
Heliyon 10 (2024) e29916

Available online 22 April 2024
2405-8440/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC license
(http://creativecommons.org/licenses/by-nc/4.0/).

Review article

A comprehensive review on internet of things task offloading in
multi-access edge computing

Wang Dayong a,*, Kamalrulnizam Bin Abu Bakar a, Babangida Isyaku a,b,
Taiseer Abdalla Elfadil Eisa c, Abdelzahir Abdelmaboud d

a Department of Computer Science, Faculty of Computing, Universiti Teknologi Malaysia, Johor Bahru, Johor 81310, Malaysia
b Department of Computer Science, Faculty of Information Communication Technology, Sule Lamido University, K/Hausa, Jigawa State, Nigeria
c Department of Information Systems-Girls Section, King Khalid University, Mahayil, 62529, Saudi Arabia
d Humanities Research Center Sultan Qaboos University, Muscat, Oman

A R T I C L E I N F O

Keywords:
Computation offloading
Internet of things
Mobile edge computing
Multi-access edge computing
Task offloading

A B S T R A C T

With the rapid development of Internet of Things (IoT) technology, Terminal Devices (TDs) are
more inclined to offload computing tasks to higher-performance computing servers, thereby
solving the problems of insufficient computing capacity and rapid battery consumption of TD. The
emergence of Multi-access Edge Computing (MEC) technology provides new opportunities for IoT
task offloading. It allows TDs to access computing networks through multiple communication
technologies and supports more mobility of terminal devices. Review studies on IoT task off-
loading and MEC have been extensive, but none of them focus on IoT task offloading in MEC. To
fill this gap, this paper provides a comprehensive and in-depth understanding of the algorithms
and mechanisms of multiple IoT task offloading in the MEC network. For each paper, the main
problems solved by the mechanism, technical classification, evaluation methods, and supported
parameters are extracted and analyzed. Furthermore, shortcomings of current research and future
research trends are discussed. This review will help potential and new researchers quickly un-
derstand the panorama of IoT task offloading approaches in MEC and find appropriate research
paths.

1. Introduction

The development of Industry 4.0 and smart cities has led to the rapid expansion of the scale of the Internet of Things (IoT) [1]. The
new demands for innovation have significantly increased the computing load on terminal devices, especially IoT applications that
include Artificial Intelligence (AI) functions [2,3]. However, the computing capacity and power supply of the Terminal Device (TD) are
limited due to limitations of the manufacturing process, cost and battery capacity [4]. This results in limited application of IoT. The
emergence of computing offloading technology provides new opportunities to solve such problems [5,6]. TDs can offload computing
tasks to cloud platforms or edge computing networks, thereby significantly shortening task execution time and extending TD’s battery
life [7,8].

Computing networks such as cloud, fog, and edge can be used to carry offloaded tasks from TD. However, the development of 5G
technology has made MECs the primary computing network to support the offloading of IoT tasks. In particular, the further

* Corresponding author.
E-mail address: wangdayong@graduate.utm.my (W. Dayong).

Contents lists available at ScienceDirect

Heliyon

journal homepage: www.cell.com/heliyon

https://doi.org/10.1016/j.heliyon.2024.e29916
Received 20 February 2024; Received in revised form 11 April 2024; Accepted 17 April 2024

mailto:wangdayong@graduate.utm.my
www.sciencedirect.com/science/journal/24058440
https://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2024.e29916
https://doi.org/10.1016/j.heliyon.2024.e29916
https://doi.org/10.1016/j.heliyon.2024.e29916
http://creativecommons.org/licenses/by-nc/4.0/

Heliyon 10 (2024) e29916

2

development of the edge-cloud continuum architecture meets the time-sensitive requirements of task offloading. MEC technology
officially released in 2016 [9,10], allows IoT devices to process data close to the data source, which reduces the latency of data
transmission and helps to reduce the burden on the network [11,12]. This is particularly beneficial for IoT devices with low bandwidth
or unstable network connections, it can better support IoT offloading of computing tasks.

The IoT task offloading in MEC scenario has its particularities that are different from other application scenarios. First, IoT devices
need to offload more computing-intensive tasks due to very limited computing power [13]. Second, task offloading in IoT application
scenarios requires optimizing the energy consumption of TD to extend the working time of the device due to the limitation of battery
capacity [14,15]. Third, IoT has a larger network scale (e.g. Smart cities). This results in a huge number of TDs and edge computing
nodes in the network [16,17]. Therefore, it is very difficult to find the optimal solution for task offloading decision-making. In addition,
the computing tasks of IoT are highly heterogeneous due to different hardware systems and diversified software applications [18].
Moreover, IoT computing tasks are also mostly time-sensitive. Device mobility in some IoT application scenarios is also very high (such
as the Internet of Vehicles, where even task migration needs to be considered). These factors jointly make the task offloading process of
IoT very complex and have particularly high performance requirements [19,20]. All these lead to the fact that IoT task offloading
mechanisms need to consider multiple optimization objectives comprehensively, rather than just improving a particular performance
metric.

The rapid growth of the demand for multi-objective task offloading optimization coupled with advances in classical mathematical
optimization, heuristic optimization and AI has expanded the research scope and capabilities in this field [15,21–23]. In particular,
AI-based task offloading methods have been rapidly developed in recent years [24,25]. Such methods support more decision opti-
mization parameters and can cope with more complex task-offloading scenarios. In addition, numerous intelligent learning models and
decision-making frameworks have been used to support IoT task offloading in MEC due to the rapid development of the AI research
field [26–29].

It’s difficult to quickly understand the technical route and research status of the IoT task offloading mechanism in MEC due to the
related research on MEC and IoT task offloading being very extensive. In addition, there is a lack of review specifically focusing on IoT
task offloading in MEC. To fill this gap, this survey aims to address this critical need by providing a comprehensive overview of the state
of research and development in task offloading optimization. This study comprehensively investigates IoT task offloading mechanisms
in MEC network environments, analyzing the main problems addressed by the offloading mechanisms, the techniques employed, the
input parameters related to the environment, the evaluation metrics of the mechanisms or algorithms, the evaluation tools, and the
datasets. Our goal is to provide a holistic view of the research field.

The contributions of this study are briefly summarized below:

• This paper comprehensively reviewed the research papers on IoT task offloading mechanisms from 2016 to the present and dis-
cusses on the advantages and disadvantages of classification of implementation technologies.

• The distribution of input parameters in various offloading mechanisms was analyzed to explore the coverage and limitations of the
influencing factors of the task offloading mechanism.

• Performance metrics for evaluating offloading algorithms and mechanisms are presented,
• Statistical analysis of evaluation methods, tools, and data sets for algorithms and mechanisms are presented.
• Potential research opportunities and future research directions are presented.

The rest of the paper is organized as follows: Section 2 shows the background of IoT task offloading. Section 3 describes the related
works. Section 4 gives the research methodology. Section 5 presents the classification of IoT task offloading mechanisms in MEC.
Section 6 discussed and answered research questions. Section 7 provides open issues and future research directions. In the end, the
conclusion is provided in Section 8.

Fig. 1. Logic diagram of IoT task offloading in MEC.

W. Dayong et al.

Heliyon 10 (2024) e29916

3

2. Background of IOT task offloading in MEC

Task offloading in the context of IoT involves moving computing tasks or workloads from IoT devices to more powerful computing
resources, typically at the edge or in the cloud, for more efficient processing [30,31]. Many IoT devices, especially sensors and small
embedded systems, are resource-constrained with limited processing power and energy supplies [32,33]. These limitations make it
challenging for them to perform complex calculations and data processing locally.

IoT applications are becoming increasingly complex and often introduce real-time analytics, image recognition, and other
computationally intensive tasks [34]. These tasks be beyond the capabilities of resource-constrained IoT devices. Some IoT applica-
tions, such as self-driving cars, industrial automation, and augmented reality, require low-latency processing for real-time deci-
sion-making [35,36]. Offloading tasks to more powerful edge or cloud servers can reduce latency. However, neither the computing
resources of MEC nor the communication resources of wireless networks are unlimited [37,38]. TDs still face many challenges when
performing task offloading. Fig. 1 shows the logic diagram of IoT task offloading in MEC.

2.1. Edge-cloud continuum and computational task offloading

There are many computing paradigms which provide computational power for the computation offloading from capacity-
constrained TDs [39]. The basic solution is to offload computing tasks directly from TD to a cloud platform with sufficient re-
sources [40]. However, excessive network transmission delay will be introduced due to the long distance between the cloud platform
and TD [41]. Instead, edge servers are deployed closer to the TD. The short communication distance greatly reduces the delay of task
data transmission. However, edge servers are difficult to carry a large number of computing tasks due to insufficient computing ca-
pacity [42]. Edge-cloud continuum can solve this problem very well. In this computing paradigm, edge servers and cloud platforms
jointly provide computing resources for TDs. The computing tasks offloaded from TDs are first performed by the edge server, and part
of the offloaded tasks will be transferred to the cloud platform for execution when the edge server power is insufficient [43]. Thus, the
performance of task offloading can be significantly improved due to taking full advantage of the fast response from edge servers and
the sufficient resources provided by cloud platform. Fig. 1 presents the architecture of IoT task offloading in edge-cloud continuum.

In large-scale networks, tasks can be offloaded vertically to edge servers and clouds, or horizontally between different edge servers
[44]. In addition, the methods for offloading computing tasks between TDs have also been explored [45,46]. The differentiation of
computing task characteristics and the dynamic changes in MEC available resources lead to increased volatility and complexity of the
computing offloading process [47]. In addition, the computing task can be either treated as a complete unit for binary offloading or can
be split into small subtasks for partial offloading [48,49]. Therefore, it is necessary to optimize the offloading process with the help of
offloading decisions and resource allocation, thereby reducing latency and energy consumption.

2.2. Task offloading decision

The main goal of TDs to offload computing tasks is to improve task execution efficiency and reduce their energy consumption [39,
40]. However, transmitting tasks in congested wireless networks will introduce higher communication delays. In addition, tasks to
perform IoT offloading on busy MEC nodes need to be queued for a long time. If it takes longer to execute a task through offloading, TD
will not be able to improve the execution efficiency of the task during the task offloading process. Similarly, wireless data commu-
nication will consume part of the TD’s energy [41,42]. If the communication energy consumed by the transmission task is greater than
the energy consumed by the local execution of the task, TD should not perform task offloading. Therefore, before undertaking task
offloading, it is necessary to evaluate whether there will be benefits from offloading tasks in the current state.

2.3. Task assignment

Task offloading decisions are often made dynamically based on factors such as device capabilities, network conditions, and
application requirements [43]. The IoT ecosystem is highly heterogeneous and contains a variety of devices with varying levels of
computing power. The task offloading mechanism needs to jointly analyze the available resource status of the MEC network, the
current working status of the communication network, and the constraints of the tasks to be offloaded to make decisions to offload IoT
tasks to appropriate remote computing nodes. In some simple application scenarios, computing tasks only need to be offloaded to
servers in the MEC network [44,45]. In some complex application scenarios, computing tasks be offloaded to MEC servers or cloud
platforms [46], or even to other idle TDs [47]. This makes the choice of destination for task offloading extremely complex. If we
consider the attribute differences of tasks and the requirements for high-density parallel task offloading, the complexity of task off-
loading allocation will further increase.

2.4. Resource allocation

Considering that in many application scenarios, task offloading requests are often greater than the services that the MEC network
can provide [48–50], limited MEC resources need to be appropriately allocated to numerous offloading tasks based on differences in
task requirements. The resources that need to be allocated mainly include the computing resources of the MEC and the available
communication resources in the network [51–53]. Reasonable resource allocation can maximize the overall efficiency of task off-
loading and minimize the proportion of tasks over time. In addition, due to the limitation of TD’s power supply capacity, the impact of

W. Dayong et al.

Heliyon 10 (2024) e29916

4

the allocation strategy on TD’s energy consumption also needs to be considered when allocating resources [54]. These factors will
increase the complexity of resource allocation, and the real-time requirements for IoT task offloading are relatively high. Therefore,
allocating resources efficiently and in real time is one of the issues that need to be solved urgently.

2.5. Global optimization and multi-objective optimation

The global optimization problem of IoT task offloading in a large and heterogeneous MEC network is complex because it involves
multiple goals and the effective allocation of global resources, and one cannot just focus on the task offloading effect of a certain TD.
Multiple MEC servers and IoT devices be distributed globally [55,56]. The global optimization problem involves how to coordinate
task offloading and resource allocation among these distributed resources, thereby maximizing the completion speed of task offloading
for multiple TDs and the overall utilization of MEC resources [57,58]. Global optimization problems also need to consider collaborative
decision-making among multiple decision-makers, including IoT devices, MEC servers, network operators, etc. Distributed offloading
decision-making architecture is often used in some large-scale application scenarios [59,60], which requires full consideration of
reasonable global decision-making optimization.

Multi-objective problems of IoT task offloading often involve trade-offs between minimizing latency and minimizing energy
consumption [61]. Latency is a key performance metric, and energy management is critical to the longevity and efficiency of IoT
devices. In addition, in multi-objective problems, it is necessary to ensure that the Quality of service (QoS) of IoT tasks is satisfied [62,
63]. This include metrics such as minimizing packet loss or maximizing bandwidth utilization [64,65]. Besides this, another goal be the
efficient distribution of tasks among multiple MEC servers to ensure that resources are fully utilized.

Solving these problems often requires advanced optimization techniques. At the same time, factors such as the actual deployment
environment, application requirements, and network topology also need to be comprehensively considered. Studying and optimizing
solutions to these problems can help achieve efficiency, performance, and reliability of IoT task offloading while meeting multiple
optimization goals. Fig. 1 shows the logic diagram of IoT task offloading in the MEC network environment.

3. Related works

The field of computation offloading has seen significant growth in recent years, with numerous studies and advancements in
various sub-domains. In this section, we provide an overview of relevant research and reviews that have contributed to the current
state of the field.

A review of computation offloading that comprehensively investigates intelligent computational task offloading methods in MEC
[66]. The study formulated the costs of local computing and remote computing respectively, and then proposed a unified computation
offloading process model. In addition, task offloading optimization methods based on multiple AI techniques were compared in
multiple dimensions, and a more complete study of metrics for MEC computational offloading was conducted. Further, the study also
points to efficient service discovery, flexible computational task splitting, and security as future research directions. However, the
articles investigated in this work are not IoT-specific, but broadly discuss intelligent optimization techniques for mobile applications to
offload computational tasks to MEC networks. In addition, the survey only discussed AI-based computing task offloading optimization
methods and did not involve methods such as heuristics and classical mathematical optimization. These methods are still evolving.

While the work in Ref. [67] the task offloading paradigm in the MEC environment is systematically reviewed from a technology
evolution perspective. Especially, MEC is distinguished from ordinary edge computing based on MEC’s unique support for device
mobility. In addition, quantitative analysis methods and qualitative analysis methods were combined in this study, and the problem
model, solutions, and evaluation indicators of each article were extracted and summarized. Thus, future research directions are given.
However, this study discussed a lot about the MEC architecture and features but did not focus on task offloading optimization. In
addition, most of the articles surveyed were not in the IoT context.

The computing task offloading decision-making is explored in Ref. [68]. This review paper investigated the research results related
to IoT application models and focused on the optimization of task division during the computing offloading process. This study treats
various types of applications differently and discusses various task-splitting optimization methods in the computing offloading process.
In addition, this paper also proposes a comprehensive classification metric for evaluating computation offloading approaches that
support task segmentation. Furthermore, this study also provides future research directions for IoT in the cloud-edge computing
paradigm. However, the research lacks focus on the MEC architecture but rather on cloud-edge. Thus, the characteristics of MEC such
as mobility are ignored.

The research progress and ongoing issues of IoT computing task offloading mechanisms are systematically reviewed in Ref. [69],
and a feature comparison between various offloading mechanisms is provided. In this paper, the task-offloading mechanism is divided
into two categories: static and dynamic based on different task-offloading decision-making methods. In addition, this study discusses
the advantages and disadvantages of two different types of offloading mechanisms in various application scenarios. In addition, a new
classification method based on offloading decision-making mechanisms and overall architecture is proposed. However, there are more
discussions about offloading tasks to the cloud, fog computing networks and traditional edge computing networks, but the articles are
not in the MEC context and lack attention to terminal mobility.

A whole bunch of enabling technologies for IoT task offloading in fog-cloud computing environments are studied in Ref. [70]. In
addition, a variety of technologies that support task offloading are discussed according to differences in application scenarios. This
study reviews computing task offloading methods based on cloudlet, mobile edge computing, micro-datacenter, and nano-datacenter
respectively. Moreover, the Scalability and Service level agreement (SLA) of task offloading networks are considered challenges for

W. Dayong et al.

Heliyon 10 (2024) e29916

5

future research. However, the article rarely discusses the particularities of MEC task offloading, nor does it consider the characteristics
of other computing platforms. Instead, it discusses more about IoT task offloading based on the concept of macro fog computing.

In [71] the computation offloading methods in Fog-based IoT are reviewed, and the computing task offloading network is divided
into two levels: IoT to Fog and Fog to cloud. In this paper, task offloading mechanisms are discussed separately at different computing
network levels. Similarly, this study also distinguishes different data scales of IoT computing offloading and studies the adaptability
and deficiencies of various computing offloading mechanisms in application scenarios of different computing scales. Finally, open
issues and future research challenges based on the three-layer task offloading mechanism are discussed. However, selected articles are
not focused on MEC, but on fog context. In addition, this research focuses on Machine Learning (ML) based computing task offloading
optimization methods but lacks discussion of other types of task offloading optimization methods.

A survey of MEC-enabled mobile user computing offloading technology proposed a new classification of MEC internal task off-
loading strategies [72]. In this study, researchers not only discussed the strategy for user equipment to offload computing tasks to MEC
but also focused on the optimization of task offloading between computing resource nodes in the MEC network. Also, offload opti-
mization methods are divided into user device-driven, cloud-assisted, SDN-based, and Collaborative types. Consequently, the char-
acteristics and shortcomings of various classified offloading optimization methods are compared and analyzed respectively. In the end,
technical challenges and future research directions are briefly discussed. However, selected articles are not in the IoT context, but more
about the optimization methods of common computing task offloading in MEC.

Some task offloading solutions in mobile edge computing networks are reviewed in Ref. [24], and a model of the process of
executing computation offloading for users is given. According to different optimization methods for task offloading in MEC, this study
compared the characteristic and application scenario adaptability of traditional mathematical solving methods, heuristic methods, and
reinforcement learning methods. The main task offloading optimization objectives considered in this study include latency, energy
consumption, comprehensive offloading benefits, and system resource utilization. Meanwhile, this study also discusses the impact of
partial task offloading, resource allocation, and inter-task dependencies on task offloading decisions. Finally, real-time environment
awareness and security issues are considered challenges for future research. However, most of the articles do not engage with IoT and
there is no discussion related to performance evaluation of task offloading.

According to the above discussion, we summarize and find that there are two main weaknesses in existing research as shown in
Table 1. One of the main weaknesses is that the articles selected in the review are not related to IoT. Many studies have been conducted
on the optimization of task offloading by mobile user devices in MEC environments. However, numerous studies for IoT task offloading

Table 1
Summary of related works.

Ref. Main work Advantage Weakness

[66] Investigated the computing offloading methods and
key indicators in MEC, and focused on the
optimization of computing offloading based on
artificial intelligence technology.

A comprehensive survey of computational offloading
methods based on AI techniques.

Articles are not relevant to the IoT. The
process of literature selection is not
transparent.

[67] The Task offloading paradigm in MEC was
systematically reviewed, and three main task
offloading optimization routes were identified based
on quantitative analysis methods.

Distinguishes between MEC and regular edge
computing in terms of computational offloads.

Most of the articles are not relevant to
the IoT.

[68] The research results related to IoT application models
and computing task offloading decision engines were
investigated, with a focus on task division
optimization during the computing offloading
process.

Comprehensive classification metrics are proposed
for joint optimization of different application types.

Lack of focus on the mobility of MEC
but rather on cloud-edge. The process
of literature selection is not
transparent.

[69] This paper systematically reviews the research
progress and ongoing issues on the mechanism of IoT
computing task offloading and proposes future
research challenges. A parameter comparison
between offloading methods is also provided.

A new classification method based on offloading
decision-making mechanisms and architectures is
proposed.

Articles are not relevant to the IoT.

[70] Researched enabling technologies for IoT task
offloading in a fog computing environment. Some
standards for task offloading between fog and cloud
layers are proposed.

The differences in task offloading in different
network layers are distinguished.

Articles are not focused on MEC. The
process of literature selection is not
transparent.

[71] Reviewed machine learning technology for
computation offloading in Fog-based IoT, and
discussed the challenges and opportunities of
computing offloading in IoT to Fog and Fog to cloud
environment.

Different data volume scales for IoT computing
offloading are distinguished.

Articles are not focused on MEC. The
process of literature selection is not
transparent.

[72] The computing offloading strategy of user equipment
in MEC is discussed, and the task offloading between
computing resource nodes in MEC is focused on.

A new classification of MEC internal task offloading
strategies is proposed.

Articles are not relevant to the IoT. The
process of literature selection is not
transparent.

[24] Reviewed various methods of task offloading in MEC,
traditional mathematical solution methods, heuristic
methods, and reinforcement learning methods, and
discussed partial offloading, resource allocation, and
task dependency.

A model of the Process of executing computation
offloading for users is given, and the impact of task
dependencies on task offloading decisions is
discussed.

Most of the articles are not relevant to
the IoT. The process of literature
selection is not transparent.

W. Dayong et al.

Heliyon 10 (2024) e29916

6

have not considered the characteristics of MEC but rather discussed it together with ordinary edge computing and fog computing.
Thus, there is no comprehensive review focused on IoT computing task offloading in MEC environments. The goal of this study is to
systematically review the research progress, ongoing issues, and future directions for further research in IoT task offloading optimi-
zation in MEC network environments.

Briefly, there are some weaknesses in the work mentioned above as follows:

• Some papers do not provide IoT task offloading in MEC
• Some papers do not include MEC features for IoT task offloading
• Some papers do not distinguish the differences between MEC and traditional Edge computing
• Some papers do not differentiate between IoT task offloading and ordinary computation offloading
• Some papers do not provide IoT task offloading in the MEC selection process for the article

The above-mentioned explanations were the inspiration and motivation to organize a survey paper on IoT task offloading in MEC to
overcome all of these lacks.

4. Research methodology

The study formulated some research questions which were used to search various data sources using different keywords. The search
process was conducted in various databases based on inclusion and exclusion criteria. Afterward, the study assesses the quality of the
papers through the article selection and screening process.

The research methodology employed in this review is designed to ensure a rigorous, transparent, and replicable process for
identifying, screening, and synthesizing relevant literature. The methodology follows established guidelines and best practices for
conducting literature reviews, which aim to minimize bias and enhance the validity of the findings.

A deep search is conducted by seeking keywords related to IoT task offloading in MEC. The selection time range of the literature is
set from 2016 to the current time because the MEC specification was officially released in 2016 [9]. Next, a multi-level screening of the
collected literature was conducted based on titles, keywords, and abstracts. In the next step, the screened literatures were scored
according to the set rules, and 138 eligible literatures were finally selected for in-depth analysis. Fig. 2 presents the year-wise pub-
lication of IoT task offload in MEC, which is selected for the study.

4.1. Research questions

In order to have a comprehensive understanding, this study investigates several aspects such as task offloading mechanism,
network environment support, task offloading architecture, evaluation tools, and data. The primary research questions for this paper
are listed below:

• RQ1: What main problems does the IoT task offloading mechanism solve?
• RQ2: What are the main goals of the offloading mechanism?
• RQ3: What technologies are based on various mechanisms and algorithms to achieve offloading optimization?
• RQ4: What network access methods does the offload mechanism support in MEC?
• RQ5: Which MEC network architectures can the offloading mechanism work on?
• RQ6: How many target compute nodes are tasks offloaded?
• RQ7: What are the main input parameters considered by the offloading mechanism?
• RQ8: What methods are used to implement the evaluation of offloading mechanisms?
• RQ9: What baselines are mainly compared in the evaluation of offloading mechanisms?
• RQ10: What metrics are used to evaluate the performance of the offloading mechanism?
• RQ11: Which datasets are used to evaluate offloading mechanisms?

Fig. 2. Articles selected for review are published year wise.

W. Dayong et al.

Heliyon 10 (2024) e29916

7

4.2. Keywords

To identify relevant literature, a search strategy is meticulously constructed. This strategy includes a set of carefully chosen
keywords, Boolean operators, and search strings tailored to the research topic. The goal is to cast a wide net across selected databases
while maintaining specificity and precision in the search. These keywords used in searching are presented in Table 2.

During the keyword-based literature retrieval process, the selected keywords are divided into three categories: IoT, edge computing
environment, and optimization of task offloading. For each category, multiple different keywords with similar meanings are used, and
then the Boolean-based document retrieval of command is created. After that, multiple retrieval restrictions such as time range and
language are set. The following are the advanced search commands with the literature retrieval of the IEEE Explore as an example.

((“All Metadata”:Internet of things) OR (“All Metadata”:IoT)) AND ((“All Metadata”:Edge computing) OR (“All Metadata”:Mobile
edge computing) OR (“All Metadata”:Multi-access edge)) AND ((“All Metadata”:Computation offloading) OR (“All Metadata”:Task
Offloading)) AND ((“All Metadata”:Offloading Decision) OR (“All Metadata”:Offloading optimization) OR (“All Metadata”:IoT Task
scheduling) OR (“All Metadata”:MEC-IOT))

4.3. Inclusion and exclusion criteria

Inclusion and exclusion to filter the most suitable research literature on IoT task offloading in MEC are given in Table 3.

4.3.1. Inclusion and Exclusion Criteria
From the articles which are selected for review, Fig. 4 shows the number of articles published year-wise, which are selected for the

study.
The articles are categorized based on the methods they have used as Classic mathematical, Lyapunov optimization, Heuristic, Game

theory, and AI-base IoT task offloading techniques in MEC. Out of these 83 articles were from IEEE, 18 articles from Science Direct, 7
from Springer, 6 from ACM, 5 from Elsevier, 3 from MDPI, 1 from Willey, and 15 from others.

4.4. Quality assessment

The methodology employed in this review is underpinned by a commitment to minimizing bias, ensuring the inclusion of relevant
literature, and providing a strong foundation for the analysis. It is designed to yield a comprehensive and reliable synthesis of the
existing research in the field. The quality and relevance of included articles are assessed to ensure the integrity of the review. Quality
assessment tools, where applicable are used to evaluate the methodological rigor of primary studies. Table 4 shows the strategy for
scoring article quality.

4.5. Article selection and screening

A multiple-step screening process is implemented. Initially, articles are screened based on titles and abstracts against predefined
inclusion/exclusion criteria. Subsequently, full-text articles that pass the initial screening are assessed against the same criteria to
determine their eligibility for inclusion.

The researchers minimized the possible impact of potential information bias by ensuring that the exercise was a rigorous review of
the literature, carefully selecting the sources and selection criteria for the data and using software tools to verify the data entries
thereby avoiding duplication of data.

Four researchers (authors of this paper) were involved in the strategies developed to minimize selection bias. The process of
literature screening was conducted independently by four researchers in a stepwise manner. The first researcher conducted the first
search using a predefined search equation and subsequently performed the process of eliminating duplicate documents. The second
researcher re-examined the results obtained in the first search and performed a second exclusion based on the criterion of document
relevance to the topic. The third researcher analyzed the body of the search results in depth and publicly answered the previously
defined research questions with her researcher. The fourth researcher organized the review of the obtained results by all participants of

Table 2
Keywords used in searching.

S# Keyword Broader term

1 Internet of things/IoT IoT computing architecture
2 Edge computing Edge computing environment
3 Mobile edge computing MEC features
4 Multi-access edge computing MEC features
5 Computation offloading Computation offloading in MEC
6 Task Offloading Task offloading algorithm and mechanism
7 Offloading Decision Decision-making methods for offloading
8 Offloading optimization The multi-objective offloading optimization mechanism
9 IoT Task scheduling Task scheduling methods
10 MEC-IOT IoT features in MEC

W. Dayong et al.

Heliyon 10 (2024) e29916

8

this study.

5. IOT task offloading mechanism in MEC

Based on detailed investigation, the IoT task offloading mechanisms in MEC are classified based on technical principles. The wide
variety of offloading mechanisms are divided into the Classic mathematical optimization approach, Lyapunov optimization based
approach, Heuristic based approach, Game theory based approach, and AI-based approach. In addition, multiple technical methods
have been involved in combination in some studies. Fig. 3 shows the taxonomy of IoT task offloading mechanisms in MEC based on
different technologies.

5.1. Classic mathematical optimization based offloading mechanisms

The task offloading mechanism based on classical mathematical optimization is the most basic IoT task offloading coordination
method, aiming to optimize the distribution of computing tasks in heterogeneous computing environments. These mechanisms rely on
mathematical optimization techniques to determine which tasks should be offloaded to remote resources, taking into account factors
such as network conditions, device capabilities, and user preferences. By formulating the offloading decision as a mathematical
optimization problem, these methods aim to find the most efficient task allocation, providing rigorous and optimal solutions to task
allocation challenges.

There are a great number of articles that study classic mathematical optimization based IoT task offloading mechanisms. Some of

Table 3
Inclusion and exclusion criteria.

Inclusion Criteria Exclusion Criteria

The study focuses on IoT task offloading The study that focuses on other computation offloading issues
The study focuses on task offloading in MEC network Task offloading in cloud, fog computing, and cloud-let are not considered
Published papers since 2016 Articles before ETSI officially released the MEC specification in 2016 are not

considered
Publications written in English The articles written in other languages are not considered
Peer-reviewed publications in high-quality journals and conferences that can be

accessed
Disreputable and inaccessible articles are not considered

Table 4
Articles quality score.

Factor Points Description

Topic 0–4 Strong correlation
Algorithm or mechanism 0–4 A complete and clear description
Performance metrics 0–4 Clear definition
Experiment 0–4 A complete and clear description
Benchmark 0–4 Explicit comparative analysis
WOS ranking 0–4 Q1 = 1, Q2 = 2, Q3 = 3, Q4 = 4, none = 0

Fig. 3. Taxonomy of IoT task offloading mechanism in MEC.

W. Dayong et al.

Heliyon 10 (2024) e29916

9

Fig. 4. Distribution of problems addressed of IoT task offloading in MEC.

Table 5
A side-by-side comparison of offloading mechanisms based on classic mathematical optimization.

Ref. Problems
addressed

Technique Network Objective Evaluation tools Baseline Advantages Limitations

[73] Task
assignment

BCD OFDMA,
WPT

Maximize total
computation
rate

Python based
implementation

ES, BA, EC, LC Joint optimization
of transmit power of
the GW, backscatter
coefficient, TS ratio,
and computing
mode

The impact of TD
mobility on
energy
consumption
optimization is not
considered

[74] Task
assignment

Lagrangian
multipliers,
mixed-integer
programming

Mixed Minimize total
network delay
and network
price

Testbed SDTO,
FLAVOUR

Provide fair QoS Inadequate
consideration of
wireless network
characteristics

[75] Task
assignment,
resource
allocation

Hierarchical
iterative search

TDMA Minimize
energy
consumption

Matlab JCCO, CPLEX,
HD,

Tradeoff between
transmission
efficiency and MEC
utilization

Collaborative
offloading of
multiple MEC
nodes is not
supported

[76] Task
assignment,
resource
allocation

SCA RAN Minimize
latency and
energy
consumption

Matlab Random, UAV-
Only, EC-Only,
Fixed UAV-EC

Jointly optimizing
UAV position,
communication and
computing resource
allocation, and task-
splitting decisions

Multi-UAV
collaborative
uninstallation is
not supported

[77] Task
assignment

GRP RAN Minimize
latency and
energy
consumption

Matlab MOEA/D-DE,
MOEA/D-DRA,
MOEA/D-CMA,
MOEA/D-PaS

Higher exploration
ability and better
generalization

Concurrent task
offloading is not
considered

[78] Resource
allocation

Iterative
search

NOMA Maximize
energy
efficiency

Testbed OMA, NOMA-
EPA

Joint radio and
computation
resource allocation

Task offloading
between TDs is not
supported

[79] Task
assignment

SCA RAN Minimize
latency and
energy
consumption

Matlab DMin-SCO,
EMin-SCO

Taking each user’s
satisfaction into
account

Collaborative
offloading of
multiple MEC
nodes is not
supported

[80] Task
assignment,
resource
allocation

Linear search RAN Minimize
overall delay

Matlab Solver of integer
programming
from MATLAB

Joint optimization
of the secrecy-
provisioning,
computation
offloading, and
radio resource
allocation

Collaborative
offloading of
multiple MEC
nodes is not
supported

[81] Task
assignment

Linear search RAN Minimize
overhead

Matlab Unsecure LBCO,
Secure LBCO,
CO, LE, FO

Balance the loads
among BSs

TD movement
between BSs is not
supported

[82] Resource
allocation

Lagrangian
multipliers, LP,
critical-value,
VCG

RAN ILOG CPLEX Matlab BDA, DPDA,
McAfee,
OPTIMAL

Acceptable simple
framework

Does not support
large-scale
network scenarios
and does not
consider the
impact of the
network
environment

W. Dayong et al.

Heliyon 10 (2024) e29916

10

them are presented in Table 5. In Ref. [73] the problem is decomposed into two sub-problems: time split ratio optimization and
offloading decision optimization. The authors proposed an iterative algorithm based on the block coordinate descent (BCD) method.
The algorithm consists of two main steps: exhaustive search (ES) and the proposed fast exhaustive algorithm (FEA). The generation of
an offloading decision matrix and the allocation of communication resources are realized respectively. A mathematical framework
based on Lagrangian multipliers is proposed in Ref. [74]. The framework is designed for dynamically scheduling microservices to
optimize network latency and price costs of task offloading. The goal is to maximize energy efficiency, provide fair quality of service
(QoS), minimize network latency and price, and improve satisfaction levels, energy consumption rates, failure rates, and network
throughput.

Research focusing on the energy consumption of networked nodes is conducted in Ref. [75]. They study the joint optimization
problem of task offloading, transmission power, time, and computing resources of full-duplex communication in MEC-aided cellular
IoT. The coupling constraint problem is solved through a mixed integer nonlinear programming method. For the decoupled case, the
optimal conditions for transmission power and computation offloading are derived, and the optimal time allocation is obtained using
the Karush-Kuhn-Tucker (KKT) condition. For the coupled case, the problem is reformulated as a two-level knapsack problem, and an
efficient algorithm is developed to solve it. This solution is then used to modify the solution for the decoupled case to ensure that the
coupling constraints are met.

In [76] the IoT task offloading process is modeled as a non-convex optimization problem. The goal is to minimize the service delay
weighting and UAV energy consumption of all IoT devices by jointly optimizing task splitting decisions, UAV locations, communi-
cation bandwidth allocation, and computing resource allocation of UAVs and ECs. To solve this challenging problem, the authors
propose an algorithm based on continuous convex approximation.

A UAV hybrid MEC system is studied in Ref. [77] that realizes the cooperation of edge cloud and UAV to achieve flexible computing
offloading. The computation offloading problem is modeled as a multi-objective optimization process taking into account latency,
energy consumption, and server cost. The authors propose an intelligent computational offloading algorithm based on a compre-
hensive optimization framework, which includes a mixed integer transformation solving framework, an improved multi-adaptive
MOEA/D-DE algorithm, and a gray relational projection (GRP) method for selecting the optimal compromise Offload decision.

In the application scenario of large-scale IoT device access, the characteristics of the wireless access network can be used to
optimize task offloading [78]. The goal of this study is to propose a NOMA-based energy-efficient MEC design for multi-cell networks
with IoT devices and formulate a joint communication and computing resource allocation problem to maximize energy efficiency and
ensure timely task execution. This scheme uses the nearest base station association strategy to associate each IoT device with the
nearest SBS that provides the maximum average channel gain. It then continuously and iteratively optimizes sub-channel allocation,
transmission power allocation, and computing resource allocation to maximize energy efficiency.

A task offloading method that maximizes user demand satisfaction has been proposed in Ref. [79], which considers offloading rate,
tolerable delay, task workload, and maximum power constraints by formulating an optimization problem. The proposed scheme
obtains suboptimal solutions to non-convex optimization problems based on the algorithm of continuous convex approximation (SCA).
In Ref. [80], the optimization goal is to minimize the total delay in completing a computational task taking into account confidentiality
requirements and energy consumption constraints. The proposed method transforms the overall optimization problem into multiple
sub-problems and solves them iteratively. In Ref. [81] the research aims to propose a comprehensive load balancing and computing
offloading technology to solve resource constraints, latency, and security issues in multi-layer IoT and edge cloud computing systems.
The problem is constructed as a single optimization task with a linear objective function and constraints, and the branch-and-bound
method is used to find the optimal solution. However, this method can only decide whether the task should be executed locally or
offloaded to a remote node for execution.

In [82], a true combinatorial two-way auction mechanism called TCDA for the resource exchange process in the Industrial Internet
of Things (IIoT) is presented. This mechanism takes into account the locality constraints of the MEC system. The mechanism uses a
linear programming-based filling method for allocation, critical value-based pricing strategy, and VCG-based pricing strategy to
achieve authenticity and budget balance of MDs and ESs. The ultimate goal is to maximize social welfare under locality constraints.

Such methods are based on iterative search mechanisms and are therefore not suitable for large-scale networks. Otherwise, a large
number of iterations will be required to find the optimal solution, and the computational cost will increase significantly. In addition,
such methods cannot comprehensively analyze too many input parameters, which makes it difficult for such methods to describe
complex mobile edge computing systems and can only achieve relatively simple task offloading optimization.

5.2. Lyapunov optimization based offloading mechanisms

The task offloading mechanism based on Lyapunov optimization represents a type of offloading strategy commonly used in wireless
communication networks and resource-constrained environments. These mechanisms leverage Lyapunov optimization to make real-
time decisions about task offloading and resource allocation. Lyapunov-based task offloading mechanisms are good at managing the
inherent trade-offs between conflicting goals. They cleverly allocate resources to tasks, weighing the need to reduce latency against the
need to conserve energy. By continuously optimizing Lyapunov functions, they can adapt in real-time to achieve the proper balance.

A dynamic computing resource allocation algorithm based on Lyapunov optimization is proposed in Ref. [83]. This algorithm
independently optimizes the offloading decision of TD and the calculation management of the MEC server. Minimize the average
timeout probability by managing resources and selectively discarding tasks. The algorithm does not require a priori knowledge of task
running time costs.

In [84], the research problem is transformed into a deterministic optimization problem. The author proposes a virtual queue model

W. Dayong et al.

Heliyon 10 (2024) e29916

11

and a Lyapunov online energy consumption optimization algorithm to balance the backlog and energy consumption of the task off-
loading queue. Moreover, the overhead of wireless transmission is considered in the offloaded transmission model.

While the work in Ref. [85] an offloading decision-making model for the IoT edge cloud computing model based on a weighted call
graph is presented, which determines the computing location of tasks based on the computing cost. This mechanism can allocate tasks
to MEC servers and cloud platforms at the same time. This mechanism uses an offloading decision matrix to represent offloading
decisions, which results in an exponential increase in the number of possible combinations.

A parallel offline processing method based on Lyapunov optimization is presented in Ref. [86], which achieves joint optimization
through cubic decoupling objective functions. This study focuses on considering the delay sensitivity of computing tasks and the
energy consumption saving of the system. In addition, a MEC heterogeneous network system model is constructed in Ref. [87] that
supports 5G communication characteristics and proposed a dynamic task offloading optimization scheme based on a combination of
queuing theory and Lyapunov optimization. In addition, the study considers static and dynamic sub-channels and uses Lyapunov
optimization and simulated annealing genetic algorithm (SAGA) for static sub-channels, and SAGA and sequential quadratic pro-
gramming (SQP) for dynamic sub-channels.

In [88], the perturbed Lyapunov optimization method is adopted. The perturbed Lyapunov function and drift plus penalty function
are defined, and a knapsack problem is solved for each time slot to obtain optimal scheduling. This method dynamically analyzes the
available computing resources of TD and MEC servers to minimize the length of the task offloading queue and maximize system utility.

A global energy consumption optimization of task offloading based on Lyapunov optimization theory is implemented in Ref. [89].
In addition, this study also focuses on multi-task parallel offloading for each TD, rather than just offloading multiple computing tasks in
a serial sequence manner.

The principle of this type of task offloading optimization method is to use Lyapunov functions to model and analyze the system
state, and to achieve a dynamic allocation of resources by constructing Lyapunov drift to meet performance indicators and constraints.
The Lyapunov optimization method brings significant advantages in IoT task offloading. It can ensure the stability of the system. By
constructing the Lyapunov function and Lyapunov drift, the system can adaptively maintain a stable state, which is crucial for
application scenarios that require high system stability. In addition, the Lyapunov optimization method can effectively guarantee
performance, such as latency and throughput, and meet performance requirements while fully considering system resource con-
straints. This makes it suitable for various IoT application scenarios and improves the adaptability of the system. However, the
complexity and computational overhead of the Lyapunov optimization method are its main challenges, requiring in-depth mathe-
matical and engineering knowledge, as well as balancing performance guarantees with computational resources. Table 6 presents a
side-by-side comparison of offloading mechanisms based on Lyapunov optimization.

Table 6
A side-by-side comparison of offloading mechanisms based on classic Lyapunov optimization.

Ref. Problems
addressed

Technique Network Objective Evaluation tools Baseline Advantages Limitations

[83] Task
assignment,
resource
allocation

Lyapunov
optimization

LTE Minimize
average timeout
probability

Implementation
with TensorFlow

Standard
queuing

Acceptable
framework

Parallel
uninstallation is
not supported

[84] Task
assignment

Lyapunov
optimization

RAN Minimize
energy
consumption

Matlab Local-only,
edge-only

High stability Not included in the
task deadline

[85] Task
assignment

Lyapunov
optimization

RAN Minimize
energy
consumption
and delay

Implementation IoT-Only, Edge-
Only, Cloud-
Only, LARAC,
EEDTO

Automatically
distinguish task
types

Ignores the
differences in
characteristics
between different
types of wireless
networks

[86] Task
assignment

Lyapunov
optimization

5G Minimize
system cost and
task drop ratio

Matlab LODCO, OEA,
DOA

Ensure the
robustness of task
processing

Resource
utilization is not
considered

[87] Task
assignment,
resource
allocation

Lyapunov
optimization

5G Minimize
energy
consumption
and latency

Matlab Genetic
algorithm,
simulated
annealing
algorithm

Make full use of 5G
communication
features

[88] Task
assignment

Lyapunov
optimization

RAN Maximize
network utility
balancing
throughput and
fairness

Matlab Round Robin,
Proportional
Fair

Self-learning
network
fluctuations

Collaborative
offloading of
multiple MEC
nodes is not
supported

[89] Task
assignment,
resource
allocation

Lyapunov
optimization

RAN Minimize
response time
and dropping
tasks

Matlab Greedy, 0–1
offloading,
complete edge,
complete local

Jointly optimized
for fast response
and energy
sustainability

Collaborative
offloading of
multiple MEC
nodes is not
supported

W. Dayong et al.

Heliyon 10 (2024) e29916

12

5.3. Heuristic based offloading mechanisms

Heuristic-based task offloading mechanism is a type of offloading strategy aim to provide an optimal solution in a short time. It is a
type of algorithm based on intuition or experience, which provides a feasible solution for each instance of the combinatorial opti-
mization problem to be solved at an acceptable cost (referring to computing time and space), and the degree of deviation of the feasible
solution from the optimal solution.

The work [56] presents a heuristic algorithm that is aimed at finding a near-optimal scheduling solution for a given number of task
offloading requests from TDs to a given set of MEC servers. The algorithm first calculates the number of offloading requests accepted
based on the data size of the computing task. The probability is based on existing historical records. Second, try to distribute computing
tasks to multiple edge servers with the goal of minimizing latency. In addition, the algorithm continuously improves the strategy based
on benchmark feedback of execution results during the iterative process of task allocation.

A simple offloading mechanism is developed in Ref. [90] that jointly considered the deadline requirement of the task and the
energy consumed by the device, and modeled the task offloading problem as MINLP. The response time and energy consumption are
minimized by scheduling the distribution of offloading tasks in the MEC network. However, this mechanism does not consider the
mobility of TD.

An enhanced version of the opportunity cost-based offloading algorithm is proposed in Ref. [91]. This algorithm supports off-
loading computing tasks to MEC and cloud platforms and makes full use of the characteristics of the 5G communication environment to
optimize task offloading.

An integer linear programming (ILP) and approximation algorithm for problems without bandwidth capacity constraints is pre-
sented in Ref. [92]. Afterward, a greedy algorithm is proposed to solve the bandwidth capacity constraint problem. The algorithm
decides whether to accept the task offloading request initiated by IoT based on the computing resource and bandwidth resource cost
model.

The task offloading problem in the IoV is formalized as a set of coverage problems in Ref. [93]. Additionally, a submodule opti-
mization framework is proposed to derive an optimal set of collected images to minimize data redundancy and maximize coverage of
the reconstructed road scene. This method jointly considers cost and delay constraints to allocate the tasks to be offloaded to nearby
MEC computing nodes.

An SDN-based task offloading architecture for industrial IoT is proposed in Ref. [94], and the optimization problem is divided into
multiple sub-areas or communities. The distributed industrial IoT controller and the edge orchestration module coordinate and process
task offloading requests based on the network available resource information provided by SDN, thereby meeting the strict latency
requirements of industrial IoT tasks.

In [95], the proposed Min-CCV and Min-V algorithms search for computing nodes that meet the requirements based on minimizing
delay and default cost until a suitable target server is found. However, this method is difficult to achieve good task allocation results in
scenarios with insufficient computing resources.

Table 7
A side-by-side comparison of offloading mechanisms based on heuristic.

Ref. Problems
addressed

Technique Network Objective Evaluation tools Baseline Advantages Limitations

[56] Task
assignment

Probability
distributions

Undefined Minimize
computational
time

Python based
implementation

CPLEX Global
knowledge
utilization

Ignore energy
consumption

[90] Task
assignment

Greedy Undefined Maximize
deadline
satisfaction ratio

Python based
implementation

NECS, Detour Joint
optimization of
deadlines and
energy
consumption

Not suitable for
large networks

[91] Task
assignment,
resource
allocation

Greedy 5G Maximize utility,
Minimize energy
consumption

Testbed UGA, DFA Tradeoff
between utility
and energy
consumption

Parallel task
offloading of a
single TD is not
supported

[92] Task
assignment

Greedy Wifi Maximize total
utility

GT-ITM ILP, classic
greedy algorithm

Support
cloudlets

Not suitable for
large-scale
networks

[93] Task
assignment

Greedy X2 link Maximize cost
while the latency
of tasks is
guaranteed

NS-3 MC-RDA, MC-
UNA, MC-GA

Reduce the
redundant data

Task offloading
between TDs is
not supported

[94] Task
assignment,
resource
allocation

Greedy SDN Minimize
response latency

Python based
implementation

Local_NO_SDN,
GATO, Max_C,
Min_Q

Features that
support SDN

Not suitable for
large-scale
networks

[95] Task
assignment

Linear search RAN Minimize latency
and villation cost

Matlab RR, TcaS,
Random

Lightweight
algorithm

Ignore server
overload
situation

W. Dayong et al.

Heliyon 10 (2024) e29916

13

Task offloading optimization methods based on heuristic algorithms can obtain approximately optimal decisions at low compu-
tational costs. However, such algorithms need to work in conjunction with specific problem characteristics. Therefore, the scalability
and flexibility of such methods are limited. In addition, task offloading decision-making methods based on heuristic algorithms are
usually difficult to support large-scale MEC network environments due to the slow convergence speed. Table 7 presents a more detailed
comparison of task offloading and resource allocation schemes based on heuristic algorithms.

5.4. Meta-heuristic based offloading mechanisms

Meta-heuristic algorithm is a generalized form of heuristic algorithm. It is not designed for a specific problem, but is a general
heuristic algorithm framework. This type of method is more suitable for solving combinatorial optimization problems. In computing
task offloading optimization scenarios, task offloading decision-making and resource allocation methods based on meta-heuristic
algorithms can quickly obtain acceptable near-optimal solutions at low computational costs.

The work [96] used the greedy algorithm and discrete bat algorithm to explore the optimal decision of task offloading. This
mechanism is aimed at the dynamic and mobile Internet of Vehicles computing environment, so it focuses on the important parameter
of network communication hop. The mechanism works in a distributed manner and supports task offloading to MEC and other
vehicles.

The study [97] proposed the concept of computational paths, thereby allocating computational tasks to multiple nodes on the
computational path. The allocation process is based on a heuristic strategy and mainly considers the processing capabilities of edge
devices, task deadline requirements, and dynamic changes in real-time workloads. In addition, this mechanism also incorporates user
offloading references into decision optimization.

A heuristic based offloading method is proposed in Ref. [98] that uses an interior point algorithm (IPA) and Lagrangian multiplier
(LM) to solve the optimization problem. This method optimizes task offloading while also taking into account reliability guarantees
based on network fault tolerance.

For the cooperative application scenario of high-altitude platforms (HAPs) and unmanned aerial vehicles (UAVs), a layered aerial
computing offloading framework for IoT is proposed in Ref. [99]. A matching game mechanism is introduced in this framework to
select the highest priority UAV for each IoT device as the target execution node for task offloading. This mechanism supports
many-to-one matching between IoT devices and UAVs.

An algorithm based on Lagrange Dual Decomposition (LDD) and a heuristic algorithm is proposed in Ref. [100], which solves the
IoT task offloading optimization problem in MEC networks built based on low Earth orbit (LEO) satellite networks. The algorithm
jointly optimizes task offloading decisions and allocation of limited available resources.

In [101], a GA based task offloading method was proposed for jointly optimization of UAV-server energy consumption and task
execution latency. The method works by optimizing the trajectory of the UAV for providing the appropriate communication bandwidth
and signal power for mission data transmission from the TD. Both battery-powered TDs and UAVs extended effective operating time.
However, such algorithms will have difficulty in finding an acceptable approximate optimal solution quickly when the scale of MEC
network is very large.

A multi-user MEC system using NB-IoT and taking into account the unique characteristics of NB-IoT compared to other wireless
technologies is introduced in Ref. [102]. This research will model the NB-IoT system as a continuous-time MDP (CTMDP) model and
propose a task offloading optimization method based on approximate dynamic programming (ADP). The algorithm allows IoT devices
to make distributed offloading decisions and supports task scheduling and distribution among base stations.

A framework for joint task offloading, communication, and computing resource allocation for sequential tasks is proposed in
Ref. [103]. Slow-fading and fast-fading channels are considered. The goal is to minimize energy consumption while ensuring task
computation latency. The authors decompose the problem into a one-dimensional search and non-convex optimization problem of task
offloading decision problems. Through mathematical processing, the non-convex problem is converted into a convex problem and
solved using the Golden search method.

A low-complexity heuristic algorithm is provided in Ref. [104]. The principle is to adjust the scheduling strategy, minimum delay,
and energy consumption by calculating the scheduling value and data transmission rate of IoT offloading tasks. This algorithm mainly
considers energy consumption and time constraints for task completion.

In [105], the study focuses on the task offloading request from TDs and UAVs’ intermediate relay scheme with dual constrains of
QoE and battery limitation. The study proposes a HJPQ algorithm based on meta-heuristic method. The HJPQ included genetic al-
gorithm and jointly consider task excuation delay, wireless network status, and the mobility of TDs. In addition, A DDPG-based task
scheduling method was also implemented in this study. Experimental results show that HJPQ is better at guaranteeing QoE while
optimizing latency and energy consumption. However, the proposed algorithm is difficult to support complex dependencies between
multiple tasks.

The IoT task offloading mechanism in MEC based on heuristic and meta-heuristic algorithms has multiple advantages. First,
heuristic algorithms usually exhibit fast calculation speed, allowing them to quickly generate solutions in IoT applications with high
real-time requirements. Secondly, the implementation of these algorithms is relatively simple and does not require complex mathe-
matical modeling and solving, thereby reducing system deployment and maintenance costs. Furthermore, they have broad applica-
bility and are suitable for various IoT application scenarios regardless of the problem structure. In addition, the heuristic algorithm can
quickly adapt to dynamic changes, such as device connection, disconnection, and data traffic fluctuations, and dynamically adjust
resource allocation and task offloading. However, the limitation of heuristic and meta-heuristic algorithms is that they usually provide
approximately optimal solutions rather than optimal solutions, which not be suitable in some applications that require high accuracy,

W. Dayong et al.

Heliyon 10 (2024) e29916

14

and the performance is greatly affected by the problem instance and algorithm parameters. Furthermore, they sometimes get stuck in
locally optimal solutions and fail to find the global optimal solution and thus perform poorly in situations of high problem complexity.
In actual applications, choosing an appropriate task-offloading method requires comprehensive consideration of application scenarios
and performance requirements. Table 8 presented a side-by-side comparison of IoT task offloading mechanisms based on heuristics.

5.5. Game theory based offloading mechanisms

Game theory provides a framework to model and analyze how multiple entities make decisions and how their choices affect the
overall system. In the context of task offloading, game theory is applied to scenarios where multiple agents decide whether to offload a
task to other resources or execute it locally. The player’s goal is to optimize his own goals, such as minimizing energy consumption or
task execution time, while taking into account the actions and strategies of other players. Task offloading mechanisms based on game
theory are particularly important in scenarios where multiple entities with conflicting interests interact, and the optimization of
resource allocation depends on the behavior of multiple entities for all participants in the system.

While the work in Ref. [93] a game theory method for optimizing computation offloading strategies is proposed. The authors first
established a system model in satellite edge computing, taking into account intermittent Earth-satellite communications caused by
satellite orbits. Then, a computational offloading game model is proposed, in which each device selfishly chooses a strategy that
minimizes its cost. The response time and energy consumption of tasks are calculated through queuing theory and these metrics are
used to optimize performance. In order to find the Nash equilibrium of the game, an iterative algorithm is proposed.

In [94], the author provided a cooperative game algorithm based on cooperative offloading for single-task models and extended it

Table 8
A side-by-side comparison of offloading mechanisms based on meta-heuristic.

Ref. Problems
addressed

Technique Network Objective Evaluation tools Baseline Advantages Limitations

[96] Task
assignment

BAT WAVE Minimize
latency

Python based
implementation

Classic
greedy
algorithm

Multi-hop Lack of MEC
available
resources to
consider

[97] Task
assignment

Greedy winner
selection

Undefined Minimize
latency,
Maximize
success rate

EdgeCloudSim,
ElasticSim

Nearest,
Selfish

Support
dependencies
between tasks

Lack of network
feature support

[98] Task
assignment,
resource
allocation

Greedy, gradient
decent

5G, WiFi,
and ZigBee

Minimize
switching
latency,
maximize QoS

Mininet JONSSPE,
SDENTO,
JONSSPE

Probabilistic
guarantees of
offloading

Low resource
utilization

[99] Task
assignment

Greedy, game
theory

AAN Maximize total
IoT data
computed

Matlab Exhaustive
searching

Support
offloading to TD
and MEC

Channel
utilization is not
considered

[100] Task
assignment,
resource
allocation

Greedy, lagrange
dual
decomposition

Low-earth
orbit
satellite
networks

Minimize total
delay

Matlab Optimal
exhaustive
search

Low
computational
complexity

Load balancing
is not considered

[101] Task
assignment,
resource
allocation

GA MIMO Minimize
latency and
energy
consumption

Undefined DQN UAV trajectory
optimization and
battery life
constraints

Slow
convergence in
large-scale MEC
network
scenarios

[102] Task
assignment

Linear value-
function
approximation,
temporal-
difference learning

NB-IoT Minimize
latency and
energy
consumption

Matlab RR, QA,
MUMTO

Simple, consider
load balancing

Multi-objective
optimization is
not supported

[103] Task
assignment,
resource
allocation

Golden search
method

NOMA Maximize
efficiency

Implementation LARAC Support task
dependencies

Only for a
special type of
computation
task in a MEC
system

[104] Task
assignment

Greedy DAG graph
calculation

Universal Minimize
latency and
energy
consumption

Implementation PGBO,
DEFO,
PCDO,
LOCOM

Support task
dependencies

Does not support
dependent
subtasks with
tight deadlines

[105] Task
assignment,
resource
allocation

GA MIMO minimize the
overall cost,
but also meet
QoE
requirement.

Matlab, Python Random,
DDPG

Lower
complexity,
faster
convergence

Difficulty in
dealing with
dependencies
between tasks

W. Dayong et al.

Heliyon 10 (2024) e29916

15

to a multi-task model algorithm. In the single-task model, the algorithm starts with all players joining a remote alliance and then
iteratively performs alliance splitting until a stable split is reached. In the multitasking model, the algorithm additionally calculates the
cumulative cost and remote incremental cost of each device and determines the optimal upload completion time. This algorithm
realizes collaborative computing offloading of tasks, thereby improving the timeliness of task completion and reducing energy
consumption.

A sub-gradient-based non-cooperative game model is presented in Ref. [95], which solves the task offloading problem in
ultra-dense network environments. Taking into account the limited computing resources and dynamic needs of mobile users, the
author proposes a Multi-objective Non-dominated Sorting Genetic Algorithm (MO-NSGA) based on Non-dominated Sorting Genetic
Algorithm II (NSGA-II) to solve the problem of scheduling numerous task offloading requests in ultra-high-density networks. This
mechanism adapts to the dynamic system environment and tries its best to reduce the energy consumption for data transmission while
ensuring low-latency responses to task requests.

A computation offloading strategy based on a two-stage latent game is proposed in Ref. [96], which optimizes resource allocation
strategy while taking into account the priorities of tasks and users in edge-enabled Wireless Body Area Network (WBAN). The original
problem is reduced to a non-cooperative game process based on the underlying game model. Each task in the game attempts to
maximize its utility and increase the effectiveness of the overall system. Two different policies in the policy space are resource allo-
cation and offloading decisions. The first stage of the algorithm focuses on resource allocation and offloading decisions within the
WBAN, while the second stage moves the game space to the MEC server. Tasks from different WBANs start the game in the second
phase and obtain computing resources according to their utility.

In [97], the task offloading is modeled as a non-cooperative game and uses Nash equilibrium as the basis for decision-making. In
order to solve the game problem, a distributed iterative algorithm is designed. This algorithm uses the Proximal Decomposition Al-
gorithm as a regularization technique to solve the game problem through iterative convergence. The objective function of the algo-
rithm includes two aspects: local computing cost and transmission cost. By minimizing the objective function, each MEC-BS can
achieve its own optimal task offloading decision.

The IoT task offloading mechanism using game theory-based algorithms in MEC has unique advantages. First, they allow nego-
tiation and gaming between devices to obtain maximum personal benefit, thereby promoting efficient allocation of resources. Sec-
ondly, this mechanism can achieve a fair allocation of resources among multiple devices, ensuring that all devices can obtain
reasonable service quality. In addition, algorithms based on game theory usually have high flexibility and can adapt to various IoT
application scenarios. However, these algorithms also have some limitations, including higher computational complexity, the need for
cooperation from game participants, greater demand for information, and the possibility of introducing additional communication
overhead. Table 9 presented a side-by-side comparison of IoT task offloading mechanisms based on game theory.

5.6. AI based offloading mechanisms

Artificial intelligence-based task offloading mechanism is a strategy that uses artificial intelligence technologies such as machine
learning to make intelligent decisions about the allocation of computing tasks in a distributed computing environment. These
mechanisms utilize artificial intelligence algorithms to analyze various factors, including network conditions, device capabilities, and
user preferences, to determine the best offload strategy. The main advantage of AI-based offloading mechanisms is their ability to
adapt to changing conditions and uncertainties, providing real-time and context-aware decision-making. Moreover, large-scale net-
works and massive devices often require automated and intelligent decision-making processes. Table 10 presented a side-by-side
comparison of IoT task offloading mechanisms based on AI.

Table 9
A side-by-side comparison of offloading mechanisms based on game theory.

Ref. Problems
addressed

Technique Network Objective Evaluation tools Baseline Advantages Limitations

[93] Task
assignment

Game
theory

Satellite Minimize average
cost

Iridium
constellation

Unknown Nash equilibrium
decisions

Lack of global
optimization

[94] Task
assignment

Game
theory

5G Minimize the overall
cost of all TDs

Test-bed Local
executions

Nash-stable
solution with
convergence
guarantee

Not suitable for
high-density large-
scale networks

[95] Task
assignment,
resource
allocation

Game
theory

NOMA Minimize energy
consumption and
latency

Matlab Yalmip,
ROGS,
HOBS

Good
convergence
property

Ignores the impact
of communication
noise

[96] Task
assignment

Game
theory

WBANs,
RAN

Maximize system
utility, minimize
delay and energy
consumption

Python based
implementation

All local, all
offload

Acceptable
framework

Not compared with
other algorithms

[97] Task
assignment

Game
theory

RAN Minimize latency Matlab IPA, OPEN Support multiple
scenarios

Not optimized
energy consumption

W. Dayong et al.

Heliyon 10 (2024) e29916

16

Table 10
a side-by-side comparison of offloading mechanisms based on AI.

Ref. Problems
addressed

Technique Network Objective Evaluation tools Baseline Advantages Limitations

[98] Task
assignment

SVM RAN Minimize service
delay,
computation
time, and service
lag

OPNET IHRA, COM,
PCOA

Acceptable
framework

Difficult to
implement on
large-scale training
samples

[99] Resource
allocation

CNN,
RNN,
LSTM

5G Maximize
accuracy and
detection rate

Python based
implementation

RP, DE Predict task
offloading
timeliness

Lack of
comprehensive
consideration of
network
parameters

[100] Task
assignment,
resource
allocation

DNN WPT Maximize
efficiency of the
edge server

Python based
implementation

DROO, C D,
OP, KNN

Support task
offloading between
TDs

If the MDs have a
high mobility, the
framework could
be difficult to
converge.

[101] Task
assignment,
resource
allocation

DNN RAN Maximize system
utility and
bandwidth
allocation for
each MD

Python based
implementation

Local-Only,
Edge-Only,
Central-Only,
Local and
Central

Acceptable
framework

Lack of
comprehensive
consideration of
network
parameters

[102] Task
assignment,
resource
allocation

DNN OFDMA,
SDN

Minimize delay
and energy
consumption

Python based
implementation

GA, BNB, DQN Good tradeoff
between
complexity and
utility performance

The multi-tasking
offloading scenario
on TD is not
considered

[103] Resource
allocation

DNN WPT,
NOMA,
TDMA

Maximize
computation rate

PyTorch based
implementation

OFS + CVX,
local-Only,
edge-only

Acceptable
framework

Ignores the
mobility of TD

[104] Task
assignment

DNN RAN Minimize delay,
energy
consumption, and
offloading
overhead

Matlab TOT, ROT,
DOT, EEDOT,
DIOT

Acceptable
framework

Ignores the
mobility of TDs

[105] Resource
allocation

SARSA,
fuzzy logic

5G Maximize service
time, minimize
task failure rate

EdgeCloudSim Util, owb, fu-
comp, hybrid

Taking into
account system
overhead

Only for specific
application
scenarios

[106] Task
assignment

Q-
Learning,
game
theory

RAN Maximize system
utility

Matlab Local-lony,
Edge-only,
Random
assignment, BR

does not require
environment model
and payment
information of
other devices

Ignores the
mobility of TDs

[107] Task
assignment,
resource
allocation

DQN, ACS,
PSO

RAN Maximize system
utility

Testbed BNEA, LCPSO,
MOACS

Support multi-hop
network

System overload is
not considered

[108] Task
assignment

DQN, PDS-
learning

RAN Minimize delay
and energy
consumption

Keras and
TensorFlow

DECENT,
OEOFG,
POOIE,
OCODR

Supports both
Online and Offline
Offloading
optimization

Ignoring the
dynamic
scalability of MEC
computing power

[109] Task
assignment

DQN RAN Minimize delay
and energy
consumption

TensorFlow and
Cooja

DTODR, ODRL,
JMOR, ECCO,
JSOE

Battery lifetime
optimization

Task offloading
between TDs is not
supported

[110] Task
assignment

DQN RAN Minimize energy
consumption

Tensor flow Q-learning,
FRAA

Both delay-tolerant
and non-delay
tolerant scenarios
are considered

Collaborative
offloading of
multiple MEC
nodes is not
supported

[111] Resource
allocation

DQN 6G Minimize
consumption
overheads of
system energy
and latency

TensorFlow Traditional
DQN
Algorithm, FL,
Random
Selection
Scheme

Better convergence TD movement at
the edge of the
covered area is not
considered

[112] Task
assignment,
resource
allocation

DQN RAN Maximize the
total utility

Implementation VES, FES Support task
offloading between
TDs

Energy
consumption
optimization is
ignored

(continued on next page)

W. Dayong et al.

Heliyon10(2024)e29916

17

Table 11
Parameters supported by the iot task offloading mechanism in MEC.

Work Size of
task

Task
dependency

Dead-
line

Capacity of
TD

Capacity of
MEC

Trans-mission
delay

Channel
bandwidth

Noise
power

Location of
TD

Network
hop

Transmit
power

Battery
level

Pay-ment
cost

[83] ✓ ✓ ✓ ✓ ✓ ✓ ✓
[84] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[85] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[86] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[87] ✓ ✓ ✓ ✓ ✓ ✓ ✓
[88] ✓ ✓ ✓ ✓ ✓ ✓ ✓
[89] ✓ ✓ ✓ ✓ ✓ ✓ ✓
[138] ✓ ✓ ✓ ✓ ✓ ✓
[139] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[140] ✓ ✓ ✓ ✓ ✓ ✓
[141] ✓ ✓ ✓ ✓ ✓ ✓
[142] ✓ ✓ ✓ ✓ ✓ ✓ ✓
[143] ✓ ✓ ✓ ✓ ✓
[144] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[145] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[146] ✓ ✓ ✓ ✓ ✓ ✓ ✓
[147] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[96] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[97] ✓ ✓ ✓ ✓ ✓
[90] ✓ ✓ ✓ ✓ ✓ ✓ ✓
[91] ✓ ✓ ✓ ✓ ✓ ✓
[98] ✓ ✓ ✓ ✓ ✓ ✓ ✓
[99] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[100] ✓ ✓ ✓ ✓ ✓
[102] ✓ ✓ ✓
[103] ✓ ✓ ✓ ✓ ✓ ✓ ✓
[104] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[92] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[93] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[94] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[107] ✓ ✓ ✓ ✓ ✓ ✓
[108] ✓ ✓ ✓ ✓ ✓ ✓ ✓
[109] ✓ ✓ ✓ ✓ ✓ ✓
[110] ✓ ✓ ✓ ✓ ✓
[111] ✓ ✓ ✓ ✓ ✓
[112] ✓ ✓ ✓ ✓ ✓
[113] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[114] ✓ ✓ ✓ ✓ ✓ ✓
[115] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[116] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[117] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[118] ✓ ✓ ✓ ✓ ✓ ✓
[119] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[120] ✓ ✓ ✓ ✓ ✓ ✓ ✓
[121] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[122] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[123] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[124] ✓ ✓ ✓ ✓ ✓

(continued on next page)

W
. Dayong et al.

Heliyon10(2024)e29916

18

Table 11 (continued)

Work Size of
task

Task
dependency

Dead-
line

Capacity of
TD

Capacity of
MEC

Trans-mission
delay

Channel
bandwidth

Noise
power

Location of
TD

Network
hop

Transmit
power

Battery
level

Pay-ment
cost

[125] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[126] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[127] ✓ ✓ ✓ ✓ ✓
[128] ✓ ✓ ✓ ✓ ✓ ✓
[129] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[130] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[131] ✓ ✓ ✓ ✓ √ ✓ ✓ ✓ ✓
[132] ✓ ✓ ✓ ✓ ✓ ✓ ✓
[133] ✓ ✓ ✓ ✓ ✓ ✓ ✓
[134] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[135] ✓ ✓ ✓ ✓ ✓ ✓ ✓
[136] ✓ ✓ ✓ ✓ ✓ ✓
[137] ✓ ✓ ✓ ✓ ✓ ✓ ✓
[148] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[149] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[150] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[151] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[152] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[153] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[154] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[155] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[156] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[157] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[158] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[159] ✓ ✓ ✓ ✓ ✓ ✓ ✓
[160] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

W
. Dayong et al.

Heliyon 10 (2024) e29916

19

Table 10 (continued)

Ref. Problems
addressed

Technique Network Objective Evaluation tools Baseline Advantages Limitations

[113] Task
assignment,
resource
allocation

DQN RAN,
WPT

Maximize
computation time
and execution
latency

Testbed Coordinate
Descent, Linear
Relaxation

Support task
offloading between
TDs

The mobility of the
TDs would make it
harder to converge

[114] Task
assignment,
resource
allocation

DQN RAN Maximize number
of tasks
completed on
time, minimizing
energy
consumption

PyTorch based
implementation

Greedy Maximize long-
term accumulated
rewards instead of
a one-time step

Energy
consumption
optimization is not
considered

[115] Task
assignment,
resource
allocation

DQN RAN Minimize
offloading cost

Matlab OOS, DROS,
GOS, ROS,
EOS, COS

Supports offloading
tasks to edge and
cloud at the same
time

Task offloading
between TDs is not
supported

[116] Resource
allocation

DQN NB-IoT Minimize long-
term average
weighted sum of
delay and power
consumption

Implementation QA, MUMTO,
Neural-ICO

tradeoff in
minimizing the
weighted sum of
the delay and
power
consumption

Collaborative
offloading of
multiple MEC
nodes is not
supported

[117] Task
assignment,
resource
allocation

DQN NOMA Minimize the total
energy
consumption

TensorFlow,
Keras

FDMA joint optimization
of the computation
offloading, NOMA
transmission, and
computation
resource allocation

Only supports
static channel
scenario

[118] Task
assignment,
resource
allocation

DQN RAN Minimize delay
and energy
consumption

Testbed NO, EO, CMDP Differentiated
levels of task
privacy
requirements

Only for specific
application
scenarios

[119] Task
assignment,
resource
allocation

DQN,
CNN,
Lyapunov

LOS,
NLOS

Minimize delay
and energy
consumption

Python based
implementation

Random
policy, greedy

tradeoff between
edge preprocessing
and network
transmission

Ignores the
mobility of TDs

[120] Task
assignment,
resource
allocation

DQN Wi-Fi,
LTE

Minimize delay
and energy
consumption

Testbed Greedy, DQL-
non-DP

Self-learning of
wireless channel
characteristics

Does not support
multiple UAV
scenarios

[121] Resource
allocation

DDQN,
DDPG

RAN Minimize
computational
cost

Python based
implementation

OS, ES, LC Acceptable
framework

Only for specific
application
scenarios

[122] Task
assignment,
resource
allocation

DDQN RAN Minimize
offloading and
smart contract
costs

TensorFlow,
Testbed

DRLO, EO, CO High security of
offloaded data

Lack of
consideration for
optimizing
offloading between
TDs

[123] Task
assignment,
resource
allocation

PG RAN Minimize
computation time

TensorFlow Random, FIFO,
SJF, PEFT, SAC

More robust
approach

lack of energy
consumption
optimization

[124] Task
assignment,
resource
allocation

DDPG 5G Minimize delay
and energy
consumption

PyTorch based
implementation

Edge-only,
DQN-based
offloading, AC

Avoid noise
interference

Assume that the
network
environment is
stable and
controllable

[125] Task
assignment

MADDPG 5G Maximize utility
of UAVs

TensorFlow DDPG, A3C,
Dueling-DQN

Support cluster-
based multi-UAV
network

Only for specific
application
scenarios

[126] Task
assignment,
resource
allocation

DDPG RAN Minimize total
energy and delay

TensorFlow,
tkinter

Greedy MECF,
Optimal MECF,
RRA, URA,
DDPG, DDPG-
PER

Load balancing
among MEC nodes

Ignores the
mobility of TDs

[127] Task
assignment

DDPG MIMO Minimize data
buffer delay,
energy
consumption,
bandwidth cost

Python based
implementation

Dueling-DQN,
DDQN, greedy
policy

Taking into
account the
caching process
during data
offloading

Lack of
optimization of
system resource
utilization

(continued on next page)

W. Dayong et al.

Heliyon 10 (2024) e29916

20

5.6.1. Support vector machine
In [98] a distributed computing and resource-sharing task offloading framework is proposed, which is based on a Support Vector

Machine (SVM) for resource-sharing and service allocation in edge computing. This framework classifies pipeline and distributed
computing and adjusts the configuration of services oriented to offload tasks from IoT. Services are assigned to requesting users in the
MEC network environment. Use SVM for task and pipeline instrumentation for decision-making and resource-oriented computing.
Edge devices are responsible for checking service allocations and providing resource sharing to requesting users to reduce service
latency and task computation time.

5.6.2. Neural Network
Compared with simple SVM, CNN, DNN, and LSTM are also used as supporting technologies for task offloading. A framework based

on hybrid deep learning algorithms is proposed in Ref. [99] to solve the dynamic multi-task offloading problem in IIoT networks. The
framework uses a combination of CNN and LSTM algorithms to learn the spatiotemporal characteristics of tasks, and then outputs task
offloading decisions and corresponding resource allocations based on conditions such as time-sensitivity constraints of the task.

In [100], a parallel offloading framework is proposed that uses deep neural networks as parallel offloading executors to generate
offloading actions. This framework decomposes the optimization problem into offloading decision sub-problems and resource

Table 10 (continued)

Ref. Problems
addressed

Technique Network Objective Evaluation tools Baseline Advantages Limitations

[128] Task
assignment,
resource
allocation

MADDPG OFDMA Minimize delay
and energy
consumption

TensorFlow DDPG,
Dueling-DQN,
DQN, greedy

QoS guarantee No joint
consideration of
UAV trajectory
planning

[129] Task
assignment,
resource
allocation

MADDPG RAN Maximize service
satisfaction for
IoTDs

PyTorch based
implementation

ACS_CS,
RO_CS, DDPG-
JAPORA

Support multi-UAV
collaborative task
offloading

No joint
consideration of
UAV trajectory
planning

[130] Task
assignment

MAQDRL Wifi Minimize delay
and energy
consumption

TensorFlow MAPPO,
InDRL,
MADDQN,
MARAND

Acceptable
lightweight
framework

Collaborative
offloading of
multiple MEC
nodes is not
supported

[131] Task
assignment

Actor
Critic

RAN Minimize total
task processing
delay in a long-
term period

Python based
implementation

NN, AC, Vehicles can select
multiple MEC
offloading nodes in
parallel

Lack of energy
consumption
optimization

[132] Task
assignment,
resource
allocation

MADRL NOMA Minimize delay
and energy
consumption

PyTorch based
implementation

DDPG, I-DDPG,
Expert
Algorithm

Strong robustness High vector
dimension in large-
scale network
application
scenarios

[133] Task
assignment,
resource
allocation

Actor
Critic

Satellite Minimize total
task delay

Test bed Random,
Greedy

Low computational
complexity

Lack of joint
optimization of
computing and
communication
resources

[134] Task
assignment,
resource
allocation

Meta-RL RAN Minimize delay
and energy
consumption

TensorFlow Optimal
Exhaustive
Search,
Random
Offloading,
Greedy, PPO-
Based DRL

Quickly adapt to
changes in the
network
environment

Task offloading
between TDs is not
supported

[135] Task
assignment,
resource
allocation

DRL, FL WPT Minimize delay
and energy
consumption

PyTorch based
implementation

Linear
relaxation
algorithm, CD

High accuracy of
offloading action

Collaborative
offloading of
multiple MEC
nodes is not
supported

[136] Task
assignment,
resource
allocation

FL, DDPG OFDMA Minimize delay
and energy
consumption

PyTorch based
implementation

Random
Offload,
Greedy, DQN,
DDPG

Incorporates the
protection of user
data privacy

Task offloading
between TDs is not
supported

[137] Task
assignment

FL Q-
learning

FDMA Maximize
accuracy

PyTorch based
implementation

PQB-OS, POS-
CSI

High effectiveness
for obtaining the
optimal offloading
strategy

Ignoring the
optimization of
bandwidth and
transmission
energy
consumption

W. Dayong et al.

Heliyon 10 (2024) e29916

21

allocation sub-problems. It automatically improves its action generation strategy based on different wireless fading conditions. In
addition, the impact of wireless power transfer on wireless IoT task offloading decisions is also discussed. A DNN-based hybrid off-
loading model for MCC and MEC is proposed in Ref. [101]. The algorithm utilizes multiple parallel DNNs to generate optimal off-
loading decisions. The algorithm requires prior training of a DNN model using a dataset containing workloads and corresponding
offloading decisions. Therefore, the adaptability of this algorithm is limited. A computational offloading and resource allocation al-
gorithm based on distributed deep learning is introduced in Ref. [102], which utilizes multiple parallel DNNs to generate optimal
offloading decisions and resource scheduling. In Ref. [103], the researcher uses the experience replay technique to train DNN,
randomly selecting a batch of training samples from memory. In addition, this method takes into account the application scenario of
wireless power transmission to power IoT nodes and considers the joint optimization between optimizing wireless power supply and
wireless communication. In Ref. [104] the author also proposed a task offloading decision-making method based on DNN to reduce the
delay of task execution and the battery consumption of TD. However, this method takes into account the type of distinction of tasks,
thereby enabling finer-grained task offloading scheduling and optimization.

5.6.3. Q-learning
In [105] the author proposed a task-offloading algorithm that combines fuzzy logic and SARSA reinforcement learning. The al-

gorithm determines the MEC computing node used to process the task by considering the network environment and mobile access
network parameters. It defines the communication model and calculation model and calculates the transmission time and calculation
time of the task. The algorithm solves optimization problems and makes task offloading decisions by minimizing latency and balancing
load among MEC nodes. The algorithm uses a SARS-based reinforcement learning algorithm to iteratively update the Q value until it
converges to the optimal Q value. The authors aim to optimize service times and task failure rates, especially when the system is
overloaded. A system model for offloading IoT tasks to MEC networks is established in Ref. [106]. This model considers the available
computing resources of TD, the available resources of each computing node of MEC, and multiple indicators related to wireless
network transmission. This study considers the interference of wireless channels and multi-user computing offloading scenarios in
dynamic environments and proposes an evolutionary game model combined with reinforcement learning to optimize IoT task
offloading.

5.6.4. Deep Q-learning
In [107], the author designed a two-layer intelligent optimization algorithm based on DRL to solve the joint optimization problem

of IoT task offloading and resource allocation. In this study, a virtual backbone network architecture was constructed based on
available MEC resources and based on DRL, a search was performed from TD to MEC Compute the best path between nodes. The IoT
task offloading problem is modeled as a Markov decision process (MDP) in Ref. [108]. Information such as the number of MEC
computing nodes, task attributes, network status, and number of TDs are used for DRL learning. This scheme can be used to auto-
matically optimize offline and online task offloading strategies. In Ref. [109], the author uses Q-tables to learn offline task offloading
strategies and utilizes CNN to accelerate the learning process. This study adopted a transfer learning method, which improved the
offloading efficiency. A study [110] modeled the problem as a Markov decision process (MDP) and solved it using the DRL algorithm.
The state space takes into account the network environment, wireless communication resources, channel state changes, etc. This study
lacks attention to the availability status of computing resources. A work [111] further proposed research on task offloading optimi-
zation for sixth-generation (6G) communication technology and introduced collective reinforcement learning methods for resource
allocation and network optimization.

In the scenario studied by Ref. [112], the on-board computer has relatively sufficient computing resources. Therefore, vehicles are
treated as computing nodes in the MEC network. Computational tasks from the TD or vehicle can be offloaded to other vehicles or fixed
MEC servers. Since the offloading decision-making problem in this scenario is not a convex optimization problem, the author proposed
a method based on reinforcement learning to dynamically adjust the task offloading decision and resource allocation strategy. In
Ref. [113] an online task offloading algorithm based on deep reinforcement learning is proposed to optimize computing task offloading
in large-scale networks. The algorithm learns from past task-offloading experiences through reinforcement learning and improves its
task-offloading actions through DNN. Order-preserving quantization and adaptive parameter setting methods are used to achieve fast
algorithm convergence. A work [114] proposed an end-to-end DRL algorithm to select the best edge server for offloading and allocate
appropriate computing resources. The algorithm learns optimal strategies through interaction with the MEC computing environment
to maximize long-term utility.

A new deep imitation learning (DIL)-driven edge cloud computing offloading framework is proposed in Ref. [115], which aims to
minimize costs in MEC task offloading environments through optimal behavioral cloning. The authors formalize the problem as a
multi-label classification problem and use the generated optimal offloading actions to train the model in an offline manner. In
Ref. [116] the researcher modeled IoT task offloading as an average reward continuous-time Markov decision process model under an
infinite time perspective. The author implemented a distributed resource auction mechanism based on deep reinforcement learning
technology to coordinate TD’s task offloading requests. A work [117] introduced new equations and constraints to transform the
problem into multiple equivalent forms with convex properties. Afterward, the dual optimization problem was iteratively updated
using deep learning methods. In Ref. [118], the author also optimizes task offloading decisions based on deep learning technology.
However, this research focuses more on supporting task offloading cost optimization in blockchain application scenarios.

The work [119] studied the IoT task offloading application scenario in which UAVs act as MEC computing nodes. As an MEC base
station, the UAV can continue to offload tasks to the cloud, thus forming a multi-layer offloading architecture. Different from other
deep learning-based task-offloading mechanisms, this research focuses on UAV trajectory planning to improve the task-offloading

W. Dayong et al.

Heliyon 10 (2024) e29916

22

efficiency of IoT. In Ref. [120], the researcher also studied the task offloading optimization problem in MEC networks involving UAVs.
However, this study optimizes the cumulative policy gradient calculation step in policy update. This research ensures the efficiency of
task offloading while also taking into account the privacy protection of task offloading.

5.6.5. Double DQN
The work [121] focuses on task offloading and resource allocation issues in MEC-assisted Railway Internet of Things (RIoT) net-

works. The algorithm proposed by the authors handles mixed integer nonlinear programming (MINLP) problems by combining DDQN
and DDPG. This method takes into account the allocation of wireless communication resources and the allocation optimization of MEC
computing resources to minimize the weighted total cost of energy consumption and delay. The deep learning technology is used in
Ref. [122] to optimize computing task offloading in task offloading scenarios for blockchain applications. Compared with the usual
DRL-based task offloading mechanism, this research takes more into account the characteristics of task activities such as access control
and authorization of blockchain business.

5.6.6. Deteministic policy-gradient
While the study in Ref. [123] a MEC resource scheduling and IoT task offloading mechanisms based on graph neural network are

discussed. This research combines reinforcement learning with graph convolutional network technology to model the interaction
between the agent and the environment by modeling it as a Markov decision process (MDP). The training process uses the Monte Carlo
method. The work [124] adopted a DDPG (Deep Deterministic Policy Gradients) based approach to jointly schedule resource allocation
and computation offloading in multiple UAV-assisted MECs. This method can optimize the distributed parallel task offloading ac-
tivities of multiple TDs on multiple UAVs, thereby avoiding network transmission bottlenecks and reducing the overall task offloading
delay. In Ref. [125] the application scenario of combining multi-agent deep reinforcement learning (MADRL) with unmanned aerial
vehicle (UAV)-driven IoT networks is studied. This study utilized a Stackelberg game model and transformed it into an MDP model.
After that, the author constructed a model-free multi-agent deep deterministic policy gradient (MADDPG) algorithm to find the
optimal task offloading decision-making strategy. The work [126] also proposed a task offloading optimization model based on DDPG.
The model is designed to be relatively simple, and it mainly considers task delay and energy consumption optimization issues in the
IIoT network environment.

In [127] a deep reinforcement learning-based data offloading and renewable energy aware model is provided, and the goals are
minimizing the total system cost of energy consumption, data transmission delay, and bandwidth allocation under time-varying
channel states. A study [128] uses multi-agent deep reinforcement learning (MADRL) technology to optimize the allocation of
limited computing resources in an MEC environment composed of multiple UAVs to minimize long-term computing costs in terms of
energy and latency. The work [129] combined deep deterministic policy gradient (DDPG) with a cooperative multi-agent learning
framework in their research, and used a centralized training and distributed execution solution to solve the non-stationary problem of
the network environment.

5.6.7. Actor-critic based policy-gradient
In [130] a lightweight optimal task offloading algorithm called MAQDRL based on queuing theory is presented. The algorithm

integrates queuing theory and uses multi-agent deep reinforcement learning to obtain optimal offloading strategies in dynamic and
stochastic multi-user offloading environments. The decision-making network is trained in a centralized manner in a data center, while
the vehicles perform task-offloading decisions in a distributed manner. The work [131] proposed a centralized training algorithm and
distributed execution algorithm based on multi-agent DRL for IoV task offloading application scenarios [132]. proposed an offloading
decision-making framework consisting of a hierarchical coalition of multi-agents, in which upper-level agents receive decision-making
experience from lower-level agents and perform reinforcement learning. The Air-Ground Integrated Network (SAGIN) architecture is
studied in Ref. [133], which uses UAVs for edge computing and satellites for cloud computing. A method based on deep reinforcement
learning is proposed to optimize the dynamic offloading strategy in a dynamic SAGIN environment.

5.6.8. Meta reinforcement learning
The work [134] proposed a cache-assisted collaborative task offloading and resource allocation mechanism that can achieve

collaboration and resource sharing between multiple edge nodes and mobile devices. This mechanism takes cache status into account
when performing offloading, allowing tasks offloaded to edge servers to obtain raw data and calculation results directly from existing
caches. This reduces the overhead caused by redundant computation and transmission for repeated tasks. The author also established
multi-dimensional indicators based on the concept of quality of experience (QoE) and constructed a QoE-aware utility function that
considers subjective user preferences, objective execution costs, task cache status, task allocation status, and resource and network
status, and achieved rapid Decision making and resource allocation.

5.6.9. Joint federated learning and reinforcement learning
Federated Learning (FL) is a distributed learning framework that improves decision-making efficiency by allowing IoT devices and

MEC servers to jointly train a shared global model. The IoT task offloading algorithm proposed by Ref. [135] includes four main
components: offloading action generation, offloading policy update, DNN model aggregation, and adaptive learning rate method. The
algorithm generates offloading decisions for each TD based on distributed reinforcement learning, regularly updates the offloading
strategy, aggregates DNN models from TDs, and adjusts the learning rate based on the performance of the algorithm. The goal is to
adaptively allocate computing and communication resources in large-scale dynamic MEC scenarios. The task offloading algorithm

W. Dayong et al.

Heliyon 10 (2024) e29916

23

proposed by Ref. [136] combines federated learning to protect privacy and improve training performance. The actor network and critic
network are each composed of multiple fully connected layers and use RELU as the activation function. The work [137] also proposed
an edge-assisted federated learning framework for IIoT networks to alleviate the hysteresis effect of task offloading and improve the
training efficiency of the decision-making system.

5.7. Parameters to be determined for all type of machanism

In the field of task offloading within MEC networks, a series of key parameters must be carefully determined to ensure the efficient
execution of computing tasks. These parameters serve as a compass for optimizing offloading decisions and resource utilization. Basic
considerations involve aspects, such as the characteristics of the task itself, processing power requirements, expected execution time,
and timeout tolerance. This understanding forms the basis for discerning whether tasks are better suited for offloading to a more
powerful MEC server or local processing.

5.7.1. Task load
The properties of the computing task itself are one of the basic parameters that need to be considered by the offloading mechanism.

Such parameters are the main basis for various algorithms to judge whether a task can benefit from the offloading process and where to
offload it.

The most basic parameter in the properties of the task itself is the size of the task, which is usually expressed in terms of the number
of CPU cycles required to complete task execution. In addition, in some algorithms, the amount of data carried by the task will be
additionally considered. In this study, all task offloading mechanisms support this parameter.

The task completion time is another important parameter. Task offloading is meaningless if its execution time is longer than the
local execution time. In addition, some tasks contain both a desired execution deadline and a tolerable execution deadline.

For algorithms that support partial task offloading, they also need to obtain dependency constraints between task fragments and
between tasks and tasks, and thus to avoid waiting conditions between offloaded tasks.

5.7.2. Computing capacity
The computational capacity is specific to TD and MEC. The computational capacity of TD is used to predict the time a task will take

to execute locally. Similarly, the computational flux of the MEC is used to predict the time the task will take to offload.

5.7.3. Network status
Network state information is used to predict the time it will take for a task to be transmitted. This time, together with the task

computation time, constitutes the total time cost of task offloading. Such parameters are mainly presented as delay and channel
bandwidth.

For algorithms that support TD mobility, it is also necessary to obtain the location of the TD and the network hop that the task
transmission needs to pass through. This information can support the algorithm to infer the cost of task transmission in a more fine-
grained way.

5.7.4. Energy consumption
Energy consumption is mainly for TDs due to their limited battery capacity. The basic task energy consumption is inferred from the

amount of computation of the task. In addition, wireless data transmission also consumes energy. Therefore, some task-offloading
algorithms also support network state monitoring. Most of such state parameters are in the form of noise power, transmit power,
and battery level of the TD.

5.7.5. Payment cost
Payment cost is a parameter that needs additional consideration for task offloading. It can be expressed as the cost of using MEC

computational resources and the cost of task data transfer for TD. Such parameters are used as one of the reference conditions for multi-
objective optimization in the decision-making process of task offloading. Table 11 shows the main parameters supported by the IoT
task offloading mechanism in MEC.

6. Result and discussion

The results and analysis section of this review provide a comprehensive synthesis of the included literature to provide insights and
answers to the research questions. It is structured to promote a clear understanding of the findings and their implications. As
mentioned in the previous sections, the systematic approach adopted in the review process ensured the reliability and robustness of the
analysis. Furthermore, we summarize the analytical reports of the research questions previously presented in Section IV, as follows:

6.1. AQ1: problems addressed

RQ1 aims to determine what the main problems are that the IoT task offloading mechanism tries to solve. According to the
investigation, it was found that task assignment and resource allocation are the basic parts of the IoT task offloading strategy in MEC.
These processes involve determining which tasks are performed locally on the device and which tasks are offloaded to remote

W. Dayong et al.

Heliyon 10 (2024) e29916

24

resources. Resource allocation involves the allocation of specific resources (e.g., computing power, storage, network bandwidth) to
efficiently perform offloaded tasks.

Over 40 % of the literature surveyed in this survey focused on task allocation as the primary problem-solving goal [73,74,77,79,81,
84–86,88,138–140,143,145,90,91,147,94,96–98,100,104,106,108–110,125,130,131,137]. The goal of resource allocation is
addressed in approximately 10 % of the reviewed literature [99,103,105,111,116,121]. In addition, 48 % of the research work focuses
on both task allocation and resource allocation issues [76,80,83,87,89,141,142,144,146,92,95,101,102,107,112–115,117–120,
122–124,126–129,132–136,148,149]. The Distribution and overlay of IoT task offloading problems addressed in MEC are shown in
Fig. 4.

6.2. AQ2: optimization objectives

The second research question (RQ2) to be answered refers to the goals of existing IoT task offloading mechanisms and algorithms to
be optimized. Based on the above-mentioned reviewed papers, it was found that the optimization goals of task offloading are divided
into three broad categories: Delay, Energy consumption, and resource utilization.

6.2.1. Offloading efficiency
The primary goal of optimizing the task-offloading mechanism is to improve the success rate of task-offloading and reduce costs as

much as possible. The survey results show that performance metrics related to offloading efficiency are the most numerous [73,75,76,
142,146,94,100–104,113,124,125,128].

6.2.2. Delay and Energy consumption
For many IoT applications, especially those that require real-time data processing and fast response (such as smart transportation,

telemedicine, etc.), latency is a key indicator. The optimization goal is to ensure that the computing tasks of IoT devices can be
processed in the shortest time to meet the real-time requirements of the application. Latency-related performance indicators can be
presented in a variety of ways, including Response time, Completion time, and Makespan, etc. [89,139,92,105,109,123,124,132,134].

Another important goal of optimizing the IoT computing task offloading mechanism is to reduce energy consumption, thereby
extending the life cycle of battery-powered devices. Energy consumption indicators are expressed in many studies as Device energy
consumption, Total energy consumption, and Average energy efficiency, etc [140,143,116–118,125,136].

6.2.3. Resource utilization
While ensuring the efficiency of task offloading, the offloading mechanism also tries its best to reasonably allocate computing tasks

to MEC servers to make full use of the computing, storage, and network resources of these servers. Balanced allocation of resources
helps avoid resource waste and improve overall system performance. Fig. 5 shows the Optimization objectives of task offload
scheduling in MEC [82,83,141,90,96,105,112].

Fig. 5. Optimization objective of task offload scheduling in MEC.

W. Dayong et al.

Heliyon 10 (2024) e29916

25

6.3. AQ3: techniques

RQ3 intends to identify which techniques are used to implement the improved IoT task offloading algorithms and mechanisms.
According to the proposed taxonomy, the technological evolution of IoT computing task-offloading mechanisms is moving from
traditional methods to AI-based technologies in MEC networks. Traditional methods have the advantages of low computational
complexity and accurate decision-making. However, AI-based offloading solutions are better suited to the IoT task offloading needs of
large-scale complex application scenarios.

6.3.1. Traditional approach
Traditional approaches to computational task offloading in MEC network environments have unique advantages and disadvan-

tages, and understanding this balance is critical in the context of modern, dynamic, and evolving network applications. On the positive
side, traditional approaches are promoted for their simplicity, often relying on uncomplicated heuristics or simple task allocation rules.
This simplicity means ease of implementation, making these methods available to a wide range of users and applications. In scenarios
where rapid deployment and low complexity are critical, traditional approaches have clear advantages. Furthermore, traditional
approaches typically have low computational and communication overhead compared to the complexity associated with optimization
algorithms. This reduced overhead is especially beneficial in situations where minimal latency is critical, allowing for faster responses
to real-time demands. Additionally, these methods provide a degree of predictability in task allocation and resource management,
following predefined rules to provide users with consistent and expected performance. This predictability is invaluable in applications
where stable and reliable operation is a fundamental requirement.

However, traditional methods are not without limitations. A significant drawback is their limited optimization capabilities. They
often lack the sophistication to account for the full range of factors, such as dynamic network conditions, user preferences, or real-time
changes. This limitation leads to suboptimal task allocation and thus reduced efficiency, which is a considerable problem in resource-
limited MEC environments. Furthermore, traditional approaches have difficulty adapting to the dynamics and complexity of MEC
network environments. They not be able to respond effectively to changing workloads, changing resource availability, or changing
user needs. In environments where adaptability is critical, a lack of adaptability can lead to inefficiencies and degraded performance.
In this study, traditional mathematical methods, Lyapunov optimization, heuristics, and game theory-based task offloading mecha-
nisms are considered as traditional approaches.

6.3.2. AI-based approach
Artificial intelligence-based approaches to offloading computing tasks in MEC network environments constitute a dynamic field

characterized by a subtle interplay between advantages and disadvantages. These aspects are critical to understanding the importance
and potential impact of incorporating AI into the MEC framework.

In terms of advantages, artificial intelligence has demonstrated excellent optimization and adaptability, driven by the application
of machine learning and deep learning algorithms. It is capable of dynamically assessing a wide range of factors, including real-time
network conditions, user behavior, application-specific prerequisites, and edge device capabilities [150–152]. This adaptability en-
ables smart task allocation to improve performance and optimize resource utilization. The strength of AI in predictive analytics le-
verages historical data and patterns to predict future network dynamics and user needs. This predictive capability enables proactive
task allocation, ensuring tasks are assigned to the most appropriate edge resources. The result is reduced latency and an improved
overall user experience, especially in applications where real-time responsiveness is critical. Furthermore, AI helps improve energy
efficiency by coordinating task offloading strategies to reduce the energy consumption of edge devices. Tasks are judiciously allocated
to edge servers that consume less power, thus extending the battery life of mobile devices – especially important in resource-limited
environments and battery-powered devices.

Fig. 6. The technical distribution of task offload scheduling mechanism in MEC.

W. Dayong et al.

Heliyon 10 (2024) e29916

26

Conversely, AI-based approaches also face several challenges. Their implementation is complex and often requires expertise in data
science. The development and training of machine learning models are resource-intensive in terms of computing power and data,
which creates barriers to adoption, especially in small-scale deployments. Scalability poses significant challenges given the volume of
data and complexity of AI models. Large-scale deployment of AI-based methods requires significant computing resources and infra-
structure, making scalability a key consideration. Artificial intelligence introduces computational overhead, which can lead to latency,
which is a problem in scenarios where ultra-low latency is non-negotiable. Finally, deploying AI models in edge servers consumes
resources and power. Balancing the resource consumption of AI against the benefits it provides, especially in resource-constrained
MEC environments, remains a key consideration. Fig. 6 shows the technical distribution of the task offload scheduling mechanism
in MEC.

In summary, Classic mathematical optimization ensures optimality through rigorous models but struggle with scalability and
dynamic IoT environments. Lyapunov optimization, emphasizing stability, is adaptable but can be complex. Heuristic approaches offer
speed and adaptability but yield suboptimal solutions. Game theory models strategic interactions, providing equilibrium solutions but
can be computationally intensive. AI-based approaches have developed very rapidly since 2019. They are highly adaptable and can
solve complex task-offloading optimization problems. Fig. 7 compares different task offloading approaches across different taxonomies
of technology regarding adaptability, overhead, Multi-objective optimization capabilities, ability to support large-scale IoT and
multiple parameters.

6.4. AQ4: network environments

The analysis of which network technologies are considered in IoT task offloading approaches in MEC is necessary to answer RQ4.
Heterogeneous network environments play a crucial role in computing task offloading, affecting decisions about when, where, and
how to offload tasks. The literature surveyed in this survey covers a wide range of wireless communication network technologies.

6.4.1. RAN
Radio Access Network (RAN) is a critical component of a mobile telecommunication system that connects user devices (such as

smartphones, tablets, and IoT devices) to the core network and enables wireless communication. RAN manages the radio resources and
communication between user devices and the core network, making it a fundamental part of cellular networks [153]. Some studies do
not distinguish between multiple advanced wireless communication characteristics, but only consider several parameters of the basic
RAN communication model [76,77,80,82,84,85,154–156].

6.4.2. LTE
A mobile communications standard built on RAN. Provides high-speed data transmission and better performance for 4G networks.

A small number of task offloading optimization mechanisms take into account resource allocation and task scheduling based on LTE
network characteristics [83,120].

6.4.3. 5G
5G, or the fifth generation of wireless technology, is the latest standard for cellular networks. It represents a significant leap forward

in mobile communication technology, offering faster data speeds, lower latency, increased connectivity, and improved support for a
wide range of applications and devices [157]. In the research on some task offloading mechanisms, full consideration has been given to
using the characteristics of the 5G network to optimize the transmission process of task data [86,87,141,94,99,105,124,125,149,158,
159]. In addition, there are also a small number of research attempts to explore the advanced features of future networks based on 6G

Fig. 7. Network environments of task offload scheduling in MEC.

W. Dayong et al.

Heliyon 10 (2024) e29916

27

to build IoT task offloading mechanisms in MEC [111].

6.4.4. TDMA and OFDMA
TDMA and OFDMA are multiple access techniques that divide communication resources differently. TDMA allocates time slots for

different users, while OFDMA assigns sub-carriers in the frequency domain. Multiple access technology, is widely used in different
mobile communication standards, including 4G LTE and 5G. In Refs. [75,103] the characteristics of TDMA were introduced into the
communication model. The characteristics of OFDMA are used by several projects such as [73,102,128,136,137,160,161] to build
communication models in task offloading. In Ref. [127] the author uses MIMO as the wireless communication environment for MEC
networks.

6.4.5. NOMA
NOMA, or Non-Orthogonal Multiple Access, is a wireless communication technology that enables multiple users to share the same

frequency, time, and code resources simultaneously within a cell in a cellular network [162].
In [78,146,95,117,163] the construction of the communication model fully takes into account the advantages of NOMA, so that the

transmission of task data can be coordinated more precisely.

6.4.6. NB-IOT
Narrow-band IoT is a communication technology used to connect numerous low-power IoT devices, providing long-distance

coverage and low power consumption. It is a communication technology specifically designed to connect low-power IoT devices. It
can be used with modern communication networks such as 4G LTE and 5G to support IoT applications. However, there are relatively
few studies on the task offloading mechanism of NB-IoT networks [145,116].

6.4.7. Wi-fi
A Wi-Fi network, also known as a wireless local area network (WLAN), is a type of local area network that uses radio waves to

connect devices to the internet and each other without the need for physical wired connections. MEC supports Wi-Fi access mode to
transmit data [164]. There have been some works studying the IoT task offloading mechanism based on Wi-Fi network [142,90,130,
158,165].

6.4.8. WPT
Many TDs are powered by wireless methods due to the particularity of IoT. Therefore, WPT-based IoT task offloading methods have

been considered in some studies [73,100,103,113,135,160,165]. The difficulty of such research lies in how to alternately transmit data
and wirelessly supply power to TDs in a limited wireless spectrum.

6.4.9. SDN
Software-defined network is a network architecture and technology. Its core idea is to separate the network control plane and data

plane to improve the flexibility, programmability, and automation of the network. The task offloading mechanism based on this
network architecture can better obtain the status of network available resources and realize dynamic allocation of network resources,
due to SDN’s powerful management capabilities for the overall network [92,102].

6.4.10. Satellite
A satellite network is a telecommunications network that uses communication satellites to relay data signals between widely

dispersed geographic areas on Earth. These networks provide global or regional coverage and are crucial for various applications,

Fig. 8. Network environments of task offload scheduling in MEC.

W. Dayong et al.

Heliyon 10 (2024) e29916

28

including television broadcasting, internet access, and long-distance communication [166]. In Refs. [93,133,167] the task offloading
mechanism fully takes into account the low bandwidth and high latency characteristics of the communication link. The network
environments supported by task offloading in MEC are given in Fig. 8.

6.5. AQ5: architecture

Aiming to answer RQ5, the description, and architecture of IoT task offloading in MEC were extracted from the analyzed papers.
Device-to-edge-and-cloud (D2EC) architecture in task offloading for computational tasks within a MEC network combines the pro-
cessing capabilities of both edge servers and cloud resources to optimize task execution. This architecture provides flexibility and
scalability, allowing users to select the most appropriate destination based on the specific requirements of their tasks. Fig. 9 presents
the architectural distribution of task offloading scheduling in MEC.

6.5.1. TD to TD
TD to TD task offloading in a MEC network involves offloading a task from one user’s device to another user’s device for execution,

rather than sending it to an edge server or cloudlet. This approach leverages the computational capabilities of nearby user devices to
collaboratively execute tasks, providing various advantages and challenges [138,143].

6.5.2. TD to edge
Device-to-edge (D2E) task offloading in a Multi-Access Edge Computing (MEC) network involves offloading a task from a user’s

device to an edge server or cloudlet located at the network’s edge. This approach allows tasks to be processed closer to the source of
data, reducing latency and improving the overall performance of applications [73,74,76,77,79,80,83,84,86–89,144–147,91,94,97,
100,102–104,106,107], [113,114,116–118,120,123,126–128,130,132,135,137,148,160,161,167].

6.5.3. TD to edge-cloud
Device-to-edge-cloud (D2EC) task offloading in a MEC network involves offloading a task from a user’s device to a cloud infra-

structure that is located at the network’s edge. This approach combines the benefits of both edge computing and cloud computing to
optimize task execution [81,85,139–142,90,92,95,96,98,99,101,108–112,115,119,121,122,124,125,129,131,133,134,136,149,156,
168].

6.6. AQ6: offloading destination

RQ6 aims to determine whether algorithms and mechanisms are more inclined to offload IoT tasks to single or multiple servers in
MEC. According to the results of the research analyzed, the offloading destination refers to the target resource or location to which a
computational task is assigned for execution. Selecting the appropriate offloading destination is a crucial decision, as it significantly
impacts factors like task execution time, energy consumption, and overall system performance. Offloading destinations can vary based
on the nature of the computing environment and the specific objectives of the task offloading strategy. Fig. 10 shows the offloading
destinations of the task offloading schedule in MEC.

6.6.1. Single server
In computational offloading within a MEC network, a single server as a task offloading destination refers to the scenario where a

task from a user’s device is offloaded and executed on a single edge server or cloudlet. This means that the entire computational load of
the task is handled by a single server [73,80,84,88,89,143,145,146,100,103,104,106,110,113,116,120,130,135,137,148,149].

6.6.2. Multiple server
In computational offloading within a MEC network, multiple servers as task offloading destinations refer to the scenario where a

Fig. 9. The architecture of task offload scheduling in MEC.

W. Dayong et al.

Heliyon 10 (2024) e29916

29

task from a user’s device is offloaded and executed on more than one edge server or cloudlet. This approach involves parallel execution
of the task, with different servers sharing the computational load [74,77,81,85–87,138–142,144,90–92,147,94–99,101,102,105,
107–109], [111,112,114,115,117–119,121–129,131–134,136,160,161,167,169].

6.7. AQ7: parameters

RQ7 aims to identify which parameters are used to support IoT task offloading algorithms in extracting state information from the
MEC network environment that influences task offloading decisions. Parameters in computational task offloading algorithms are the
configurable settings, variables, or inputs that allow researchers and practitioners to fine-tune the behavior and performance of task
allocation and resource assignment strategies. These parameters influence how offloading decisions are made and the overall behavior
of the algorithm. Fig. 11 illustrates the main parameters of the task offloading scheduling algorithm in MEC.

6.7.1. Size of tasks
The parameter size of a computational task in the context of computational offloading in a MEC network refers to the amount of

data or the size of the task’s parameters that need to be transferred between the user’s device and the edge server or cloudlet for
processing. The parameter size is a critical factor in determining whether offloading a task to the edge is practical and efficient. Almost
every job considers this parameter.

6.7.2. Task dependency
Task dependency in computational offloading within a MEC network refers to the relationships and dependencies that exist be-

tween different computational tasks when determining whether and how they can be offloaded to edge servers for execution [146,
170–176]. Task dependency plays a crucial role in optimizing the offloading process and ensuring that tasks are executed correctly and
efficiently. Some task offloading solutions based on different technologies support dependency constraints between tasks [146,147,
103,104,117,154,167,177–180]. However, some methods to support dependent task offloading do not consider load balancing

Fig. 10. Offloading destination of task offload scheduling in MEC.

Fig. 11. Parameters of task offload scheduling in MEC.

W. Dayong et al.

Heliyon 10 (2024) e29916

30

[181–184] and heterogeneous network support for cloud-edge structures [185]. In addition, some studies only considered
single-objective optimization [186–189].

6.7.3. Dead line
The deadline of a task in computational offloading within a MEC network refers to the maximum allowed time within which the

task must be completed or delivered after it is offloaded to an edge server or cloudlet. Meeting task deadlines is critical, especially for
real-time and time-sensitive applications, to ensure that results are available within the required timeframe. Almost every job con-
siders this parameter.

6.7.4. Capacity of TD and MEC
The computational capacity of a terminal device is a pivotal factor within the realm of computational offloading in MEC networks.

It encompasses the device’s ability to perform computational tasks efficiently and includes aspects such as processing power, memory
capacity, GPU capabilities, and latency sensitivity.

The computing capacity of the MEC server is one of the key parameters in the IoT task offloading mechanism. It represents the
computing resources and processing power available on the server. This parameter is usually expressed in MIPS terms.

6.7.5. Transmission delay
The transmission delay of a task in computational offloading within a MEC network refers to the time it takes for the data associated

with a task to be transmitted from the user’s device to the edge server or cloudlet where the task will be executed. Transmission delay is
a critical factor in the overall latency of task execution.

6.7.6. Channel bandwidth
The channel bandwidth in computational offloading within a MEC network refers to the amount of available frequency spectrum or

bandwidth on the wireless communication channel used to transmit data between the user’s device and the edge server or cloudlet
where a task will be executed. The channel bandwidth is a critical factor that influences the data transfer rate, which, in turn, affects
the transmission speed and overall task execution performance.

6.7.7. Location Of TD
The location of TDs in computational offloading within a MEC network refers to where and how the offloading of tasks is

implemented in the network architecture. Task offloading involves creating multiple copies of a task for parallel execution on multiple
edge servers or cloudlets to improve performance, ensure redundancy, or meet specific requirements [76,82,87,89,138,143,144,91,
100,109,112,113,116,125,128,131,137,149,156,167,169].

6.7.8. Network hop
The network hop in computational offloading within a MEC network refers to the number of intermediate network devices or points

that data associated with a task must traverse between the user’s device and the edge server or cloudlet where the task will be executed.
Each network device or point, such as routers, switches, and gateways, represents a "hop” in the network path. The network hop count
is a critical factor that influences the overall latency and efficiency of data transmission in the context of task offloading [138,91,102,
107,132,169].

6.7.9. Transmit power and NOISE POWER
The transmit power in computational offloading within a MEC network refers to the amount of power utilized by the user’s device

or the transmitting equipment to send data associated with a task to the edge server or cloudlet where the task will be executed.
Transmit power is a critical factor that impacts the efficiency and reliability of data transmission in MEC network task offloading.

The noise power in computational offloading within a MEC network refers to the presence of unwanted or random electrical signals
and interference in the wireless communication channel used to transmit data between the user’s device and the edge server or cloudlet
where a task will be executed. Noise power is a critical factor that affects the quality of the communication channel and can impact the
reliability and performance of data transmission [78,81,84,86,87,89,138,90,146,147,92,95,100,103,104,106,108,111–114,117,121,
122,126–128,130–133,135,136,167].

6.7.10. Battery level
The device’s battery level in computational offloading within a MEC network refers to the remaining charge or energy capacity of

the user’s device, such as a mobile phone, IoT device, or sensor, which initiates the task offloading process. The device’s battery level is
a critical factor that influences offloading decisions and strategies to optimize the use of available energy [74,76,85–89,143,100,102,
104,108,109,113,118,125,129,134,135,168,177,180,190].

6.7.11. Payment cost
The payment cost in computational offloading within a MEC network refers to the financial or monetary expenses associated with

offloading a task from the user’s device to an edge server or cloudlet for execution. This cost vary based on various factors and can
impact the decision-making process for task offloading [82,140,142,91,93,190–193].

W. Dayong et al.

Heliyon 10 (2024) e29916

31

6.8. AQ8: evaluation METHODS

The RQ8 is to be answered according to the evaluation scheme stated in the literature surveyed. Evaluation methods in compu-
tational task offloading are techniques used to assess the performance, effectiveness, and efficiency of task-offloading strategies and
algorithms in distributed computing environments. These methods help researchers and practitioners understand how well a particular
task allocation and resource assignment approach meets the defined objectives. Fig. 12 shows the evaluation method of the task
offloading mechanism in MEC.

6.8.1. Testbed
In order to evaluate the ability of the offloading mechanism, experimental environments have been built based on physical

equipment in some studies. This type of experimental bed includes TD, MEC server, and network communication equipment [74,78,
141,94,107,113,118,120,122,133,149].

6.8.2. Simulator
MATLAB (Matrix Laboratory) is a high-level programming and simulation environment widely used in performance evaluation and

modeling for various technologies, including IoT (Internet of Things) task offloading mechanisms [194]. Judging from the survey
results, Matlab is the main tool used for testing IoT task offloading algorithms and mechanisms. Researchers simulate TDs, MEC servers
and network communication environments in Matlab, and load data sets to evaluate task offloading mechanisms or algorithms [75–77,
79–81,84,86–89,143–145,95,97,104,106,115,165].

EdgeCloudSim is a simulation framework designed for evaluating the performance of IoT (Internet of Things) task offloading
mechanisms in edge and cloud computing environments [195]. In Refs. [139,105] is used to build MEC infrastructure.

ElasticSim is a versatile performance evaluation tool designed for assessing IoT task offloading mechanisms. It provides a flexible
simulation environment that accommodates various scenarios, allowing researchers and engineers to model and analyze task distri-
bution strategies among edge and cloud resources [196]. In Ref. [139], the experimental environment used to evaluate task offloading
algorithms is built on ElasticSim.

Mininet is an open-source network emulation tool that provides a lightweight and scalable platform for evaluating IoT (Internet of
Things) task offloading mechanisms. It allows users to create virtual networks, mimicking real-world network topologies, and emulate
various IoT device interactions and communications [197]. In Ref. [142] the author built the infrastructure of the IoT network based
on Mininet.

NS-3, or Network Simulator 3, is a popular open-source simulation tool designed for performance evaluation in the context of IoT
(Internet of Things) task offloading mechanisms [198]. In Ref. [91] NS-3 is used to build a network communication simulation
environment for IoT and MEC.

OPNET (Optimized Network Engineering Tool) is a comprehensive and widely used simulation and modeling tool for assessing the
performance of IoT task offloading mechanisms [199]. In Ref. [98] The author built a complex IoT deployment environment based on
OPNET.

GT-ITM (Georgia Tech Internetwork Topology Models) is a simulation tool that focuses on evaluating the performance of IoT task
offloading mechanisms by modeling network topologies. It offers a lightweight and scalable environment for simulating network
scenarios [200]. In Ref. [90] GT-ITM is used to simulate various application scenarios of IoT networks.

Fig. 12. Evaluation methods of task offload scheduling in MEC.

W. Dayong et al.

Heliyon 10 (2024) e29916

32

Cooja is an open-source simulator. It is a part of the Contiki operating system and provides a platform for modeling and simulating
IoT networks and devices [201,202]. In Ref. [109] researchers use Cooja to assess task offloading strategies and network performance
under various conditions.

6.8.3. Implement
In some studies, programming is used to simulate the IoT network environment to more accurately evaluate the application sce-

narios of IoT task offloading. Such implementations all use Python as the programming language.
[73,85,138,140,146,147,92,96,99–102,112,116,119,121,127,131,148]. In addition, Pytorch is introduced in some implementa-

tions to support machine learning algorithms involved in task offloading mechanisms [103,114,124,129,132,135–137]. Besides, in
Refs. [108,117] Keras is also used to assist in the implementation of various AI-based task offloading algorithms. Relatively, Tensor
Flow is the most widely used basic platform for task offloading AI algorithm implementation [83,108–111,117,123,125,126,128,130,
134].

6.9. AQ9: baselines

The analysis of which baselines are considered in IoT task offloading approaches in MEC is necessary to answer RQ9. In compu-
tational task offloading, baselines serve as reference points or control strategies against which the performance of new or proposed task
offloading mechanisms is compared. Baselines are essential for evaluating the effectiveness and efficiency of novel strategies and
algorithms. They provide a standard for assessing whether a new approach outperforms existing, well-established methods. Upon
investigation, it was found that the baseline chosen for evaluating the various algorithms and mechanisms was very decentralized. As a
result, 80 different baselines are identified. Fig. 13 shows the evaluation of the top 10 baselines (occurrences at least twice) for IoT task
offloading mechanisms.

6.10. AQ10: performance metrics

Aiming to answer RQ10, the performance metrics were extracted from the analyzed papers. Performance metrics in computational
task offloading are quantitative measures used to assess the effectiveness and efficiency of task allocation and resource assignment
strategies in distributed computing environments. These metrics help researchers evaluate how well an offloading mechanism per-
forms and whether it meets the defined optimization objectives. Metrics have different designs in multiple studies, and they can be
roughly classified into 5 categories. Fig. 14 shows the performance metrics of the task offloading mechanism in MEC. Based on the
statistical analysis it can be visualized that the performance evaluation indexes are mainly distributed in energy consumption, time and
task offloading efficiency.

6.10.1. Offload efficiency
Offload efficiency is a critical performance metric in the context of computational offloading within a MEC network. It measures

how effectively and optimally tasks are offloaded from a user’s device to edge servers, cloud resources, or other destinations. A high
offload efficiency implies that the offloading process is achieving its intended objectives efficiently.

6.10.2. Time
Time-related performance metrics play a central role in evaluating the performance of computational offloading in MEC networks.

The ability to minimize latency and optimize the timing aspects of task offloading, execution, and response is crucial for various real-
time and latency-sensitive applications.

6.10.3. Energy consumption
Energy consumption is a key aspect of performance metrics for computational offloading within MEC networks. Efficient energy

Fig. 13. Top 10 baselines of task offload scheduling in MEC.

W. Dayong et al.

Heliyon 10 (2024) e29916

33

management is critical to extending the battery life of user devices, lowering operating costs and reducing environmental impact.
Efficient offloading decisions aim to minimize energy usage, especially during data transfer between the device and the offloading
destination.

6.10.4. Accuracy
Real-time accuracy is especially important for applications such as autonomous vehicles and augmented reality, where tasks must

be performed accurately within tight time constraints. This metric evaluates the speed and effectiveness of error handling and recovery
mechanisms in identifying and correcting errors.

6.10.5. Others
In a few studies, task offloading mechanisms additionally take into account feedback from security requirements and offloading

satisfaction.
For these performance metrics, it was found that some numerical expression methods with similar functions but different forms

were used in different papers. In addition, some researchers have chosen different words to represent the same meaning. Fig. 15 shows
the details of the performance metrics of the task offloading mechanism in MEC.

6.11. AQ11: dataset

RQ11 intends to identify which datasets are used to support the performance evaluation of the proposed IoT task offloading
approach. According to the survey results, the data used in most of the work are specifically generated based on the experimental
environment settings, and there is a lack of public datasets. Only a few works have evaluated and validated their proposed algorithms

Fig. 14. Performance metrics of task offload scheduling in MEC.

Fig. 15. Year wise publication of task offload scheduling in MEC.

W. Dayong et al.

Heliyon 10 (2024) e29916

34

and mechanisms using data collected from the real world. Some of these datasets provide computational tasks, while others provide
trajectories for simulating TDs motion. Otherwise, most research works set their simulation parameters and generate special test data
sets. Fig. 16 shows the data set used for the evaluation of the task offloading scheduling mechanism in MEC.

6.11.1. Compute load data set
DTLZ series functions have been widely used in the evaluation and benchmarking of multi-objective optimization algorithms and

provided a standardized set of test cases to assess their efficiency and effectiveness in solving real-world multi-objective optimization
problems [203,204]. Reference [77] evaluated and verified the effectiveness of the proposed task offloading mechanism based on this
data set.

The ECG-ID database consists of 310 ECG signals obtained from different persons aged between 13 and 75 years [205,206]. This
dataset is often used to generate keys for encryption algorithms due to the discrete nature of the data. The research work [81] generates
random task offloading requests based on the ECG-ID dataset to test the performance of the proposed offloading mechanism.

The work [141] introduces five Chicago street video clips from the real world. This data set contains 9 types of target objects
(people, handbags, backpacks, bicycles, cars, motorcycles, buses, trucks, and traffic lights) classification. In the evaluation experiment,
the author used video content recognition as a computing task that needs to be offloaded to verify the effectiveness of the offloading
mechanism.

A study [99] evaluated its work based on improved original data to verify its advantages in industrial computing task offloading
scenarios. It contains a variety of service types with different timeliness requirements and can support task awareness in IIoT scenarios
[207,208].

These TPC-H query workloads contain 22 different query models (i.e., the different DAG topologies) with 7 different query sizes
[209,210]. Query workloads in Spark were selected as the computing task load to test the efficiency of the offloading mechanism in
Ref. [123].

The MNIST dataset contained a training set of 60,000 samples and a test of 10,000 samples of handwritten digits from 0 to 9, which
is widely used in the relative research work [211–216]. A study [137] takes the recognition process based on the MNIST dataset as a
computational task to evaluate the proposed offloading mechanism.

6.11.2. TD movement trajectory data set
This type of data set provides TD’s movement trajectory information and is used to generate distance changes between the TD and

the base station, thereby affecting communication quality and delay factors.
A work [131] recorded the real vehicle trajectory of Rome city collected in 30 days. The time ranges from 2014/02/01 to

2014/03/02. The period is from 7 a.m. to 8 a.m. used to provide TD mobile trajectory simulation.
The infocom06 dataset was collected by the Cambridge Haggle projects. For the Infocom06 trace, it records 98 people’s contact

during the conference of IEEE Infocom 2006, and 40 IDs are randomly utilized to simulate the social relationship network [217,218]. A
study [156] extracts the user movement process in this data set as the TD movement trajectory to evaluate the task offloading
mechanism’s ability to support TD mobility.

EUA is a public real-world dataset, which includes the geographical locations of 816 end-users and 125 base stations in Melbourne,
Australia [219,220–222]. References [180,192,223,224] selected this data set as the distribution of MEC base stations and the activity
trajectories of mobile devices, and then superimposed specific generated computing tasks to build a verification environment for the
offloading mechanism.

Fig. 17 shows the distribution of the data set used for the evaluation of the task offloading scheduling mechanism in MEC.

7. Open issues and future research directions

In the journey through the existing literature, this review has identified several open issues and areas of continued inquiry within
the field. The purpose of this section is to shine a light on these unresolved questions and highlight the frontiers of knowledge that

Fig. 16. Dataset of task offload scheduling in MEC.

W. Dayong et al.

Heliyon 10 (2024) e29916

35

warrant further exploration. By recognizing and discussing these open issues, we contribute to the ongoing dialogue and evolution of
the field.

7.1. Joint decision-making by TD and MEC

Centralized and distributed offloading decision-making mechanisms each have advantages and disadvantages. The centralized
offloading decision-making mechanism can grasp more global information and therefore can better achieve global optimization ob-
jects. The distributed decision-making mechanism has the advantage of being fully aware of the limitations of the terminal’s local
computing resources and has higher reliability. However, such methods lack awareness of global information. Moreover, large-scale
distributed decision-making networks are difficult to converge quickly. This way, it would be interesting to study the joint offloading
decision-making mechanism of TD and MEC.

7.2. Highly reliable offloading scheduling

TD encounter signal obstruction or even communication interruption during movement, but existing research has not fully
considered such situations. The re-established communication connection cause TD to jump to a new MEC service area, which has a
greater impact on the dependent partial task offloading paradigm. Therefore, it is necessary to study task offloading scheduling and
migration mechanisms with communication failure detection.

7.3. TD offload request activity prediction

Most existing research assumes that requests to offload tasks arrive randomly. However, IoT task offloading usually follows a
certain pattern. The prediction of IoT task offload requests should be interesting to study. Thereby improving MEC resource prepa-
ration and allocation. Although there are a few studies that predict the data volume of offloading tasks, there is no prediction of the
computing resource requirements for task processing. In addition, some studies predict the mobility trend of devices, based on which
the nearby EMC nodes can be inferred. It would be an interesting research direction to improve/improve resource preparation and
decision-making effects with characteristic task offloading request prediction.

7.4. Practicable partial task offloading

Many studies have considered dividing computing tasks and then offloading part of them to MEC to improve task processing speed
and make full use of computing resources. However, such methods lack awareness of differences in task types and unrealistically
assume that tasks can be divided into arbitrary sizes. In addition, such research usually estimates CPU resource requirements based on
the size of task shards, but the size of the task does not correspond to the computing resources required for the task to be processed.
Furthermore, the granularity of task segmentation is also affected by differences in task types. Therefore, it should be study more on
partial task offloading optimization with task splitting constraints awareness.

7.5. Multi-objective optimization task offloading with dependencies

When offloading tasks with dependencies, some existing research tends to build serialized models to support processing logic
between tasks. However, this is not conducive to parallel processing of tasks on multiple MEC servers. Some studies have considered
task-dependent parallel processing, but have not simultaneously considered joint optimization of multiple dimensions such as latency
and energy consumption. In addition, some studies do not consider load balancing in Edge-Cloud and support for heterogeneous MEC
resources. On the contrary, some dependent task offloading methods that support heterogeneous MEC resources lack optimization of

Fig. 17. Dataset of task offload scheduling in MEC.

W. Dayong et al.

Heliyon 10 (2024) e29916

36

communication delays. A further study could introduce application type-awareness to improve multi-objective optimization capa-
bilities of constrained task offloading in large-scale heterogeneous computing environments.

7.6. Open MEC architecture

Open-MEC runs open-source software on common hardware platform and uses SDN and virtualization technology to decouple MEC
functions from specific physical devices. This way, decoupled MEC functional modules and resources can be reconfigured into
customized edge instances. Similarly, the Open Radio Access Network (ORAN) allows MEC to have more control over the RAN to
optimize communication resource allocation. Therefore, researchers should conduct more research on resource allocation based on
open-source MEC architecture and ORAN to optimize the offloading of IoT computing tasks.

7.7. Aerial access network

Unmanned Aerial Vehicle (UAV) carry wireless communication and computing resources and can serve as MEC computing nodes to
provide task offload support for the IoT. In addition, UAVs can also serve as relays for wireless communications to build Air-Ground
Collaborative MEC (AGC-MEC) using Reconfigurable Intelligent Ground (RIS) technology. Therefore, it would be very interesting to
study MEC computation offloading with air-ground communication support for multi-UAV collaboration.

8. Conclusion

Large numbers of random task offloading requirements and limited MEC resources make the IoT task offloading optimization
problem in MEC very complex. Therefore, effective task-offloading and resource allocation mechanisms are needed to maximize task-
offloading efficiency and enhance resource utilization. Previous studies have focused on IoT task offloading and MEC resource
management respectively. However, there is a lack of comprehensive review on IoT task offloading in MEC. Filling this gap, a
comprehensive review is conducted to give a panoramic view of the IoT task offloading mechanism in MEC to help researchers quickly
understand the subdivision structure and research paths in this area. The different problems addressed by the task offloading
mechanisms and the various approaches proposed to address them are discussed. In addition, the input parameters supported by
different offloading methods are explored to analyze the factors affecting the task offloading decision as well as the ability of the
offloading mechanism to perceive the realistic environment. Moreover, the problem modeling and the technologies underlying the
solutions are carefully examined and categorized. Furthermore, tools and datasets for evaluating task offloading mechanisms and
algorithms are also compared and counted. Finally, the open issues and future research directions are presented. According to the
research, this is the first time a comprehensive literature review focus on the IoT task offloading in MEC.

Funding statement

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Saudi Arabia for funding
this work through large group Research Project under grant number (RGP.2/52/44).

Data availability

No data was used for the research described in the article.

CRediT authorship contribution statement

Wang Dayong: Writing – original draft, Methodology, Conceptualization. Kamalrulnizam Bin Abu Bakar: Supervision, Inves-
tigation, Conceptualization. Babangida Isyaku: Writing – review & editing, Methodology, Conceptualization. Taiseer Abdalla
Elfadil Eisa: Visualization, Supervision, Methodology, Funding acquisition. Abdelzahir Abdelmaboud: Writing – review & editing,
Validation, Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] B.B. Gupta, M. Quamara, An overview of Internet of Things (IoT): architectural aspects, challenges, and protocols, Concurrency Comput. Pract. Ex. 32 (21)
(2020) e4946, https://doi.org/10.1002/cpe.4946.

[2] K.B.A. Bakar, F.T. Zuhra, B. Isyaku, S.B. Sulaiman, A review on the immediate advancement of the internet of things in wireless telecommunications, IEEE
Access 11 (2023) 21020–21048, https://doi.org/10.1109/ACCESS.2023.3250466.

[3] C.C. Sobin, A survey on architecture, protocols and challenges in IoT, Wireless Pers. Commun. 112 (3) (2020) 1383–1429, https://doi.org/10.1007/s11277-
020-07108-5.

W. Dayong et al.

https://doi.org/10.1002/cpe.4946
https://doi.org/10.1109/ACCESS.2023.3250466
https://doi.org/10.1007/s11277-020-07108-5
https://doi.org/10.1007/s11277-020-07108-5

Heliyon 10 (2024) e29916

37

[4] A. Khanna, S. Kaur, Internet of things (IoT), applications and challenges: a comprehensive review, Wireless Pers. Commun. 114 (2) (2020) 1687–1762, https://
doi.org/10.1007/s11277-020-07446-4.

[5] A. Yousefpour, G. Ishigaki, R. Gour, J.P. Jue, On reducing IoT service delay via fog offloading, IEEE Internet Things J. 5 (2) (2018) 998–1010, https://doi.org/
10.1109/JIOT.2017.2788802.

[6] H. Guo, J. Liu, J. Lv, Toward intelligent task offloading at the edge, IEEE Network 34 (2) (2020) 128–134, https://doi.org/10.1109/MNET.001.1900200.
[7] X. Jin, W. Hua, Z. Wang, Y. Chen, A survey of research on computation offloading in mobile cloud computing, Wireless Network 28 (4) (2022) 1563–1585,

https://doi.org/10.1007/s11276-022-02920-2.
[8] C. Wang, R. Guo, H. Yu, Y. Hu, C. Liu, C. Deng, Task offloading in cloud-edge collaboration-based cyber physical machine tool, Robot. Comput.-Integr. Manuf.

79 (2023) 102439, https://doi.org/10.1016/j.rcim.2022.102439.
[9] D. Sabella, A. Vaillant, P. Kuure, U. Rauschenbach, F. Giust, Mobile-edge computing architecture: the role of MEC in the internet of things, IEEE Consum.

Electron. Mag. 5 (4) (2016) 84–91, https://doi.org/10.1109/MCE.2016.2590118.
[10] ETSI: V1. 1.1 (2016-03):“Mobile Edge Computing (MEC) – Google Scholar.” Accessed: September19, 2023. [Online]. Available: https://scholar.google.com/

scholar_lookup?title=GS%20MEC%20001%20-%20V1.1.1%20-%20Mobile%20Edge%20Computing%20(MEC)&author=Etsi&publication_year=2016.
[11] B. Isyaku, K.B.A. Bakar, W. Nagmeldin, A. Abdelmaboud, F. Saeed, F.A. Ghaleb, Reliable failure restoration with Bayesian congestion aware for software

defined networks, Accessed: November13, 2023. [Online]. Available: Comput. Syst. Sci. Eng. 46 (3) (2023) https://search.ebscohost.com/login.aspx?
direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=02676192&AN=163012982&h=E8I7V6epghUEg%
2BsNuYsm7hKc96OtH9WSCaxlHuEfA1%2FHP9CVbitTLYR%2B2g9BdnFTxQm1iBYgr4Ika8j12cin%2BQ%3D%3D&crl=c.

[12] P. Cruz, N. Achir, A.C. Viana, On the edge of the deployment: a survey on multi-access edge computing, ACM Comput. Surv. 55 (5) (2022) 99:1–99:34, https://
doi.org/10.1145/3529758.

[13] M. Songhorabadi, M. Rahimi, A. MoghadamFarid, M. Haghi Kashani, Fog computing approaches in IoT-enabled smart cities, J. Netw. Comput. Appl. 211
(2023) 103557, https://doi.org/10.1016/j.jnca.2022.103557.

[14] A. Ksentini, P.A. Frangoudis, Toward slicing-enabled multi-access edge computing in 5G, IEEE Netw 34 (2) (2020) 99–105, https://doi.org/10.1109/
MNET.001.1900261.

[15] B. Jamil, H. Ijaz, M. Shojafar, K. Munir, R. Buyya, Resource allocation and task scheduling in fog computing and internet of everything environments: a
taxonomy, review, and future directions, ACM Comput. Surv. 54 (11s) (2022) 233:1–233:38, https://doi.org/10.1145/3513002.

[16] X. Jiang, F.R. Yu, T. Song, V.C.M. Leung, A survey on multi-access edge computing applied to video streaming: some research issues and challenges, IEEE
Commun. Surv. Tutor. 23 (2) (2021) 871–903, https://doi.org/10.1109/COMST.2021.3065237.

[17] Q.-V. Pham, A survey of multi-access edge computing in 5G and beyond: fundamentals, technology integration, and state-of-the-art, IEEE Access 8 (2020)
116974–117017, https://doi.org/10.1109/ACCESS.2020.3001277.

[18] J. Ding, M. Nemati, C. Ranaweera, J. Choi, IoT connectivity technologies and applications: a survey, IEEE Access 8 (2020) 67646–67673, https://doi.org/
10.1109/ACCESS.2020.2985932.

[19] B. Isyaku, K.B.A. Bakar, Managing smart technologies with software-defined networks for routing and security challenges: a survey, Accessed: November13,
2023. [Online]. Available: Comput. Syst. Sci. Eng. 47 (2) (2023) https://www.researchgate.net/profile/Babangida-Isyaku-3/publication/372669105_
Managing_Smart_Technologies_with_Software-Defined_Networks_for_Routing_and_Security_Challenges_A_Survey/links/64c60132213ca521ea183e01/
Managing-Smart-Technologies-with-Software-Defined-Networks-for-Routing-and-Security-Challenges-A-Survey.pdf.

[20] P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila, T. Taleb, Survey on multi-access edge computing for internet of things realization, IEEE Commun. Surv.
Tutor. 20 (4) (2018) 2961–2991, https://doi.org/10.1109/COMST.2018.2849509.

[21] A. Hazra, M. Adhikari, T. Amgoth, S.N. Srirama, Joint computation offloading and scheduling optimization of IoT applications in fog networks, IEEE Trans.
Netw. Sci. Eng. 7 (4) (2020) 3266–3278, https://doi.org/10.1109/TNSE.2020.3021792.

[22] Q. Peng, C. Wu, Y. Xia, Y. Ma, X. Wang, N. Jiang, DoSRA: a decentralized approach to online edge task scheduling and resource allocation, IEEE Internet Things
J. 9 (6) (2022) 4677–4692, https://doi.org/10.1109/JIOT.2021.3107431.

[23] Q. Tang, Distributed task scheduling in serverless edge computing networks for the internet of things: a learning approach, IEEE Internet Things J. 9 (20)
(2022) 19634–19648, https://doi.org/10.1109/JIOT.2022.3167417.

[24] C. Feng, P. Han, X. Zhang, B. Yang, Y. Liu, L. Guo, Computation offloading in mobile edge computing networks: a survey, J. Netw. Comput. Appl. 202 (2022)
103366, https://doi.org/10.1016/j.jnca.2022.103366.

[25] R. Singh, R. Sukapuram, S. Chakraborty, A survey of mobility-aware Multi-access Edge Computing: challenges, use cases and future directions, Ad Hoc Netw.
140 (2023) 103044, https://doi.org/10.1016/j.adhoc.2022.103044.

[26] B. Trinh, G.-M. Muntean, A deep reinforcement learning-based offloading scheme for multi-access edge computing-supported eXtended reality systems, IEEE
Trans. Veh. Technol. 72 (1) (2023) 1254–1264, https://doi.org/10.1109/TVT.2022.3207692.

[27] Q. Zhang, M. Lin, L.T. Yang, Z. Chen, S.U. Khan, P. Li, A double deep Q-learning model for energy-efficient edge scheduling, IEEE Trans. Serv. Comput. 12 (5)
(2019) 739–749, https://doi.org/10.1109/TSC.2018.2867482.

[28] J. Lim, Latency-aware task scheduling for IoT applications based on artificial intelligence with partitioning in small-scale fog computing environments, Sensors
22 (19) (2022) 19, https://doi.org/10.3390/s22197326.

[29] H. Li, K. Ota, M. Dong, Learning IoT in edge: deep learning for the internet of things with edge computing, IEEE Netw. 32 (1) (2018) 96–101, https://doi.org/
10.1109/MNET.2018.1700202.

[30] A. Shakarami, M. Ghobaei-Arani, M. Masdari, M. Hosseinzadeh, A survey on the computation offloading approaches in mobile edge/cloud computing
environment: a stochastic-based perspective, J. Grid Comput. 18 (4) (2020) 639–671, https://doi.org/10.1007/s10723-020-09530-2.

[31] K. Xiao, Z. Gao, W. Shi, X. Qiu, Y. Yang, L. Rui, EdgeABC: an architecture for task offloading and resource allocation in the Internet of Things, Future Generat.
Comput. Syst. 107 (2020) 498–508, https://doi.org/10.1016/j.future.2020.02.026.

[32] M. Tang, V.W.S. Wong, Deep reinforcement learning for task offloading in mobile edge computing systems, IEEE Trans. Mobile Comput. 21 (6) (2022)
1985–1997, https://doi.org/10.1109/TMC.2020.3036871.

[33] S. Balaji, K. Nathani, R. Santhakumar, IoT technology, applications and challenges: a contemporary survey, Wireless Pers. Commun. 108 (1) (2019) 363–388,
https://doi.org/10.1007/s11277-019-06407-w.

[34] G. Javadzadeh, A.M. Rahmani, Fog computing applications in smart cities: a systematic survey, Wireless Network 26 (2) (2020) 1433–1457, https://doi.org/
10.1007/s11276-019-02208-y.

[35] B. Brik, K. Dev, Y. Xiao, G. Han, A. Ksentini, Guest editorial introduction to the special section on AI-powered internet of everything (IoE) services in next-
generation wireless networks, IEEE Trans. Netw. Sci. Eng 9 (5) (2022) 2952–2954, https://doi.org/10.1109/TNSE.2022.3195385.

[36] J. Iannacci, Internet of things (IoT); internet of everything (IoE); tactile internet; 5G – a (not so evanescent) unifying vision empowered by EH-MEMS (energy
harvesting MEMS) and RF-MEMS (radio frequency MEMS), Sens. Actuators Phys. 272 (2018) 187–198, https://doi.org/10.1016/j.sna.2018.01.038.

[37] C. Li, Q. Zhang, C. Huang, Y. Luo, Optimal service selection and placement based on popularity and server load in multi-access edge computing, J. Netw. Syst.
Manag. 31 (1) (2022) 15, https://doi.org/10.1007/s10922-022-09703-2.

[38] Q. Duan, S. Wang, N. Ansari, Convergence of networking and cloud/edge computing: status, challenges, and opportunities, IEEE Netw 34 (6) (2020) 148–155,
https://doi.org/10.1109/MNET.011.2000089.

[39] M. Ahmed, et al., A survey on vehicular task offloading: classification, issues, and challenges, J. King Saud Univ. - Comput. Inf. Sci. 34 (2022), https://doi.org/
10.1016/j.jksuci.2022.05.016.

[40] Y. Miao, G. Wu, M. Li, A. Ghoneim, M. Al-Rakhami, M.S. Hossain, Intelligent task prediction and computation offloading based on mobile-edge cloud
computing, Future Generat. Comput. Syst. 102 (2020) 925–931, https://doi.org/10.1016/j.future.2019.09.035.

[41] S. Douch, M.R. Abid, K. Zine-Dine, D. Bouzidi, D. Benhaddou, Edge computing technology enablers: a systematic lecture study, IEEE Access 10 (2022)
69264–69302, https://doi.org/10.1109/ACCESS.2022.3183634.

W. Dayong et al.

https://doi.org/10.1007/s11277-020-07446-4
https://doi.org/10.1007/s11277-020-07446-4
https://doi.org/10.1109/JIOT.2017.2788802
https://doi.org/10.1109/JIOT.2017.2788802
https://doi.org/10.1109/MNET.001.1900200
https://doi.org/10.1007/s11276-022-02920-2
https://doi.org/10.1016/j.rcim.2022.102439
https://doi.org/10.1109/MCE.2016.2590118
https://scholar.google.com/scholar_lookup?title=GS%20MEC%20001%20-%20V1.1.1%20-%20Mobile%20Edge%20Computing%20(MEC)&author=Etsi&publication_year=2016
https://scholar.google.com/scholar_lookup?title=GS%20MEC%20001%20-%20V1.1.1%20-%20Mobile%20Edge%20Computing%20(MEC)&author=Etsi&publication_year=2016
https://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=02676192&AN=163012982&h=E8I7V6epghUEg%2BsNuYsm7hKc96OtH9WSCaxlHuEfA1%2FHP9CVbitTLYR%2B2g9BdnFTxQm1iBYgr4Ika8j12cin%2BQ%3D%3D&crl=c
https://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=02676192&AN=163012982&h=E8I7V6epghUEg%2BsNuYsm7hKc96OtH9WSCaxlHuEfA1%2FHP9CVbitTLYR%2B2g9BdnFTxQm1iBYgr4Ika8j12cin%2BQ%3D%3D&crl=c
https://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=02676192&AN=163012982&h=E8I7V6epghUEg%2BsNuYsm7hKc96OtH9WSCaxlHuEfA1%2FHP9CVbitTLYR%2B2g9BdnFTxQm1iBYgr4Ika8j12cin%2BQ%3D%3D&crl=c
https://doi.org/10.1145/3529758
https://doi.org/10.1145/3529758
https://doi.org/10.1016/j.jnca.2022.103557
https://doi.org/10.1109/MNET.001.1900261
https://doi.org/10.1109/MNET.001.1900261
https://doi.org/10.1145/3513002
https://doi.org/10.1109/COMST.2021.3065237
https://doi.org/10.1109/ACCESS.2020.3001277
https://doi.org/10.1109/ACCESS.2020.2985932
https://doi.org/10.1109/ACCESS.2020.2985932
https://www.researchgate.net/profile/Babangida-Isyaku-3/publication/372669105_Managing_Smart_Technologies_with_Software-Defined_Networks_for_Routing_and_Security_Challenges_A_Survey/links/64c60132213ca521ea183e01/Managing-Smart-Technologies-with-Software-Defin
https://www.researchgate.net/profile/Babangida-Isyaku-3/publication/372669105_Managing_Smart_Technologies_with_Software-Defined_Networks_for_Routing_and_Security_Challenges_A_Survey/links/64c60132213ca521ea183e01/Managing-Smart-Technologies-with-Software-Defin
https://www.researchgate.net/profile/Babangida-Isyaku-3/publication/372669105_Managing_Smart_Technologies_with_Software-Defined_Networks_for_Routing_and_Security_Challenges_A_Survey/links/64c60132213ca521ea183e01/Managing-Smart-Technologies-with-Software-Defin
https://doi.org/10.1109/COMST.2018.2849509
https://doi.org/10.1109/TNSE.2020.3021792
https://doi.org/10.1109/JIOT.2021.3107431
https://doi.org/10.1109/JIOT.2022.3167417
https://doi.org/10.1016/j.jnca.2022.103366
https://doi.org/10.1016/j.adhoc.2022.103044
https://doi.org/10.1109/TVT.2022.3207692
https://doi.org/10.1109/TSC.2018.2867482
https://doi.org/10.3390/s22197326
https://doi.org/10.1109/MNET.2018.1700202
https://doi.org/10.1109/MNET.2018.1700202
https://doi.org/10.1007/s10723-020-09530-2
https://doi.org/10.1016/j.future.2020.02.026
https://doi.org/10.1109/TMC.2020.3036871
https://doi.org/10.1007/s11277-019-06407-w
https://doi.org/10.1007/s11276-019-02208-y
https://doi.org/10.1007/s11276-019-02208-y
https://doi.org/10.1109/TNSE.2022.3195385
https://doi.org/10.1016/j.sna.2018.01.038
https://doi.org/10.1007/s10922-022-09703-2
https://doi.org/10.1109/MNET.011.2000089
https://doi.org/10.1016/j.jksuci.2022.05.016
https://doi.org/10.1016/j.jksuci.2022.05.016
https://doi.org/10.1016/j.future.2019.09.035
https://doi.org/10.1109/ACCESS.2022.3183634

Heliyon 10 (2024) e29916

38

[42] G. Kaur, R.S. Batth, Edge computing: classification, applications, and challenges, in: 2021 2nd International Conference on Intelligent Engineering and
Management (ICIEM), 2021, pp. 254–259, https://doi.org/10.1109/ICIEM51511.2021.9445331.

[43] G. Russo Russo, V. Cardellini, F. Lo Presti, A framework for offloading and migration of serverless functions in the Edge–Cloud Continuum, Pervasive Mob.
Comput. 100 (2024) 101915, https://doi.org/10.1016/j.pmcj.2024.101915.

[44] G. Russo Russo, D. Ferrarelli, D. Pasquali, V. Cardellini, F. Lo Presti, QoS-aware offloading policies for serverless functions in the Cloud-to-Edge continuum,
Future Generat. Comput. Syst. 156 (2024) 1–15, https://doi.org/10.1016/j.future.2024.02.019.

[45] G. Qiao, S. Leng, Y. Zhang, Online learning and optimization for computation offloading in D2D edge computing and networks, Mobile Network. Appl. 27 (3)
(2022) 1111–1122, https://doi.org/10.1007/s11036-018-1176-y.

[46] J. Xie, Y. Jia, W. Wen, Z. Chen, L. Liang, Dynamic D2D multihop offloading in multi-access edge computing from the perspective of learning theory in games,
IEEE Trans. Netw. Serv. Manag. 20 (1) (2023) 305–318, https://doi.org/10.1109/TNSM.2022.3201470.

[47] M.H. Adnan, Z.A. Zukarnain, O.A. Amodu, Fundamental design aspects of UAV-enabled MEC systems: a review on models, challenges, and future
opportunities, Comput. Sci. Rev. 51 (2024) 100615, https://doi.org/10.1016/j.cosrev.2023.100615.

[48] Y. Zhang, H. Zhang, K. Sun, J. Huo, N. Wang, V.C.M. Leung, Partial computation offloading in satellite based three-tier cloud-edge integration networks, IEEE
Trans. Wireless Commun. (2023) 1, https://doi.org/10.1109/TWC.2023.3282630, 1.

[49] L. Zhao, A digital twin-assisted intelligent partial offloading approach for vehicular edge computing, IEEE J. Sel. Area. Commun. 41 (11) (2023) 3386–3400,
https://doi.org/10.1109/JSAC.2023.3310062.

[50] H. Lin, S. Zeadally, Z. Chen, H. Labiod, L. Wang, A survey on computation offloading modeling for edge computing, J. Netw. Comput. Appl. 169 (2020)
102781, https://doi.org/10.1016/j.jnca.2020.102781.

[51] H. Wu, Multi-objective decision-making for mobile cloud offloading: a survey, IEEE Access 6 (2018) 3962–3976, https://doi.org/10.1109/
ACCESS.2018.2791504.

[52] Z. He, Y. Xu, D. Liu, W. Zhou, K. Li, Energy-efficient computation offloading strategy with task priority in cloud assisted multi-access edge computing, Future
Generat. Comput. Syst. 148 (2023) 298–313, https://doi.org/10.1016/j.future.2023.06.014.

[53] C. Li, J. Tang, Y. Zhang, X. Yan, Y. Luo, Energy efficient computation offloading for nonorthogonal multiple access assisted mobile edge computing with energy
harvesting devices, Comput. Network. 164 (2019) 106890, https://doi.org/10.1016/j.comnet.2019.106890.

[54] J. Wang, J. Pan, F. Esposito, P. Calyam, Z. Yang, P. Mohapatra, Edge cloud offloading algorithms: issues, methods, and perspectives, ACM Comput. Surv. 52 (1)
(2019) 2:1–2:23, https://doi.org/10.1145/3284387.

[55] Z. Sun, Y. Mo, C. Yu, Graph-reinforcement-learning-based task offloading for multiaccess edge computing, IEEE Internet Things J. 10 (4) (2023) 3138–3150,
https://doi.org/10.1109/JIOT.2021.3123822.

[56] R. Singh, S. Armour, A. Khan, M. Sooriyabandara, G. Oikonomou, Heuristic approaches for computational offloading in multi-access edge computing networks,
in: 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications, 2020, pp. 1–7, https://doi.org/10.1109/
PIMRC48278.2020.9217181.

[57] C.-Y. Hsieh, Y. Ren, J.-C. Chen, Edge-cloud offloading: knapsack potential game in 5G multi-access edge computing, IEEE Trans. Wireless Commun. (2023) 1,
https://doi.org/10.1109/TWC.2023.3248270, 1.

[58] M.N. Yusuf, K. Bin Abu Bakar, B. Isyaku, F. Mukhlif, Distributed controller placement in software-defined networks with consistency and interoperability
problems, J. Electr. Comput. Eng. 2023 (2023). Accessed: November8, 2023. [Online]. Available: https://www.hindawi.com/journals/jece/2023/6466996/.

[59] H. Lin, X. Xu, J. Zhao, X. Wang, Dynamic service migration in ultra-dense multi-access edge computing network for high-mobility scenarios, EURASIP J. Wirel.
Commun. Netw. 2020 (1) (2020) 191, https://doi.org/10.1186/s13638-020-01805-2.

[60] L.A. Haibeh, M.C.E. Yagoub, A. Jarray, A survey on mobile edge computing infrastructure: design, resource management, and optimization approaches, IEEE
Access 10 (2022) 27591–27610, https://doi.org/10.1109/ACCESS.2022.3152787.

[61] B. Isyaku, K.B.A. Bakar, F.A. Ghaleb, A. Al-Nahari, Dynamic routing and failure recovery approaches for efficient resource utilization in OpenFlow-SDN: a
survey, IEEE Access 10 (2022) 121791–121815, https://doi.org/10.1109/ACCESS.2022.3222849.

[62] J. Ren, D. Zhang, S. He, Y. Zhang, T. Li, A survey on end-edge-cloud orchestrated network computing paradigms: transparent computing, mobile edge
computing, fog computing, and cloudlet, ACM Comput. Surv. 52 (6) (2019) 125:1–125:36, https://doi.org/10.1145/3362031.

[63] J.A. Hurtado Sánchez, K. Casilimas, O.M. Caicedo Rendon, Deep reinforcement learning for resource management on network slicing: a survey, Sensors 22 (8)
(2022) 8, https://doi.org/10.3390/s22083031.

[64] M. Adhikari, A. Munusamy, N. Kumar, S.N. Srirama, Cybertwin-driven resource provisioning for IoE applications at 6G-enabled edge networks, IEEE Trans.
Ind. Inf. 18 (7) (2022) 4850–4858, https://doi.org/10.1109/TII.2021.3096672.

[65] H. Tabatabaee Malazi, et al., Dynamic service placement in multi-access edge computing: a systematic literature review, IEEE Access 10 (2022) 32639–32688,
https://doi.org/10.1109/ACCESS.2022.3160738.

[66] J. von Mankowski, E. Durmaz, A. Papa, H. Vijayaraghavan, W. Kellerer, Aerial-aided multiaccess edge computing: dynamic and joint optimization of task and
service placement and routing in multilayer networks, IEEE Trans. Aero. Electron. Syst. 59 (3) (2023) 2593–2607, https://doi.org/10.1109/
TAES.2022.3217430.

[67] M. Maray, J. Shuja, Computation offloading in mobile cloud computing and mobile edge computing: survey, taxonomy, and open issues, Mobile Inf. Syst. 2022
(2022) e1121822, https://doi.org/10.1155/2022/1121822.

[68] B. Cao, L. Zhang, Y. Li, D. Feng, W. Cao, Intelligent offloading in multi-access edge computing: a state-of-the-art review and framework, IEEE Commun. Mag.
57 (3) (2019) 56–62, https://doi.org/10.1109/MCOM.2019.1800608.

[69] W. Sun, H. Zhang, R. Wang, Y. Zhang, Reducing offloading latency for digital twin edge networks in 6G, IEEE Trans. Veh. Technol. 69 (10) (2020)
12240–12251, https://doi.org/10.1109/TVT.2020.3018817.

[70] M.D. Hossain, et al., Fuzzy decision-based efficient task offloading management scheme in multi-tier MEC-enabled networks, Sensors 21 (4) (2021) 4, https://
doi.org/10.3390/s21041484.

[71] A. Shakarami, M. Ghobaei-Arani, A. Shahidinejad, A survey on the computation offloading approaches in mobile edge computing: a machine learning-based
perspective, Comput. Network. 182 (2020) 107496, https://doi.org/10.1016/j.comnet.2020.107496.

[72] X. Chen, Z. Li, Y. Chen, X. Wang, Performance analysis and uplink scheduling for QoS-aware NB-IoT networks in mobile computing, IEEE Access 7 (2019)
44404–44415, https://doi.org/10.1109/ACCESS.2019.2908985.

[73] A. Heidari, M.A.J. Jamali, N.J. Navimipour, S. Akbarpour, A QoS-aware technique for computation offloading in IoT-edge platforms using a convolutional
neural network and Markov decision process, IT Prof. 25 (1) (2023) 24–39, https://doi.org/10.1109/MITP.2022.3217886.

[74] K. Peng, H. Huang, B. Zhao, A. Jolfaei, X. Xu, M. Bilal, Intelligent computation offloading and resource allocation in IIoT with end-edge-cloud computing using
NSGA-III, IEEE Trans. Netw. Sci. Eng. (2022) 1, https://doi.org/10.1109/TNSE.2022.3155490, 1.

[75] S. Aljanabi, A. Chalechale, Improving IoT services using a hybrid fog-cloud offloading, IEEE Access 9 (2021) 13775–13788, https://doi.org/10.1109/
ACCESS.2021.3052458.

[76] H. Jin, M.A. Gregory, S. Li, A review of intelligent computation offloading in multiaccess edge computing, IEEE Access 10 (2022) 71481–71495, https://doi.
org/10.1109/ACCESS.2022.3187701.

[77] M.Y. Akhlaqi, Z.B. Mohd Hanapi, Task offloading paradigm in mobile edge computing-current issues, adopted approaches, and future directions, J. Netw.
Comput. Appl. 212 (2023) 103568, https://doi.org/10.1016/j.jnca.2022.103568.

[78] H. Chen, W. Qin, L. Wang, Task partitioning and offloading in IoT cloud-edge collaborative computing framework: a survey, J. Cloud Comput. 11 (1) (2022)
86, https://doi.org/10.1186/s13677-022-00365-8.

[79] A. Heidari, M.A. Jabraeil Jamali, N. Jafari Navimipour, S. Akbarpour, Internet of Things offloading: ongoing issues, opportunities, and future challenges, Int. J.
Commun. Syst. 33 (14) (2020) e4474, https://doi.org/10.1002/dac.4474.

W. Dayong et al.

https://doi.org/10.1109/ICIEM51511.2021.9445331
https://doi.org/10.1016/j.pmcj.2024.101915
https://doi.org/10.1016/j.future.2024.02.019
https://doi.org/10.1007/s11036-018-1176-y
https://doi.org/10.1109/TNSM.2022.3201470
https://doi.org/10.1016/j.cosrev.2023.100615
https://doi.org/10.1109/TWC.2023.3282630
https://doi.org/10.1109/JSAC.2023.3310062
https://doi.org/10.1016/j.jnca.2020.102781
https://doi.org/10.1109/ACCESS.2018.2791504
https://doi.org/10.1109/ACCESS.2018.2791504
https://doi.org/10.1016/j.future.2023.06.014
https://doi.org/10.1016/j.comnet.2019.106890
https://doi.org/10.1145/3284387
https://doi.org/10.1109/JIOT.2021.3123822
https://doi.org/10.1109/PIMRC48278.2020.9217181
https://doi.org/10.1109/PIMRC48278.2020.9217181
https://doi.org/10.1109/TWC.2023.3248270
https://www.hindawi.com/journals/jece/2023/6466996/
https://doi.org/10.1186/s13638-020-01805-2
https://doi.org/10.1109/ACCESS.2022.3152787
https://doi.org/10.1109/ACCESS.2022.3222849
https://doi.org/10.1145/3362031
https://doi.org/10.3390/s22083031
https://doi.org/10.1109/TII.2021.3096672
https://doi.org/10.1109/ACCESS.2022.3160738
https://doi.org/10.1109/TAES.2022.3217430
https://doi.org/10.1109/TAES.2022.3217430
https://doi.org/10.1155/2022/1121822
https://doi.org/10.1109/MCOM.2019.1800608
https://doi.org/10.1109/TVT.2020.3018817
https://doi.org/10.3390/s21041484
https://doi.org/10.3390/s21041484
https://doi.org/10.1016/j.comnet.2020.107496
https://doi.org/10.1109/ACCESS.2019.2908985
https://doi.org/10.1109/MITP.2022.3217886
https://doi.org/10.1109/TNSE.2022.3155490
https://doi.org/10.1109/ACCESS.2021.3052458
https://doi.org/10.1109/ACCESS.2021.3052458
https://doi.org/10.1109/ACCESS.2022.3187701
https://doi.org/10.1109/ACCESS.2022.3187701
https://doi.org/10.1016/j.jnca.2022.103568
https://doi.org/10.1186/s13677-022-00365-8
https://doi.org/10.1002/dac.4474

Heliyon 10 (2024) e29916

39

[80] M. Aazam, S. Zeadally, K.A. Harras, Offloading in fog computing for IoT: review, enabling technologies, and research opportunities, Future Generat. Comput.
Syst. 87 (2018) 278–289, https://doi.org/10.1016/j.future.2018.04.057.

[81] K. Lone, S.A. Sofi, “A review on offloading in fog-based Internet of Things: architecture, machine learning approaches, and open issues,” High-Confid, Comput.
Times 3 (2) (2023) 100124, https://doi.org/10.1016/j.hcc.2023.100124.

[82] A. Islam, A. Debnath, M. Ghose, S. Chakraborty, A survey on task offloading in multi-access edge computing, J. Syst. Architect. 118 (2021) 102225, https://
doi.org/10.1016/j.sysarc.2021.102225.

[83] P.X. Nguyen, Backscatter-assisted data offloading in OFDMA-based wireless-powered mobile edge computing for IoT networks, IEEE Internet Things J. 8 (11)
(2021) 9233–9243, https://doi.org/10.1109/JIOT.2021.3057360.

[84] A. Samanta, J. Tang, Dyme: dynamic microservice scheduling in edge computing enabled IoT, IEEE Internet Things J. 7 (7) (2020) 6164–6174, https://doi.
org/10.1109/JIOT.2020.2981958.

[85] Y. Cheng, H. Zhao, W. Xia, Energy-aware offloading and power optimization in full-duplex mobile edge computing-enabled cellular IoT networks, IEEE Sens. J.
22 (24) (2022) 24607–24618, https://doi.org/10.1109/JSEN.2022.3218584.

[86] Z. Yu, Y. Gong, S. Gong, Y. Guo, Joint task offloading and resource allocation in UAV-enabled mobile edge computing, IEEE Internet Things J. 7 (4) (2020)
3147–3159, https://doi.org/10.1109/JIOT.2020.2965898.

[87] Z. Yao, H. Wu, Y. Chen, Multi-objective cooperative computation offloading for MEC in UAVs hybrid networks via integrated optimization framework,
Comput. Commun. 202 (2023) 124–134, https://doi.org/10.1016/j.comcom.2023.01.006.

[88] B. Liu, C. Liu, M. Peng, Resource allocation for energy-efficient MEC in NOMA-enabled massive IoT networks, IEEE J. Sel. Area. Commun. 39 (4) (2021)
1015–1027, https://doi.org/10.1109/JSAC.2020.3018809.

[89] S. Liu, Satisfaction-maximized secure computation offloading in multi-eavesdropper MEC networks, IEEE Trans. Wireless Commun. 21 (6) (2022) 4227–4241,
https://doi.org/10.1109/TWC.2021.3128247.

[90] S. Azizi, M. Othman, H. Khamfroush, DECO: a deadline-aware and energy-efficient algorithm for task offloading in mobile edge computing, IEEE Syst. J. 17 (1)
(2023) 952–963, https://doi.org/10.1109/JSYST.2022.3185011.

[91] C.-W. Hsu, Y.-L. Hsu, H.-Y. Wei, Energy-efficient edge offloading in heterogeneous industrial IoT networks for factory of future, IEEE Access 8 (2020)
183035–183050, https://doi.org/10.1109/ACCESS.2020.3029253.

[92] J. Li, Maximizing user service satisfaction for delay-sensitive IoT applications in edge computing, IEEE Trans. Parallel Distr. Syst. 33 (5) (2022) 1199–1212,
https://doi.org/10.1109/TPDS.2021.3107137.

[93] T.D.T. Nguyen, V. Nguyen, V.-N. Pham, L.N.T. Huynh, Md D. Hossain, E.-N. Huh, Modeling data redundancy and cost-aware task allocation in MEC-enabled
internet-of-vehicles applications, IEEE Internet Things J. 8 (3) (2021) 1687–1701, https://doi.org/10.1109/JIOT.2020.3015534.

[94] C. Tang, C. Zhu, N. Zhang, M. Guizani, J.J.P.C. Rodrigues, SDN-assisted mobile edge computing for collaborative computation offloading in industrial internet
of things, IEEE Internet Things J. 9 (23) (2022) 24253–24263, https://doi.org/10.1109/JIOT.2022.3190281.

[95] F. Hoseiny, S. Azizi, M. Shojafar, R. Tafazolli, Joint QoS-aware and cost-efficient task scheduling for fog-cloud resources in a volunteer computing system, ACM
Trans. Internet Technol. 21 (4) (2021) 86:1–86:21, https://doi.org/10.1145/3418501.

[96] C. Chen, Y. Zeng, H. Li, Y. Liu, S. Wan, A multihop task offloading decision model in MEC-enabled internet of vehicles, IEEE Internet Things J. 10 (4) (2023)
3215–3230, https://doi.org/10.1109/JIOT.2022.3143529.

[97] J. Liu, Y. Zhang, J. Ren, Y. Zhang, Auction-based dependent task offloading for IoT users in edge clouds, IEEE Internet Things J. 10 (6) (2023) 4907–4921,
https://doi.org/10.1109/JIOT.2022.3221431.

[98] A. Samanta, F. Esposito, T.G. Nguyen, Fault-tolerant mechanism for edge-based IoT networks with demand uncertainty, IEEE Internet Things J. 8 (23) (2021)
16963–16971, https://doi.org/10.1109/JIOT.2021.3075681.

[99] Z. Jia, Q. Wu, C. Dong, C. Yuen, Z. Han, Hierarchical aerial computing for internet of things via cooperation of HAPs and UAVs, IEEE Internet Things J. 10 (7)
(2023) 5676–5688, https://doi.org/10.1109/JIOT.2022.3151639.

[100] Y. Hao, Z. Song, Z. Zheng, Q. Zhang, Z. Miao, Joint communication, computing, and caching resource allocation in LEO satellite MEC networks, IEEE Access 11
(2023) 6708–6716, https://doi.org/10.1109/ACCESS.2023.3237701.

[101] A. Gao, Q. Wang, Y. Hu, W. Duan, An offloading optimization scheme for multi-UAV aided network in mobile computing, in: 2020 International Wireless
Communications and Mobile Computing (IWCMC), 2020, pp. 1468–1473, https://doi.org/10.1109/IWCMC48107.2020.9148136.

[102] L. Lei, H. Xu, X. Xiong, K. Zheng, W. Xiang, Joint computation offloading and multiuser scheduling using approximate dynamic programming in NB-IoT edge
computing system, IEEE Internet Things J. 6 (3) (2019) 5345–5362, https://doi.org/10.1109/JIOT.2019.2900550.

[103] X. An, R. Fan, H. Hu, N. Zhang, S. Atapattu, T.A. Tsiftsis, Joint task offloading and resource allocation for IoT edge computing with sequential task dependency,
IEEE Internet Things J. 9 (17) (2022) 16546–16561, https://doi.org/10.1109/JIOT.2022.3150976.

[104] H. Wang, Low-complexity and efficient dependent subtask offloading strategy in IoT integrated with multi-access edge computing, IEEE Trans. Netw. Serv.
Manag. (2023) 1, https://doi.org/10.1109/TNSM.2023.3295653, 1.

[105] Q. Wang, A. Gao, Y. Hu, Joint power and QoE optimization scheme for multi-UAV assisted offloading in mobile computing, IEEE Access 9 (2021)
21206–21217, https://doi.org/10.1109/ACCESS.2021.3055335.

[106] Y. Wang, J. Yang, X. Guo, Z. Qu, A game-theoretic approach to computation offloading in satellite edge computing, IEEE Access 8 (2020) 12510–12520,
https://doi.org/10.1109/ACCESS.2019.2963068.

[107] X. Yang, H. Luo, Y. Sun, J. Zou, M. Guizani, Coalitional game-based cooperative computation offloading in MEC for reusable tasks, IEEE Internet Things J. 8
(16) (2021) 12968–12982, https://doi.org/10.1109/JIOT.2021.3064186.

[108] S. Hu, G. Li, Dynamic request scheduling optimization in mobile edge computing for IoT applications, IEEE Internet Things J. 7 (2) (2020) 1426–1437, https://
doi.org/10.1109/JIOT.2019.2955311.

[109] X. Yuan, H. Tian, H. Wang, H. Su, J. Liu, A. Taherkordi, Edge-enabled WBANs for efficient QoS provisioning healthcare monitoring: a two-stage potential
game-based computation offloading strategy, IEEE Access 8 (2020) 92718–92730, https://doi.org/10.1109/ACCESS.2020.2992639.

[110] W. Fan, L. Yao, J. Han, F. Wu, Y. Liu, Game-based multitype task offloading among mobile-edge-computing-enabled base stations, IEEE Internet Things J. 8
(24) (2021) 17691–17704, https://doi.org/10.1109/JIOT.2021.3082291.

[111] F. Algarni, A novel quality-based computation offloading framework for edge cloud-supported internet of things, Alex. Eng. J. 70 (2023) 585–599, https://doi.
org/10.1016/j.aej.2023.03.026.

[112] Z. Ai, W. Zhang, M. Li, P. Li, L. Shi, A smart collaborative framework for dynamic multi-task offloading in IIoT-MEC networks, Peer–Peer Netw. Appl. 16 (2)
(2023) 749–764, https://doi.org/10.1007/s12083-022-01441-1.

[113] A. Acheampong, Y. Zhang, X. Xu, A parallel computing based model for online binary computation offloading in mobile edge computing, Comput. Commun.
203 (2023) 248–261, https://doi.org/10.1016/j.comcom.2023.03.004.

[114] H. Wu, Z. Zhang, C. Guan, K. Wolter, M. Xu, Collaborate edge and cloud computing with distributed deep learning for smart city internet of things, IEEE
Internet Things J. 7 (9) (2020) 8099–8110, https://doi.org/10.1109/JIOT.2020.2996784.

[115] Z. Wang, T. Lv, Z. Chang, Computation offloading and resource allocation based on distributed deep learning and software defined mobile edge computing,
Comput. Network. 205 (2022) 108732, https://doi.org/10.1016/j.comnet.2021.108732.

[116] J. Niu, S. Zhang, K. Chi, G. Shen, W. Gao, Deep learning for online computation offloading and resource allocation in NOMA, Comput. Network. 216 (2022)
109238, https://doi.org/10.1016/j.comnet.2022.109238.

[117] Z. Ali, Z.H. Abbas, G. Abbas, A. Numani, M. Bilal, Smart computational offloading for mobile edge computing in next-generation Internet of Things networks,
Comput. Network. 198 (2021) 108356, https://doi.org/10.1016/j.comnet.2021.108356.

[118] T.T. Khanh, T.H. Hai, M.D. Hossain, E.-N. Huh, Fuzzy-assisted mobile edge orchestrator and SARSA learning for flexible offloading in heterogeneous IoT
environment, Sensors 22 (13) (2022) 13, https://doi.org/10.3390/s22134727.

W. Dayong et al.

https://doi.org/10.1016/j.future.2018.04.057
https://doi.org/10.1016/j.hcc.2023.100124
https://doi.org/10.1016/j.sysarc.2021.102225
https://doi.org/10.1016/j.sysarc.2021.102225
https://doi.org/10.1109/JIOT.2021.3057360
https://doi.org/10.1109/JIOT.2020.2981958
https://doi.org/10.1109/JIOT.2020.2981958
https://doi.org/10.1109/JSEN.2022.3218584
https://doi.org/10.1109/JIOT.2020.2965898
https://doi.org/10.1016/j.comcom.2023.01.006
https://doi.org/10.1109/JSAC.2020.3018809
https://doi.org/10.1109/TWC.2021.3128247
https://doi.org/10.1109/JSYST.2022.3185011
https://doi.org/10.1109/ACCESS.2020.3029253
https://doi.org/10.1109/TPDS.2021.3107137
https://doi.org/10.1109/JIOT.2020.3015534
https://doi.org/10.1109/JIOT.2022.3190281
https://doi.org/10.1145/3418501
https://doi.org/10.1109/JIOT.2022.3143529
https://doi.org/10.1109/JIOT.2022.3221431
https://doi.org/10.1109/JIOT.2021.3075681
https://doi.org/10.1109/JIOT.2022.3151639
https://doi.org/10.1109/ACCESS.2023.3237701
https://doi.org/10.1109/IWCMC48107.2020.9148136
https://doi.org/10.1109/JIOT.2019.2900550
https://doi.org/10.1109/JIOT.2022.3150976
https://doi.org/10.1109/TNSM.2023.3295653
https://doi.org/10.1109/ACCESS.2021.3055335
https://doi.org/10.1109/ACCESS.2019.2963068
https://doi.org/10.1109/JIOT.2021.3064186
https://doi.org/10.1109/JIOT.2019.2955311
https://doi.org/10.1109/JIOT.2019.2955311
https://doi.org/10.1109/ACCESS.2020.2992639
https://doi.org/10.1109/JIOT.2021.3082291
https://doi.org/10.1016/j.aej.2023.03.026
https://doi.org/10.1016/j.aej.2023.03.026
https://doi.org/10.1007/s12083-022-01441-1
https://doi.org/10.1016/j.comcom.2023.03.004
https://doi.org/10.1109/JIOT.2020.2996784
https://doi.org/10.1016/j.comnet.2021.108732
https://doi.org/10.1016/j.comnet.2022.109238
https://doi.org/10.1016/j.comnet.2021.108356
https://doi.org/10.3390/s22134727

Heliyon 10 (2024) e29916

40

[119] Y. Cui, D. Zhang, T. Zhang, L. Chen, M. Piao, H. Zhu, Novel method of mobile edge computation offloading based on evolutionary game strategy for IoT
devices, AEU – Int. J. Electron. Commun. 118 (2020) 153134, https://doi.org/10.1016/j.aeue.2020.153134.

[120] M. Yi, P. Yang, M. Chen, N.T. Loc, A DRL-driven intelligent joint optimization strategy for computation offloading and resource allocation in ubiquitous edge
IoT systems, IEEE Trans. Emerg. Top. Comput. Intell. 7 (1) (2023) 39–54, https://doi.org/10.1109/TETCI.2022.3193367.

[121] A. Heidari, N.J. Navimipour, M.A.J. Jamali, S. Akbarpour, A green, secure, and deep intelligent method for dynamic IoT-edge-cloud offloading scenarios,
Sustain. Comput. Inf. Syst. 38 (2023) 100859, https://doi.org/10.1016/j.suscom.2023.100859.

[122] A. Heidari, N.J. Navimipour, M.A.J. Jamali, S. Akbarpour, A hybrid approach for latency and battery lifetime optimization in IoT devices through offloading
and CNN learning, Sustain. Comput. Inf. Syst. 39 (2023) 100899, https://doi.org/10.1016/j.suscom.2023.100899.

[123] I. Khan, X. Tao, G.M.S. Rahman, W.U. Rehman, T. Salam, Advanced energy-efficient computation offloading using deep reinforcement learning in MTC edge
computing, IEEE Access 8 (2020) 82867–82875, https://doi.org/10.1109/ACCESS.2020.2991057.

[124] M. Li, Cloud–edge collaborative resource allocation for blockchain-enabled internet of things: a collective reinforcement learning approach, IEEE Internet
Things J. 9 (22) (2022) 23115–23129, https://doi.org/10.1109/JIOT.2022.3185289.

[125] Y. Liu, H. Yu, S. Xie, Y. Zhang, Deep reinforcement learning for offloading and resource allocation in vehicle edge computing and networks, IEEE Trans. Veh.
Technol. 68 (11) (2019) 11158–11168, https://doi.org/10.1109/TVT.2019.2935450.

[126] L. Huang, S. Bi, Y.-J.A. Zhang, Deep reinforcement learning for online computation offloading in wireless powered mobile-edge computing networks, IEEE
Trans. Mobile Comput. 19 (11) (2020) 2581–2593, https://doi.org/10.1109/TMC.2019.2928811.

[127] L. Ale, N. Zhang, X. Fang, X. Chen, S. Wu, L. Li, Delay-aware and energy-efficient computation offloading in mobile-edge computing using deep reinforcement
learning, IEEE Trans. Cogn. Commun. Netw. 7 (3) (2021) 881–892, https://doi.org/10.1109/TCCN.2021.3066619.

[128] S. Yu, X. Chen, L. Yang, D. Wu, M. Bennis, J. Zhang, Intelligent edge: leveraging deep imitation learning for mobile edge computation offloading, IEEE Wireless
Commun. 27 (1) (2020) 92–99, https://doi.org/10.1109/MWC.001.1900232.

[129] L. Lei, H. Xu, X. Xiong, K. Zheng, W. Xiang, X. Wang, Multiuser resource control with deep reinforcement learning in IoT edge computing, IEEE Internet Things
J. 6 (6) (2019) 10119–10133, https://doi.org/10.1109/JIOT.2019.2935543.

[130] L. Qian, Y. Wu, F. Jiang, N. Yu, W. Lu, B. Lin, NOMA assisted multi-task multi-access mobile edge computing via deep reinforcement learning for industrial
internet of things, IEEE Trans. Ind. Inf. 17 (8) (2021) 5688–5698, https://doi.org/10.1109/TII.2020.3001355.

[131] D.C. Nguyen, P.N. Pathirana, M. Ding, A. Seneviratne, Privacy-preserved task offloading in mobile blockchain with deep reinforcement learning, IEEE Trans.
Netw. Serv. Manag. 17 (4) (2020) 2536–2549, https://doi.org/10.1109/TNSM.2020.3010967.

[132] S. Wan, J. Lu, P. Fan, K.B. Letaief, Toward big data processing in IoT: path planning and resource management of UAV base stations in mobile-edge computing
system, IEEE Internet Things J. 7 (7) (2020) 5995–6009, https://doi.org/10.1109/JIOT.2019.2954825.

[133] D. Wei, N. Xi, J. Ma, L. He, UAV-assisted privacy-preserving online computation offloading for internet of things, Rem. Sens. 13 (23) (2021) 23, https://doi.
org/10.3390/rs13234853.

[134] J. Xu, B. Ai, L. Chen, Y. Cui, N. Wang, Deep reinforcement learning for computation and communication resource allocation in multiaccess MEC assisted
Railway IoT networks, IEEE Trans. Intell. Transport. Syst. 23 (12) (2022) 23797–23808, https://doi.org/10.1109/TITS.2022.3205175.

[135] D.C. Nguyen, P.N. Pathirana, M. Ding, A. Seneviratne, Secure computation offloading in blockchain based IoT networks with deep reinforcement learning,
IEEE Trans. Netw. Sci. Eng. 8 (4) (2021) 3192–3208, https://doi.org/10.1109/TNSE.2021.3106956.

[136] S. Yang, L. Zhang, L. Cui, Q. Dong, W. Xiao, C. Luo, RLCS: towards a robust and efficient mobile edge computing resource scheduling and task offloading
system based on graph neural network, Comput. Commun. 206 (2023) 38–50, https://doi.org/10.1016/j.comcom.2023.04.020.

[137] M.A. Ebrahim, G.A. Ebrahim, H.K. Mohamed, S.O. Abdellatif, A deep learning approach for task offloading in multi-UAV aided mobile edge computing, IEEE
Access 10 (2022) 101716–101731, https://doi.org/10.1109/ACCESS.2022.3208584.

[138] Y. Wu, Secrecy-based delay-aware computation offloading via mobile edge computing for internet of things, IEEE Internet Things J. 6 (3) (2019) 4201–4213,
https://doi.org/10.1109/JIOT.2018.2875241.

[139] W.-Z. Zhang, Secure and optimized load balancing for multitier IoT and edge-cloud computing systems, IEEE Internet Things J. 8 (10) (2021) 8119–8132,
https://doi.org/10.1109/JIOT.2020.3042433.

[140] L. Ma, X. Wang, X. Wang, L. Wang, Y. Shi, M. Huang, TCDA: truthful combinatorial double auctions for mobile edge computing in industrial internet of things,
IEEE Trans. Mobile Comput. 21 (11) (2022) 4125–4138, https://doi.org/10.1109/TMC.2021.3064314.

[141] J. Liu, Q. Zhang, Computation resource allocation for heterogeneous time-critical IoT services in MEC, in: 2020 IEEE Wireless Communications and
Networking Conference (WCNC), 2020, pp. 1–6, https://doi.org/10.1109/WCNC45663.2020.9120832.

[142] Z. Tong, J. Cai, J. Mei, K. Li, K. Li, Dynamic energy-saving offloading strategy guided by Lyapunov optimization for IoT devices, IEEE Internet Things J. 9 (20)
(2022) 19903–19915, https://doi.org/10.1109/JIOT.2022.3168968.

[143] H. Wu, K. Wolter, P. Jiao, Y. Deng, Y. Zhao, M. Xu, EEDTO: an energy-efficient dynamic task offloading algorithm for blockchain-enabled IoT-edge-cloud
orchestrated computing, IEEE Internet Things J. 8 (4) (2021) 2163–2176, https://doi.org/10.1109/JIOT.2020.3033521.

[144] J. Chen, H. Wu, R. Li, P. Jiao, Green parallel online offloading for DSCI-type tasks in IoT-edge systems, IEEE Trans. Ind. Inf. 18 (11) (2022) 7955–7966, https://
doi.org/10.1109/TII.2022.3167668.

[145] L. Liu, X. Yuan, D. Chen, N. Zhang, H. Sun, A. Taherkordi, Multi-user dynamic computation offloading and resource allocation in 5G MEC heterogeneous
networks with static and dynamic subchannels, IEEE Trans. Veh. Technol. (2023) 1–16, https://doi.org/10.1109/TVT.2023.3285069.

[146] X. Lyu, Optimal schedule of mobile edge computing for internet of things using partial information, IEEE J. Sel. Area. Commun. 35 (11) (2017) 2606–2615,
https://doi.org/10.1109/JSAC.2017.2760186.

[147] Y. Deng, Z. Chen, X. Yao, S. Hassan, Ali M.A. Ibrahim, Parallel offloading in green and sustainable mobile edge computing for delay-constrained IoT system,
IEEE Trans. Veh. Technol. 68 (12) (2019) 12202–12214, https://doi.org/10.1109/TVT.2019.2944926.

[148] A.M. Seid, J. Lu, H.N. Abishu, T.A. Ayall, Blockchain-enabled task offloading with energy harvesting in multi-UAV-assisted IoT networks: a multi-agent DRL
approach, IEEE J. Sel. Area. Commun. 40 (12) (2022) 3517–3532, https://doi.org/10.1109/JSAC.2022.3213352.

[149] H. Mai Do, T.P. Tran, M. Yoo, Deep reinforcement learning-based task offloading and resource allocation for industrial IoT in MEC federation system, IEEE
Access 11 (2023) 83150–83170, https://doi.org/10.1109/ACCESS.2023.3302518.

[150] H. Ke, J. Wang, H. Wang, Y. Ge, Joint optimization of data offloading and resource allocation with renewable energy aware for IoT devices: a deep
reinforcement learning approach, IEEE Access 7 (2019) 179349–179363, https://doi.org/10.1109/ACCESS.2019.2959348.

[151] A.M. Seid, G.O. Boateng, B. Mareri, G. Sun, W. Jiang, Multi-agent DRL for task offloading and resource allocation in multi-UAV enabled IoT edge network, IEEE
Trans. Netw. Serv. Manag. 18 (4) (2021) 4531–4547, https://doi.org/10.1109/TNSM.2021.3096673.

[152] D.S. Lakew, A.-T. Tran, N.-N. Dao, S. Cho, Intelligent offloading and resource allocation in heterogeneous aerial access IoT networks, IEEE Internet Things J. 10
(7) (2023) 5704–5718, https://doi.org/10.1109/JIOT.2022.3161571.

[153] G. Wu, Z. Xu, H. Zhang, S. Shen, S. Yu, Multi-agent DRL for joint completion delay and energy consumption with queuing theory in MEC-based IIoT, J. Parallel
Distr. Comput. 176 (2023) 80–94, https://doi.org/10.1016/j.jpdc.2023.02.008.

[154] X. Zhu, Y. Luo, A. Liu, M.Z.A. Bhuiyan, S. Zhang, Multiagent deep reinforcement learning for vehicular computation offloading in IoT, IEEE Internet Things J. 8
(12) (2021) 9763–9773, https://doi.org/10.1109/JIOT.2020.3040768.

[155] Z. Li, M. Xu, J. Nie, J. Kang, W. Chen, S. Xie, NOMA-enabled cooperative computation offloading for blockchain-empowered internet of things: a learning
approach, IEEE Internet Things J. 8 (4) (2021) 2364–2378, https://doi.org/10.1109/JIOT.2020.3016644.

[156] N. Cheng, Space/aerial-assisted computing offloading for IoT applications: a learning-based approach, IEEE J. Sel. Area. Commun. 37 (5) (2019) 1117–1129,
https://doi.org/10.1109/JSAC.2019.2906789.

[157] S. Chen, L. Rui, Z. Gao, W. Li, X. Qiu, Cache-assisted collaborative task offloading and resource allocation strategy: a metareinforcement learning approach,
IEEE Internet Things J. 9 (20) (2022) 19823–19842, https://doi.org/10.1109/JIOT.2022.3168885.

W. Dayong et al.

https://doi.org/10.1016/j.aeue.2020.153134
https://doi.org/10.1109/TETCI.2022.3193367
https://doi.org/10.1016/j.suscom.2023.100859
https://doi.org/10.1016/j.suscom.2023.100899
https://doi.org/10.1109/ACCESS.2020.2991057
https://doi.org/10.1109/JIOT.2022.3185289
https://doi.org/10.1109/TVT.2019.2935450
https://doi.org/10.1109/TMC.2019.2928811
https://doi.org/10.1109/TCCN.2021.3066619
https://doi.org/10.1109/MWC.001.1900232
https://doi.org/10.1109/JIOT.2019.2935543
https://doi.org/10.1109/TII.2020.3001355
https://doi.org/10.1109/TNSM.2020.3010967
https://doi.org/10.1109/JIOT.2019.2954825
https://doi.org/10.3390/rs13234853
https://doi.org/10.3390/rs13234853
https://doi.org/10.1109/TITS.2022.3205175
https://doi.org/10.1109/TNSE.2021.3106956
https://doi.org/10.1016/j.comcom.2023.04.020
https://doi.org/10.1109/ACCESS.2022.3208584
https://doi.org/10.1109/JIOT.2018.2875241
https://doi.org/10.1109/JIOT.2020.3042433
https://doi.org/10.1109/TMC.2021.3064314
https://doi.org/10.1109/WCNC45663.2020.9120832
https://doi.org/10.1109/JIOT.2022.3168968
https://doi.org/10.1109/JIOT.2020.3033521
https://doi.org/10.1109/TII.2022.3167668
https://doi.org/10.1109/TII.2022.3167668
https://doi.org/10.1109/TVT.2023.3285069
https://doi.org/10.1109/JSAC.2017.2760186
https://doi.org/10.1109/TVT.2019.2944926
https://doi.org/10.1109/JSAC.2022.3213352
https://doi.org/10.1109/ACCESS.2023.3302518
https://doi.org/10.1109/ACCESS.2019.2959348
https://doi.org/10.1109/TNSM.2021.3096673
https://doi.org/10.1109/JIOT.2022.3161571
https://doi.org/10.1016/j.jpdc.2023.02.008
https://doi.org/10.1109/JIOT.2020.3040768
https://doi.org/10.1109/JIOT.2020.3016644
https://doi.org/10.1109/JSAC.2019.2906789
https://doi.org/10.1109/JIOT.2022.3168885

Heliyon 10 (2024) e29916

41

[158] L. Zang, X. Zhang, B. Guo, Federated deep reinforcement learning for online task offloading and resource allocation in WPC-mec networks, IEEE Access 10
(2022) 9856–9867, https://doi.org/10.1109/ACCESS.2022.3144415.

[159] X. Chen, G. Liu, Federated deep reinforcement learning-based task offloading and resource allocation for smart cities in a mobile edge network, Sensors 22 (13)
(2022) 13, https://doi.org/10.3390/s22134738.

[160] S. Wu, H. Xue, L. Zhang, Q-Learning-Aided offloading strategy in edge-assisted federated learning over industrial IoT, Electronics 12 (7) (2023) 7, https://doi.
org/10.3390/electronics12071706.

[161] H. Seo, H. Oh, J.K. Choi, S. Park, Differential pricing-based task offloading for delay-sensitive IoT applications in mobile edge computing system, IEEE Internet
Things J. 9 (19) (2022) 19116–19131, https://doi.org/10.1109/JIOT.2022.3163820.

[162] H. Guo, J. Liu, J. Zhang, Computation offloading for multi-access mobile edge computing in ultra-dense networks, IEEE Commun. Mag. 56 (8) (2018) 14–19,
https://doi.org/10.1109/MCOM.2018.1701069.

[163] S.K.U. Zaman, et al., COME-UP: computation offloading in mobile edge computing with LSTM based user direction prediction, Appl. Sci. 12 (7) (2022) 3312,
https://doi.org/10.3390/app12073312.

[164] X. Deng, Z. Sun, D. Li, J. Luo, S. Wan, User-centric computation offloading for edge computing, IEEE Internet Things J. 8 (16) (2021) 12559–12568, https://
doi.org/10.1109/JIOT.2021.3057694.

[165] V.S. Pana, O.P. Babalola, V. Balyan, 5G radio access networks: a survey, Array 14 (2022) 100170, https://doi.org/10.1016/j.array.2022.100170.
[166] H. Hu, W. Song, Q. Wang, R.Q. Hu, H. Zhu, Energy efficiency and delay tradeoff in an MEC-enabled mobile IoT network, IEEE Internet Things J. 9 (17) (2022)

15942–15956, https://doi.org/10.1109/JIOT.2022.3153847.
[167] Y. Yang, Y. Gong, Y.-C. Wu, Intelligent-reflecting-surface-aided mobile edge computing with binary offloading: energy minimization for IoT devices, IEEE

Internet Things J. 9 (15) (2022) 12973–12983, https://doi.org/10.1109/JIOT.2022.3173027.
[168] Y. Gao, W. Tang, M. Wu, P. Yang, L. Dan, Dynamic social-aware computation offloading for low-latency communications in IoT, IEEE Internet Things J. 6 (5)

(2019) 7864–7877, https://doi.org/10.1109/JIOT.2019.2909299.
[169] S. Mendonça, B. Damásio, L. Charlita de Freitas, L. Oliveira, M. Cichy, A. Nicita, The rise of 5G technologies and systems: a quantitative analysis of knowledge

production, Telecommun. Pol. 46 (4) (2022) 102327, https://doi.org/10.1016/j.telpol.2022.102327.
[170] F. Zhou, L. Feng, M. Kadoch, P. Yu, W. Li, Z. Wang, Multiagent RL aided task offloading and resource management in Wi-fi 6 and 5G coexisting industrial

wireless environment, IEEE Trans. Ind. Inf. 18 (5) (2022) 2923–2933, https://doi.org/10.1109/TII.2021.3106973.
[171] X. Xu, D. Li, Z. Dai, S. Li, X. Chen, A heuristic offloading method for deep learning edge services in 5G networks, IEEE Access 7 (2019) 67734–67744, https://

doi.org/10.1109/ACCESS.2019.2918585.
[172] G. Li, M. Zeng, D. Mishra, L. Hao, Z. Ma, O.A. Dobre, Latency minimization for IRS-aided NOMA MEC systems with WPT-enabled IoT devices, IEEE Internet

Things J. 10 (14) (2023) 12156–12168, https://doi.org/10.1109/JIOT.2023.3240395.
[173] D. Ye, X. Wang, J. Hou, Balanced multi-access edge computing offloading strategy in the Internet of things scenario, Comput. Commun. 194 (2022) 399–410,

https://doi.org/10.1016/j.comcom.2022.07.048.
[174] O. Alamu, T.O. Olwal, K. Djouani, Cooperative NOMA networks with simultaneous wireless information and power transfer: an overview and outlook, Alex.

Eng. J. 71 (2023) 413–438, https://doi.org/10.1016/j.aej.2023.03.057.
[175] K. Li, J. Zhao, J. Hu, Y. Chen, Dynamic energy efficient task offloading and resource allocation for NOMA-enabled IoT in smart buildings and environment,

Build. Environ. 226 (2022) 109513, https://doi.org/10.1016/j.buildenv.2022.109513.
[176] K. Pahlavan, P. Krishnamurthy, Evolution and impact of Wi-fi technology and applications: a historical perspective, Int. J. Wireless Inf. Network 28 (1) (2021)

3–19, https://doi.org/10.1007/s10776-020-00501-8.
[177] A. Mahmood, A. Ahmed, M. Naeem, Y. Hong, Partial offloading in energy harvested mobile edge computing: a Direct search approach, IEEE Access 8 (2020)

36757–36763, https://doi.org/10.1109/ACCESS.2020.2974809.
[178] X. Yan, The application of power-domain non-orthogonal multiple access in satellite communication networks, IEEE Access 7 (2019) 63531–63539, https://

doi.org/10.1109/ACCESS.2019.2917060.
[179] F. Chai, Q. Zhang, H. Yao, X. Xin, R. Gao, M. Guizani, Joint multi-task offloading and resource allocation for mobile edge computing systems in satellite IoT,

IEEE Trans. Veh. Technol. 72 (6) (2023) 7783–7795, https://doi.org/10.1109/TVT.2023.3238771.
[180] S. Xia, Z. Yao, Y. Li, S. Mao, Online distributed offloading and computing resource management with energy harvesting for heterogeneous MEC-enabled IoT,

IEEE Trans. Wireless Commun. 20 (10) (2021) 6743–6757.
[181] Y. Zhang, J.-H. Liu, C.-Y. Wang, H.-Y. Wei, Decomposable intelligence on cloud-edge IoT framework for live video analytics, IEEE Internet Things J. 7 (9)

(2020) 8860–8873, https://doi.org/10.1109/JIOT.2020.2997091.
[182] R. Chai, M. Li, T. Yang, Q. Chen, Dynamic priority-based computation scheduling and offloading for interdependent tasks: leveraging parallel transmission and

execution, IEEE Trans. Veh. Technol. 70 (10) (2021) 10970–10985, https://doi.org/10.1109/TVT.2021.3110401.
[183] C. Chen, Y. Zhang, Z. Wang, S. Wan, Q. Pei, Distributed computation offloading method based on deep reinforcement learning in ICV, Appl. Soft Comput. 103

(2021) 107108, https://doi.org/10.1016/j.asoc.2021.107108.
[184] L. Zhao, MESON: a mobility-aware dependent task offloading scheme for urban vehicular edge computing, IEEE Trans. Mobile Comput. (2023) 1–15, https://

doi.org/10.1109/TMC.2023.3289611.
[185] S. Liu, Y. Yu, L. Guo, P.L. Yeoh, B. Vucetic, Y. Li, Adaptive delay-energy balanced partial offloading strategy in Mobile Edge Computing networks, Digit.

Commun. Netw. 9 (6) (2023) 1310–1318, https://doi.org/10.1016/j.dcan.2022.05.029.
[186] B. Lu, S. Lin, J. Fang, X. Hong, J. Shi, Learning-assisted partial offloading for dynamic NOMA-MEC systems with imperfect SIC and reconfiguration energy cost,

IEEE Internet Things J. 10 (22) (2023) 20134–20148, https://doi.org/10.1109/JIOT.2023.3283272.
[187] X. Li, R. Fan, H. Hu, N. Zhang, Joint task offloading and resource allocation for cooperative mobile-edge computing under sequential task dependency, IEEE

Internet Things J. 9 (23) (2022) 24009–24029, https://doi.org/10.1109/JIOT.2022.3188933.
[188] H. Jiang, X. Dai, Z. Xiao, A. Iyengar, Joint task offloading and resource allocation for energy-constrained mobile edge computing, IEEE Trans. Mobile Comput.

22 (7) (2023) 4000–4015, https://doi.org/10.1109/TMC.2022.3150432.
[189] H. Hu, X. Zhou, Q. Wang, R.Q. Hu, Online computation offloading and trajectory scheduling for UAV-enabled wireless powered mobile edge computing, China

Commun. 19 (4) (2022) 257–273, https://doi.org/10.23919/JCC.2022.04.019.
[190] F. Wang, S. Cai, V.K.N. Lau, Decentralized DNN task partitioning and offloading control in MEC systems with energy harvesting devices, IEEE J. Sel. Top.

Signal Process. 17 (1) (2023) 173–188, https://doi.org/10.1109/JSTSP.2022.3221850.
[191] H. Zhou, M. Li, N. Wang, G. Min, J. Wu, Accelerating deep learning inference via model parallelism and partial computation offloading, IEEE Trans. Parallel

Distr. Syst. 34 (2) (2023) 475–488, https://doi.org/10.1109/TPDS.2022.3222509.
[192] X. Jiao, Deep reinforcement learning for time-energy tradeoff online offloading in MEC-enabled industrial internet of things, IEEE Trans. Netw. Sci. Eng. (2023)

1–14, https://doi.org/10.1109/TNSE.2023.3263169.
[193] Y.-H. Kao, B. Krishnamachari, M.-R. Ra, F. Bai, Hermes: latency optimal task assignment for resource-constrained mobile computing, IEEE Trans. Mobile

Comput. 16 (11) (2017) 3056–3069, https://doi.org/10.1109/TMC.2017.2679712.
[194] L. Yang, B. Liu, J. Cao, Y. Sahni, Z. Wang, Joint computation partitioning and resource allocation for latency sensitive applications in mobile edge clouds, IEEE

Trans. Serv. Comput. 14 (5) (2021) 1439–1452, https://doi.org/10.1109/TSC.2018.2890603.
[195] L. Yang, J. Cao, Z. Wang, W. Wu, Network aware mobile edge computation partitioning in multi-user environments, IEEE Trans. Serv. Comput. 14 (5) (2021)

1478–1491, https://doi.org/10.1109/TSC.2018.2876535.
[196] Y. Zhang, Resource scheduling and delay analysis for workflow in wireless small cloud, IEEE Trans. Mobile Comput. 17 (3) (2018) 675–687, https://doi.org/

10.1109/TMC.2017.2734083.
[197] C.-S. Yang, R. Pedarsani, A.S. Avestimehr, Communication-aware scheduling of serial tasks for dispersed computing, IEEE/ACM Trans. Netw. 27 (4) (2019)

1330–1343, https://doi.org/10.1109/TNET.2019.2919553.

W. Dayong et al.

https://doi.org/10.1109/ACCESS.2022.3144415
https://doi.org/10.3390/s22134738
https://doi.org/10.3390/electronics12071706
https://doi.org/10.3390/electronics12071706
https://doi.org/10.1109/JIOT.2022.3163820
https://doi.org/10.1109/MCOM.2018.1701069
https://doi.org/10.3390/app12073312
https://doi.org/10.1109/JIOT.2021.3057694
https://doi.org/10.1109/JIOT.2021.3057694
https://doi.org/10.1016/j.array.2022.100170
https://doi.org/10.1109/JIOT.2022.3153847
https://doi.org/10.1109/JIOT.2022.3173027
https://doi.org/10.1109/JIOT.2019.2909299
https://doi.org/10.1016/j.telpol.2022.102327
https://doi.org/10.1109/TII.2021.3106973
https://doi.org/10.1109/ACCESS.2019.2918585
https://doi.org/10.1109/ACCESS.2019.2918585
https://doi.org/10.1109/JIOT.2023.3240395
https://doi.org/10.1016/j.comcom.2022.07.048
https://doi.org/10.1016/j.aej.2023.03.057
https://doi.org/10.1016/j.buildenv.2022.109513
https://doi.org/10.1007/s10776-020-00501-8
https://doi.org/10.1109/ACCESS.2020.2974809
https://doi.org/10.1109/ACCESS.2019.2917060
https://doi.org/10.1109/ACCESS.2019.2917060
https://doi.org/10.1109/TVT.2023.3238771
http://refhub.elsevier.com/S2405-8440(24)05947-4/sref180
http://refhub.elsevier.com/S2405-8440(24)05947-4/sref180
https://doi.org/10.1109/JIOT.2020.2997091
https://doi.org/10.1109/TVT.2021.3110401
https://doi.org/10.1016/j.asoc.2021.107108
https://doi.org/10.1109/TMC.2023.3289611
https://doi.org/10.1109/TMC.2023.3289611
https://doi.org/10.1016/j.dcan.2022.05.029
https://doi.org/10.1109/JIOT.2023.3283272
https://doi.org/10.1109/JIOT.2022.3188933
https://doi.org/10.1109/TMC.2022.3150432
https://doi.org/10.23919/JCC.2022.04.019
https://doi.org/10.1109/JSTSP.2022.3221850
https://doi.org/10.1109/TPDS.2022.3222509
https://doi.org/10.1109/TNSE.2023.3263169
https://doi.org/10.1109/TMC.2017.2679712
https://doi.org/10.1109/TSC.2018.2890603
https://doi.org/10.1109/TSC.2018.2876535
https://doi.org/10.1109/TMC.2017.2734083
https://doi.org/10.1109/TMC.2017.2734083
https://doi.org/10.1109/TNET.2019.2919553

Heliyon 10 (2024) e29916

42

[198] “Joint Optimization of Offloading and Resource Allocation Scheme for Mobile Edge Computing | IEEE Conference Publication | IEEE Xplore.” Accessed:
January3, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8885537.

[199] S. Sundar, B. Liang, Offloading dependent tasks with communication delay and deadline constraint, in: IEEE INFOCOM 2018 - IEEE Conference on Computer
Communications, 2018, pp. 37–45, https://doi.org/10.1109/INFOCOM.2018.8486305.

[200] L. Liu, H. Huang, H. Tan, W. Cao, P. Yang, X.-Y. Li, Online DAG scheduling with on-demand function configuration in edge computing, in: E.S. Biagioni,
Y. Zheng, S. Cheng (Eds.), Wireless Algorithms, Systems, and Applications, Lecture Notes in Computer Science, Springer International Publishing, Cham, 2019,
pp. 213–224, https://doi.org/10.1007/978-3-030-23597-0_17.

[201] X. Qiu, L. Zhai, H. Wang, Time-minimized offloading for mobile edge computing systems, IEEE Access 7 (2019) 135439–135447, https://doi.org/10.1109/
ACCESS.2019.2941825.

[202] R. Karthick, R. Ramkumar, M. Akram, M. Vinoth Kumar, Overcome the challenges in bio-medical instruments using IOT – a review, Mater. Today Proc. 45
(2021) 1614–1619, https://doi.org/10.1016/j.matpr.2020.08.420.

[203] L.P. Qian, B. Shi, Y. Wu, B. Sun, D.H.K. Tsang, NOMA-enabled mobile edge computing for internet of things via joint communication and computation resource
allocations, IEEE Internet Things J. 7 (1) (2020) 718–733, https://doi.org/10.1109/JIOT.2019.2952647.

[204] B. Zhang, W. Ren, L. Zhao, X. Deng, Immune system multiobjective optimization algorithm for DTLZ problems, in: 2009 Fifth International Conference on
Natural Computation, IEEE, 2009, pp. 603–607. https://ieeexplore.ieee.org/abstract/document/5365367/. (Accessed 24 October 2023).

[205] K. Zhang, S. Leng, Y. He, S. Maharjan, Y. Zhang, Mobile edge computing and networking for green and low-latency internet of things, IEEE Commun. Mag. 56
(5) (2018) 39–45, https://doi.org/10.1109/MCOM.2018.1700882.

[206] T.S. Lugovaya, “Biometric Human Identification Based on Electrocardiogram, Masters Thesis Fac. Comput. Technol. Inform. Electrotech. Univ. ‘LETI’ St.-
Petersburg Russ. Fed., 2005.

[207] Y. Zuo, S. Jin, S. Zhang, Y. Zhang, Blockchain storage and computation offloading for cooperative mobile-edge computing, IEEE Internet Things J. 8 (11)
(2021) 9084–9098, https://doi.org/10.1109/JIOT.2021.3056656.

[208] M. Andrew, Z. Denis, M. Crogan, Discriminators for use in flow-based classification, Queen Mary Westfield Coll. Dep. Comput. Sci. (2005).
[209] Z. Zhao, W. Zhou, D. Deng, J. Xia, L. Fan, Intelligent mobile edge computing with pricing in internet of things, IEEE Access 8 (2020) 37727–37735, https://doi.

org/10.1109/ACCESS.2020.2974249.
[210] TPC-H, The TPC-H benchmarks [Online]. Available: www.tpc.org/tpch/, 2021.
[211] R. Yugha, S. Chithra, A survey on technologies and security protocols: reference for future generation IoT, J. Netw. Comput. Appl. 169 (2020) 102763, https://

doi.org/10.1016/j.jnca.2020.102763.
[212] C. Sonmez, A. Ozgovde, C. Ersoy, EdgeCloudSim: an environment for performance evaluation of edge computing systems, Trans. Emerg. Telecommun.

Technol. 29 (11) (2018) e3493, https://doi.org/10.1002/ett.3493.
[213] Z. Cai, Q. Li, X. Li, ElasticSim: a toolkit for simulating workflows with cloud resource runtime auto-scaling and stochastic task execution times, J. Grid Comput.

15 (2) (2017) 257–272, https://doi.org/10.1007/s10723-016-9390-y.
[214] H.H. Yang, Z. Liu, T.Q. Quek, H.V. Poor, Scheduling policies for federated learning in wireless networks, IEEE Trans. Commun. 68 (1) (2019) 317–333.
[215] J. Ren, Y. He, D. Wen, G. Yu, K. Huang, D. Guo, Scheduling for cellular federated edge learning with importance and channel awareness, IEEE Trans. Wireless

Commun. 19 (11) (2020) 7690–7703.
[216] M. Zhang, et al., Communication-efficient federated edge learning via optimal probabilistic device scheduling, IEEE Trans. Wireless Commun. 21 (10) (2022)

8536–8551.
[217] D. Dholakiya, T. Kshirsagar, A. Nayak, Survey of Mininet challenges, opportunities, and application in software-defined network (SDN), in: T. Senjyu, P.

N. Mahalle, T. Perumal, A. Joshi (Eds.), Information and Communication Technology for Intelligent Systems, Vol. 196, Smart Innovation, Systems and
Technologies, vol. 196, Springer Singapore, Singapore, 2021, pp. 213–221, https://doi.org/10.1007/978-981-15-7062-9_21.

[218] J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot, A. Chaintreau, CRAWDAD Dataset Cambridge/haggle (v. 2006-09-15), CRAWDAD Wirel. Netw. Data Arch.,
2006.

[219] L. Campanile, M. Gribaudo, M. Iacono, F. Marulli, M. Mastroianni, Computer network simulation with ns-3: a systematic literature review, Electronics 9 (2)
(2020) 272.

[220] M. Chen, Y. Miao, I. Humar, Introduction to OPNET network simulation, in: M. Chen, Y. Miao, I. Humar (Eds.), OPNET IoT Simulation, Springer, Singapore,
2019, pp. 77–153, https://doi.org/10.1007/978-981-32-9170-6_2.

[221] L. P, et al., Eua dataset [Online]. Available: https://github.com/swinedge/eua-dataset, 2018.
[222] J. Grundy, Y. Yang, Optimal edge user allocation in edge computing with variable sized vector bin packing, Accessed: October24, 2023. [Online]. Available:,

in: Service-Oriented Computing: 16th International Conference, ICSOC 2018, Hangzhou, China, November 12-15, 2018, Proceedings, Springer, 2018, p. 230
https://books.google.com.my/books?hl=en&lr=&id=sq52DwAAQBAJ&oi=fnd&pg=PA230&dq=Optimal+edge+user+allocation+in+edge+computing+
with+variable+sized+vector+bin+packing&ots=7ENgTi4751&sig=N67KK_0ya6U90KjeDPm6ZLfm8Ao.

[223] A. Musa, I. Awan, Functional and performance analysis of discrete event network simulation tools, Simulat. Model. Pract. Theor. 116 (2022) 102470, https://
doi.org/10.1016/j.simpat.2021.102470.

[224] J. Huang, M. Wang, Y. Wu, Y. Chen, X. Shen, Distributed offloading in overlapping areas of mobile-edge computing for internet of things, IEEE Internet Things
J. 9 (15) (2022) 13837–13847, https://doi.org/10.1109/JIOT.2022.3143539.

W. Dayong et al.

https://ieeexplore.ieee.org/abstract/document/8885537
https://doi.org/10.1109/INFOCOM.2018.8486305
https://doi.org/10.1007/978-3-030-23597-0_17
https://doi.org/10.1109/ACCESS.2019.2941825
https://doi.org/10.1109/ACCESS.2019.2941825
https://doi.org/10.1016/j.matpr.2020.08.420
https://doi.org/10.1109/JIOT.2019.2952647
https://ieeexplore.ieee.org/abstract/document/5365367/
https://doi.org/10.1109/MCOM.2018.1700882
http://refhub.elsevier.com/S2405-8440(24)05947-4/sref215
http://refhub.elsevier.com/S2405-8440(24)05947-4/sref215
https://doi.org/10.1109/JIOT.2021.3056656
http://refhub.elsevier.com/S2405-8440(24)05947-4/sref216
https://doi.org/10.1109/ACCESS.2020.2974249
https://doi.org/10.1109/ACCESS.2020.2974249
http://www.tpc.org/tpch/
https://doi.org/10.1016/j.jnca.2020.102763
https://doi.org/10.1016/j.jnca.2020.102763
https://doi.org/10.1002/ett.3493
https://doi.org/10.1007/s10723-016-9390-y
http://refhub.elsevier.com/S2405-8440(24)05947-4/sref218
http://refhub.elsevier.com/S2405-8440(24)05947-4/sref219
http://refhub.elsevier.com/S2405-8440(24)05947-4/sref219
http://refhub.elsevier.com/S2405-8440(24)05947-4/sref220
http://refhub.elsevier.com/S2405-8440(24)05947-4/sref220
https://doi.org/10.1007/978-981-15-7062-9_21
http://refhub.elsevier.com/S2405-8440(24)05947-4/sref221
http://refhub.elsevier.com/S2405-8440(24)05947-4/sref221
http://refhub.elsevier.com/S2405-8440(24)05947-4/sref210
http://refhub.elsevier.com/S2405-8440(24)05947-4/sref210
https://doi.org/10.1007/978-981-32-9170-6_2
https://github.com/swinedge/eua-dataset
https://books.google.com.my/books?hl=en&lr=&id=sq52DwAAQBAJ&oi=fnd&pg=PA230&dq=Optimal+edge+user+allocation+in+edge+computing+with+variable+sized+vector+bin+packing&ots=7ENgTi4751&sig=N67KK_0ya6U90KjeDPm6ZLfm8Ao
https://books.google.com.my/books?hl=en&lr=&id=sq52DwAAQBAJ&oi=fnd&pg=PA230&dq=Optimal+edge+user+allocation+in+edge+computing+with+variable+sized+vector+bin+packing&ots=7ENgTi4751&sig=N67KK_0ya6U90KjeDPm6ZLfm8Ao
https://doi.org/10.1016/j.simpat.2021.102470
https://doi.org/10.1016/j.simpat.2021.102470
https://doi.org/10.1109/JIOT.2022.3143539

	A comprehensive review on internet of things task offloading in multi-access edge computing
	1 Introduction
	2 Background of IOT task offloading in MEC
	2.1 Edge-cloud continuum and computational task offloading
	2.2 Task offloading decision
	2.3 Task assignment
	2.4 Resource allocation
	2.5 Global optimization and multi-objective optimation

	3 Related works
	4 Research methodology
	4.1 Research questions
	4.2 Keywords
	4.3 Inclusion and exclusion criteria
	4.3.1 Inclusion and Exclusion Criteria

	4.4 Quality assessment
	4.5 Article selection and screening

	5 IOT task offloading mechanism in MEC
	5.1 Classic mathematical optimization based offloading mechanisms
	5.2 Lyapunov optimization based offloading mechanisms
	5.3 Heuristic based offloading mechanisms
	5.4 Meta-heuristic based offloading mechanisms
	5.5 Game theory based offloading mechanisms
	5.6 AI based offloading mechanisms
	5.6.1 Support vector machine
	5.6.2 Neural Network
	5.6.3 Q-learning
	5.6.4 Deep Q-learning
	5.6.5 Double DQN
	5.6.6 Deteministic policy-gradient
	5.6.7 Actor-critic based policy-gradient
	5.6.8 Meta reinforcement learning
	5.6.9 Joint federated learning and reinforcement learning

	5.7 Parameters to be determined for all type of machanism
	5.7.1 Task load
	5.7.2 Computing capacity
	5.7.3 Network status
	5.7.4 Energy consumption
	5.7.5 Payment cost

	6 Result and discussion
	6.1 AQ1: problems addressed
	6.2 AQ2: optimization objectives
	6.2.1 Offloading efficiency
	6.2.2 Delay and Energy consumption
	6.2.3 Resource utilization

	6.3 AQ3: techniques
	6.3.1 Traditional approach
	6.3.2 AI-based approach

	6.4 AQ4: network environments
	6.4.1 RAN
	6.4.2 LTE
	6.4.3 5G
	6.4.4 TDMA and OFDMA
	6.4.5 NOMA
	6.4.6 NB-IOT
	6.4.7 Wi-fi
	6.4.8 WPT
	6.4.9 SDN
	6.4.10 Satellite

	6.5 AQ5: architecture
	6.5.1 TD to TD
	6.5.2 TD to edge
	6.5.3 TD to edge-cloud

	6.6 AQ6: offloading destination
	6.6.1 Single server
	6.6.2 Multiple server

	6.7 AQ7: parameters
	6.7.1 Size of tasks
	6.7.2 Task dependency
	6.7.3 Dead line
	6.7.4 Capacity of TD and MEC
	6.7.5 Transmission delay
	6.7.6 Channel bandwidth
	6.7.7 Location Of TD
	6.7.8 Network hop
	6.7.9 Transmit power and NOISE POWER
	6.7.10 Battery level
	6.7.11 Payment cost

	6.8 AQ8: evaluation METHODS
	6.8.1 Testbed
	6.8.2 Simulator
	6.8.3 Implement

	6.9 AQ9: baselines
	6.10 AQ10: performance metrics
	6.10.1 Offload efficiency
	6.10.2 Time
	6.10.3 Energy consumption
	6.10.4 Accuracy
	6.10.5 Others

	6.11 AQ11: dataset
	6.11.1 Compute load data set
	6.11.2 TD movement trajectory data set

	7 Open issues and future research directions
	7.1 Joint decision-making by TD and MEC
	7.2 Highly reliable offloading scheduling
	7.3 TD offload request activity prediction
	7.4 Practicable partial task offloading
	7.5 Multi-objective optimization task offloading with dependencies
	7.6 Open MEC architecture
	7.7 Aerial access network

	8 Conclusion
	Funding statement
	Data availability
	CRediT authorship contribution statement
	Declaration of competing interest
	References

