoni drops off dramatically above 14˚C mini-

mum temperature when all variables are included in the model (S7D Fig). The peak probability

was observed at a minimum temperature of� 14˚C for the mean minimum temperature of

the coldest month with reduced chances of occurrence below 0˚C or above 16˚C minimum

temperature when used as the only variable (S8D Fig).

Fig 6. Current climate suitability map for G. swynnertoni, for the model including all four predictor variables.

https://doi.org/10.1371/journal.pntd.0009081.g006
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The best fit to the G. swynnertoni training data was provided by altitude when used by itself.

Altitude indicated the best fit to the test data and best predicted the distribution of the G. swyn-
nertoni test data. Also, omission of this variable decreased the gain the most, meaning altitude

had most information that is not present in other variables (S9 Fig).

Discussion

Tsetse fly occurrence poses public health challenges and exacerbates economic hardships due

to the investment needed to control tsetse flies and treat the diseases they transmit. Since cli-

mate is the dominant factor that determines tsetse fly occurrence, and the resources for con-

trolling tsetse and trypanosomiasis are scarce, understanding how the changes in climate at

the local scale affects the spatial and temporal distribution of tsetse fly species is critical in iden-

tifying the most likely vulnerable places, and better targeting limited resources. The SDM used

in this study provides useful information for public health, livestock development stakeholders

and wildlife managers to plan for future potential climates effects across space and time.

This study used MaxEnt species distribution modelling to understand the influence of alti-

tude and climate variables on tsetse fly species occurrence, and make predictions about future

distribution based on predictive climate models. The models yielded current and future poten-

tial climate distribution maps for G. m. morsitans, G. pallidipes and G. swynnertoni, and pre-

dicted an overall reduction in the area of the Maasai Steppe that will have suitable climate for

the three Glossina species. Prediction also indicated the probability of these three tsetse fly spe-

cies to inhabit relatively higher latitude by mid-century. Compared to current conditions, in

the year 2050, area with suitable climate will decline to 23.13%, 12.9% and 22.8% of current

suitable area for G. m. morsitans, G. pallidipes and G. swynnertoni, respectively. The reason for

this could be explained by the temperature response curves, which indicated 34˚C mean maxi-

mum temperature of the warmest month and 17˚C mean minimum temperature of the coldest

Fig 7. Midcentury (2050) climate suitability map for G. swynnertoni, for the model including all four predictor

variables. Similarly, these maps indicate that the probability of occurrence decreases with time (comparing current

and midcentury) from the maximum values of 0.826 to 0.715, with narrowing habitat.

https://doi.org/10.1371/journal.pntd.0009081.g007
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month to be maximum upper and lower temperature thresholds for these three species. The

range reduction across the Maasai Steppe can be attributed to future climates exceeding these

thresholds whereby, by mid of the century, maximum temperature is expected to have risen by

1.7˚C in the Maasai Steppe [48]. The temperature thresholds that limit tsetse fly distribution

and abundance have also been shown in other studies from the Maasai Steppe, based on inten-

sive longitudinal sampling over smaller geographic areas [27]. These observations complement

the suggestion that climate change in some parts of East Africa would result in overall reduc-

tion of habitat suitability range for tsetse flies, but also a spread out of suitable range particu-

larly in high-altitude areas that currently are less suitable for the species due to low

temperatures [18]. Hulme also predicted a contraction of G. m.morsitans geographic range

owing to climate change expected to affect the SADC region [53]. Influence of climate on the

distribution of Glossina species has been explained in the previous studies [41,42,54–57] and

G. m.morsitans, G. pallidipes and G. swynnertoni are among the groups of tsetse flies whose rel-

ative abundance tends to decrease with high temperature. Our model forecasts suitable area

for all three species that will shrink in the Maasai Steppe by 2050 under RCP 4.5, suggesting

populations of these species may crash or may adapt to increasing maximum temperatures by

moving upward in elevation. In fact, the models predicted a suitable altitude for G. m. morsi-
tans, G. pallidipes and G. swynnertoni from around 1,000msl currently observed, to around

2,500m, 3,000m and 2,500m elevation, respectively, indicating these species may become prob-

lematic in high altitude ecosystems of the study area, if other ecological requirements for these

species will be met in those habitats.

The importance of the four variables that were selected through our parsimony analysis to

the ecology of the three Glossina species indicates the importance of careful scrutiny of avail-

able environmental data for a study site of interest. Although there was variation in variable

contribution to specific species models, mean maximum temperature of the warmest month

and mean minimum temperature for the coldest month indicated similar response curves.

Specifically, mean maximum temperature of the warmest month, and mean minimum tem-

perature of the coldest month have relevant ecological importance to the distribution of tsetse

fly species. For example, the logistic probability response curves indicated higher maximum

temperature of the warmest month and higher minimum temperature of the coldest month

decreases likelihood of all three Glossina species occurrence, likely because both low and high

temperatures affect development of all three tsetse species at various life stages [41]. Effects of

hotter and colder environments on various developmental stages of tsetse fly species has also

been reported [58–59].

Logistic probability response curves indicated that higher precipitation during the wettest

month decreases the likelihood of occurrence of the three Glossina species considered in this

study. Generally, no record is known on the direct effect of rainfall on tsetse flies, but it is

thought that high rainfall may cause local flooding which may wash out pupae that are buried

in loose soil, leading to tsetse fly depopulation and thus low probability of occurrence.

Although responses to this variable indicated similar trends in all three species, the importance

of the variable in models for the different species varied dramatically. For example, precipita-

tion of wettest month contributed 60.4% of the relative gain to the G. pallidipes model and pro-

vided the best fit to the model, indicating that the species can respond differently to the

climate variables. In particular, precipitation in the wettest month may be more important to

the distribution of G. pallidipes owing to the species’ ecology. G. pallidipes is strongly associ-

ated with wetter habitats, and so relatively hydrophilic, unlike G. m. morsitans and G.

swynnertoni.
In all three tsetse fly species models, altitude had a relatively high contribution to the model

gain, but did not necessarily provide the best fit to the training model. For example, altitude
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contributed 35.1% of relative gain to the G. m. morsitans model and 23% for G. pallidipes
respectively. However, the best fit to the training models for these two species were provided

by mean maximum temperature of the warmest month and precipitation of the wettest

month. This may be because temperature and rainfall have more biological relevance to tsetse

flies compared to altitude. Although altitude indicated high contribution (47.5%) to the G.

swynnertoni model and also had the best fit, it should however be noted that all occurrence

points were obtained at relatively lower altitudes and this might have influenced the results.

Nevertheless, all Glossina species responded similarly to altitude, with response curves for all

species indicating low preference for higher altitude. This is because higher altitudes are char-

acterized by lower temperature that affects tsetse fly development [42]. Given that altitude and

temperature were highly correlated, it was initially considered that by including altitude in the

model, it could have masked the contribution of variables with greater biological relevance

[37]. However, because relationships between tsetse flies and temperature are well-established

[41,42,60,61], altitude was included in the models in order to gain insight into how tsetse fly

species are likely to expand their range to higher elevations under future increases in

temperature.

Extrapolated over larger areas, our findings could indicate either increases or decreases in

suitable tsetse range. Likewise, predictions of climate impacts of tsetse distribution in Africa

do not all agree. Some studies have suggested that climate change in some parts of East Africa

would result in a spreading out of suitable range for tsetse flies particularly in high-altitude

areas that currently exclude the species due to low temperatures, but also there is a chance of

range contraction of tsetse flies in some locations [18]. Other reports have suggested a decline

in the distributional range of tsetse fly species owing to climate change. Furthermore, it should

be noted that climate variables are not the sole predictors of future tsetse distribution. Other

factors such as host availability and suitable vegetation will also influence where tsetse are

found, but are more difficult to model into the future. Distribution maps based on relation-

ships with climate variables can therefore be considered to be maximum potential

distributions.

Although the findings of this study are based on only a single GCM model, BCC-CSM1-1

from CMIP5, it is considered to have better predictive capacity because it uses RCP and is at a

relatively finer resolution of about 1km. The fact that these findings agree with previous find-

ings reported by Hulme [53] and Rodgers and Randolph [54] that used relatively older GCM

versions, increases the confidence that climate is more likely to push distribution of tsetse flies

into new areas, while removing it from others. For this reason, maps produced by this study

can improve the efficiency and lower the cost of future surveillance. Also, the methods

employed by this study can be adopted to generate high resolution species distribution maps

under current and future climate scenarios for larger areas and for other vectors that pose

threats to both public health and economic development. Tsetse fly control managers can

incorporate the maps created from these models into integrated pest management regimes,

and further tailor them based on what is already known about the Maasai Steppe. Finally,

maps such as these may be displayed to the public to increase awareness of climate change

implications in the Maasai Steppe and other areas that are tsetse infested. These maps can as

well inform protected areas managers of the likely encroachment due to shrinkage of tsetse fly

habitats even in protected areas.

Limitations of this study include the fact that the study approach was climate envelope

models which does not predict the expected ability/fitness of tsetse flies to adapt to the climate

change. Inclusion of other ecological requirement variables would improve the prediction of

general habitat suitability other than only climate suitability.
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S1 Fig. Marginal response curves for the best performing model with G.m.morsitans occur-

rence data. Temperature is reported in 0C � 10.

(TIF)

S2 Fig. Single variable response curves for the best performing model with G.m.morsitans
occurrence data. Temperature is reported in 0C � 10.

(TIF)

S3 Fig. Jackknife estimates of variable importance for the best-performing model for G.m.

morsitans. Variable performance is assessed via the variables’ impact to training and test gain

(top and middle) and AUC (bottom).

(TIF)

S4 Fig. Marginal response curves for the best performing model with G.pallidipes occur-

rence data. Temperature is reported in 0C � 10.

(TIF)

S5 Fig. Single variable response curves for the best performing model with G.pallidipes
occurrence data. Temperature is reported in 0C � 10.

(TIF)

S6 Fig. Jackknife estimates of variable importance for the best-performing model for G.

pallidipes. Variable performance is assessed with training and test gain (top and middle) and

AUC (bottom).

(TIF)

S7 Fig. Marginal response curves for the best performing model with G.swynnertoni occur-

rence data. Temperature is reported in 0C � 10.

(TIF)

S8 Fig. Single variable response curves for the best performing model with G.swynnertoni
occurrence data. Temperature is reported in 0C � 10.

(TIF)

S9 Fig. Jackknife estimates of variable importance for the best-performing model for G.

swynnertoni. Variable performance is assessed with training and test gain (top and middle)

and AUC (bottom)

(TIF)
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