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A B S T R A C T   

With the rapid development of Internet of Things (IoT) technology, Terminal Devices (TDs) are 
more inclined to offload computing tasks to higher-performance computing servers, thereby 
solving the problems of insufficient computing capacity and rapid battery consumption of TD. The 
emergence of Multi-access Edge Computing (MEC) technology provides new opportunities for IoT 
task offloading. It allows TDs to access computing networks through multiple communication 
technologies and supports more mobility of terminal devices. Review studies on IoT task off-
loading and MEC have been extensive, but none of them focus on IoT task offloading in MEC. To 
fill this gap, this paper provides a comprehensive and in-depth understanding of the algorithms 
and mechanisms of multiple IoT task offloading in the MEC network. For each paper, the main 
problems solved by the mechanism, technical classification, evaluation methods, and supported 
parameters are extracted and analyzed. Furthermore, shortcomings of current research and future 
research trends are discussed. This review will help potential and new researchers quickly un-
derstand the panorama of IoT task offloading approaches in MEC and find appropriate research 
paths.   

1. Introduction 

The development of Industry 4.0 and smart cities has led to the rapid expansion of the scale of the Internet of Things (IoT) [1]. The 
new demands for innovation have significantly increased the computing load on terminal devices, especially IoT applications that 
include Artificial Intelligence (AI) functions [2,3]. However, the computing capacity and power supply of the Terminal Device (TD) are 
limited due to limitations of the manufacturing process, cost and battery capacity [4]. This results in limited application of IoT. The 
emergence of computing offloading technology provides new opportunities to solve such problems [5,6]. TDs can offload computing 
tasks to cloud platforms or edge computing networks, thereby significantly shortening task execution time and extending TD’s battery 
life [7,8]. 

Computing networks such as cloud, fog, and edge can be used to carry offloaded tasks from TD. However, the development of 5G 
technology has made MECs the primary computing network to support the offloading of IoT tasks. In particular, the further 
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development of the edge-cloud continuum architecture meets the time-sensitive requirements of task offloading. MEC technology 
officially released in 2016 [9,10], allows IoT devices to process data close to the data source, which reduces the latency of data 
transmission and helps to reduce the burden on the network [11,12]. This is particularly beneficial for IoT devices with low bandwidth 
or unstable network connections, it can better support IoT offloading of computing tasks. 

The IoT task offloading in MEC scenario has its particularities that are different from other application scenarios. First, IoT devices 
need to offload more computing-intensive tasks due to very limited computing power [13]. Second, task offloading in IoT application 
scenarios requires optimizing the energy consumption of TD to extend the working time of the device due to the limitation of battery 
capacity [14,15]. Third, IoT has a larger network scale (e.g. Smart cities). This results in a huge number of TDs and edge computing 
nodes in the network [16,17]. Therefore, it is very difficult to find the optimal solution for task offloading decision-making. In addition, 
the computing tasks of IoT are highly heterogeneous due to different hardware systems and diversified software applications [18]. 
Moreover, IoT computing tasks are also mostly time-sensitive. Device mobility in some IoT application scenarios is also very high (such 
as the Internet of Vehicles, where even task migration needs to be considered). These factors jointly make the task offloading process of 
IoT very complex and have particularly high performance requirements [19,20]. All these lead to the fact that IoT task offloading 
mechanisms need to consider multiple optimization objectives comprehensively, rather than just improving a particular performance 
metric. 

The rapid growth of the demand for multi-objective task offloading optimization coupled with advances in classical mathematical 
optimization, heuristic optimization and AI has expanded the research scope and capabilities in this field [15,21–23]. In particular, 
AI-based task offloading methods have been rapidly developed in recent years [24,25]. Such methods support more decision opti-
mization parameters and can cope with more complex task-offloading scenarios. In addition, numerous intelligent learning models and 
decision-making frameworks have been used to support IoT task offloading in MEC due to the rapid development of the AI research 
field [26–29]. 

It’s difficult to quickly understand the technical route and research status of the IoT task offloading mechanism in MEC due to the 
related research on MEC and IoT task offloading being very extensive. In addition, there is a lack of review specifically focusing on IoT 
task offloading in MEC. To fill this gap, this survey aims to address this critical need by providing a comprehensive overview of the state 
of research and development in task offloading optimization. This study comprehensively investigates IoT task offloading mechanisms 
in MEC network environments, analyzing the main problems addressed by the offloading mechanisms, the techniques employed, the 
input parameters related to the environment, the evaluation metrics of the mechanisms or algorithms, the evaluation tools, and the 
datasets. Our goal is to provide a holistic view of the research field. 

The contributions of this study are briefly summarized below: 

• This paper comprehensively reviewed the research papers on IoT task offloading mechanisms from 2016 to the present and dis-
cusses on the advantages and disadvantages of classification of implementation technologies.  

• The distribution of input parameters in various offloading mechanisms was analyzed to explore the coverage and limitations of the 
influencing factors of the task offloading mechanism.  

• Performance metrics for evaluating offloading algorithms and mechanisms are presented,  
• Statistical analysis of evaluation methods, tools, and data sets for algorithms and mechanisms are presented.  
• Potential research opportunities and future research directions are presented. 

The rest of the paper is organized as follows: Section 2 shows the background of IoT task offloading. Section 3 describes the related 
works. Section 4 gives the research methodology. Section 5 presents the classification of IoT task offloading mechanisms in MEC. 
Section 6 discussed and answered research questions. Section 7 provides open issues and future research directions. In the end, the 
conclusion is provided in Section 8. 

Fig. 1. Logic diagram of IoT task offloading in MEC.  
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2. Background of IOT task offloading in MEC 

Task offloading in the context of IoT involves moving computing tasks or workloads from IoT devices to more powerful computing 
resources, typically at the edge or in the cloud, for more efficient processing [30,31]. Many IoT devices, especially sensors and small 
embedded systems, are resource-constrained with limited processing power and energy supplies [32,33]. These limitations make it 
challenging for them to perform complex calculations and data processing locally. 

IoT applications are becoming increasingly complex and often introduce real-time analytics, image recognition, and other 
computationally intensive tasks [34]. These tasks be beyond the capabilities of resource-constrained IoT devices. Some IoT applica-
tions, such as self-driving cars, industrial automation, and augmented reality, require low-latency processing for real-time deci-
sion-making [35,36]. Offloading tasks to more powerful edge or cloud servers can reduce latency. However, neither the computing 
resources of MEC nor the communication resources of wireless networks are unlimited [37,38]. TDs still face many challenges when 
performing task offloading. Fig. 1 shows the logic diagram of IoT task offloading in MEC. 

2.1. Edge-cloud continuum and computational task offloading 

There are many computing paradigms which provide computational power for the computation offloading from capacity- 
constrained TDs [39]. The basic solution is to offload computing tasks directly from TD to a cloud platform with sufficient re-
sources [40]. However, excessive network transmission delay will be introduced due to the long distance between the cloud platform 
and TD [41]. Instead, edge servers are deployed closer to the TD. The short communication distance greatly reduces the delay of task 
data transmission. However, edge servers are difficult to carry a large number of computing tasks due to insufficient computing ca-
pacity [42]. Edge-cloud continuum can solve this problem very well. In this computing paradigm, edge servers and cloud platforms 
jointly provide computing resources for TDs. The computing tasks offloaded from TDs are first performed by the edge server, and part 
of the offloaded tasks will be transferred to the cloud platform for execution when the edge server power is insufficient [43]. Thus, the 
performance of task offloading can be significantly improved due to taking full advantage of the fast response from edge servers and 
the sufficient resources provided by cloud platform. Fig. 1 presents the architecture of IoT task offloading in edge-cloud continuum. 

In large-scale networks, tasks can be offloaded vertically to edge servers and clouds, or horizontally between different edge servers 
[44]. In addition, the methods for offloading computing tasks between TDs have also been explored [45,46]. The differentiation of 
computing task characteristics and the dynamic changes in MEC available resources lead to increased volatility and complexity of the 
computing offloading process [47]. In addition, the computing task can be either treated as a complete unit for binary offloading or can 
be split into small subtasks for partial offloading [48,49]. Therefore, it is necessary to optimize the offloading process with the help of 
offloading decisions and resource allocation, thereby reducing latency and energy consumption. 

2.2. Task offloading decision 

The main goal of TDs to offload computing tasks is to improve task execution efficiency and reduce their energy consumption [39, 
40]. However, transmitting tasks in congested wireless networks will introduce higher communication delays. In addition, tasks to 
perform IoT offloading on busy MEC nodes need to be queued for a long time. If it takes longer to execute a task through offloading, TD 
will not be able to improve the execution efficiency of the task during the task offloading process. Similarly, wireless data commu-
nication will consume part of the TD’s energy [41,42]. If the communication energy consumed by the transmission task is greater than 
the energy consumed by the local execution of the task, TD should not perform task offloading. Therefore, before undertaking task 
offloading, it is necessary to evaluate whether there will be benefits from offloading tasks in the current state. 

2.3. Task assignment 

Task offloading decisions are often made dynamically based on factors such as device capabilities, network conditions, and 
application requirements [43]. The IoT ecosystem is highly heterogeneous and contains a variety of devices with varying levels of 
computing power. The task offloading mechanism needs to jointly analyze the available resource status of the MEC network, the 
current working status of the communication network, and the constraints of the tasks to be offloaded to make decisions to offload IoT 
tasks to appropriate remote computing nodes. In some simple application scenarios, computing tasks only need to be offloaded to 
servers in the MEC network [44,45]. In some complex application scenarios, computing tasks be offloaded to MEC servers or cloud 
platforms [46], or even to other idle TDs [47]. This makes the choice of destination for task offloading extremely complex. If we 
consider the attribute differences of tasks and the requirements for high-density parallel task offloading, the complexity of task off-
loading allocation will further increase. 

2.4. Resource allocation 

Considering that in many application scenarios, task offloading requests are often greater than the services that the MEC network 
can provide [48–50], limited MEC resources need to be appropriately allocated to numerous offloading tasks based on differences in 
task requirements. The resources that need to be allocated mainly include the computing resources of the MEC and the available 
communication resources in the network [51–53]. Reasonable resource allocation can maximize the overall efficiency of task off-
loading and minimize the proportion of tasks over time. In addition, due to the limitation of TD’s power supply capacity, the impact of 
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the allocation strategy on TD’s energy consumption also needs to be considered when allocating resources [54]. These factors will 
increase the complexity of resource allocation, and the real-time requirements for IoT task offloading are relatively high. Therefore, 
allocating resources efficiently and in real time is one of the issues that need to be solved urgently. 

2.5. Global optimization and multi-objective optimation 

The global optimization problem of IoT task offloading in a large and heterogeneous MEC network is complex because it involves 
multiple goals and the effective allocation of global resources, and one cannot just focus on the task offloading effect of a certain TD. 
Multiple MEC servers and IoT devices be distributed globally [55,56]. The global optimization problem involves how to coordinate 
task offloading and resource allocation among these distributed resources, thereby maximizing the completion speed of task offloading 
for multiple TDs and the overall utilization of MEC resources [57,58]. Global optimization problems also need to consider collaborative 
decision-making among multiple decision-makers, including IoT devices, MEC servers, network operators, etc. Distributed offloading 
decision-making architecture is often used in some large-scale application scenarios [59,60], which requires full consideration of 
reasonable global decision-making optimization. 

Multi-objective problems of IoT task offloading often involve trade-offs between minimizing latency and minimizing energy 
consumption [61]. Latency is a key performance metric, and energy management is critical to the longevity and efficiency of IoT 
devices. In addition, in multi-objective problems, it is necessary to ensure that the Quality of service (QoS) of IoT tasks is satisfied [62, 
63]. This include metrics such as minimizing packet loss or maximizing bandwidth utilization [64,65]. Besides this, another goal be the 
efficient distribution of tasks among multiple MEC servers to ensure that resources are fully utilized. 

Solving these problems often requires advanced optimization techniques. At the same time, factors such as the actual deployment 
environment, application requirements, and network topology also need to be comprehensively considered. Studying and optimizing 
solutions to these problems can help achieve efficiency, performance, and reliability of IoT task offloading while meeting multiple 
optimization goals. Fig. 1 shows the logic diagram of IoT task offloading in the MEC network environment. 

3. Related works 

The field of computation offloading has seen significant growth in recent years, with numerous studies and advancements in 
various sub-domains. In this section, we provide an overview of relevant research and reviews that have contributed to the current 
state of the field. 

A review of computation offloading that comprehensively investigates intelligent computational task offloading methods in MEC 
[66]. The study formulated the costs of local computing and remote computing respectively, and then proposed a unified computation 
offloading process model. In addition, task offloading optimization methods based on multiple AI techniques were compared in 
multiple dimensions, and a more complete study of metrics for MEC computational offloading was conducted. Further, the study also 
points to efficient service discovery, flexible computational task splitting, and security as future research directions. However, the 
articles investigated in this work are not IoT-specific, but broadly discuss intelligent optimization techniques for mobile applications to 
offload computational tasks to MEC networks. In addition, the survey only discussed AI-based computing task offloading optimization 
methods and did not involve methods such as heuristics and classical mathematical optimization. These methods are still evolving. 

While the work in Ref. [67] the task offloading paradigm in the MEC environment is systematically reviewed from a technology 
evolution perspective. Especially, MEC is distinguished from ordinary edge computing based on MEC’s unique support for device 
mobility. In addition, quantitative analysis methods and qualitative analysis methods were combined in this study, and the problem 
model, solutions, and evaluation indicators of each article were extracted and summarized. Thus, future research directions are given. 
However, this study discussed a lot about the MEC architecture and features but did not focus on task offloading optimization. In 
addition, most of the articles surveyed were not in the IoT context. 

The computing task offloading decision-making is explored in Ref. [68]. This review paper investigated the research results related 
to IoT application models and focused on the optimization of task division during the computing offloading process. This study treats 
various types of applications differently and discusses various task-splitting optimization methods in the computing offloading process. 
In addition, this paper also proposes a comprehensive classification metric for evaluating computation offloading approaches that 
support task segmentation. Furthermore, this study also provides future research directions for IoT in the cloud-edge computing 
paradigm. However, the research lacks focus on the MEC architecture but rather on cloud-edge. Thus, the characteristics of MEC such 
as mobility are ignored. 

The research progress and ongoing issues of IoT computing task offloading mechanisms are systematically reviewed in Ref. [69], 
and a feature comparison between various offloading mechanisms is provided. In this paper, the task-offloading mechanism is divided 
into two categories: static and dynamic based on different task-offloading decision-making methods. In addition, this study discusses 
the advantages and disadvantages of two different types of offloading mechanisms in various application scenarios. In addition, a new 
classification method based on offloading decision-making mechanisms and overall architecture is proposed. However, there are more 
discussions about offloading tasks to the cloud, fog computing networks and traditional edge computing networks, but the articles are 
not in the MEC context and lack attention to terminal mobility. 

A whole bunch of enabling technologies for IoT task offloading in fog-cloud computing environments are studied in Ref. [70]. In 
addition, a variety of technologies that support task offloading are discussed according to differences in application scenarios. This 
study reviews computing task offloading methods based on cloudlet, mobile edge computing, micro-datacenter, and nano-datacenter 
respectively. Moreover, the Scalability and Service level agreement (SLA) of task offloading networks are considered challenges for 
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future research. However, the article rarely discusses the particularities of MEC task offloading, nor does it consider the characteristics 
of other computing platforms. Instead, it discusses more about IoT task offloading based on the concept of macro fog computing. 

In [71] the computation offloading methods in Fog-based IoT are reviewed, and the computing task offloading network is divided 
into two levels: IoT to Fog and Fog to cloud. In this paper, task offloading mechanisms are discussed separately at different computing 
network levels. Similarly, this study also distinguishes different data scales of IoT computing offloading and studies the adaptability 
and deficiencies of various computing offloading mechanisms in application scenarios of different computing scales. Finally, open 
issues and future research challenges based on the three-layer task offloading mechanism are discussed. However, selected articles are 
not focused on MEC, but on fog context. In addition, this research focuses on Machine Learning (ML) based computing task offloading 
optimization methods but lacks discussion of other types of task offloading optimization methods. 

A survey of MEC-enabled mobile user computing offloading technology proposed a new classification of MEC internal task off-
loading strategies [72]. In this study, researchers not only discussed the strategy for user equipment to offload computing tasks to MEC 
but also focused on the optimization of task offloading between computing resource nodes in the MEC network. Also, offload opti-
mization methods are divided into user device-driven, cloud-assisted, SDN-based, and Collaborative types. Consequently, the char-
acteristics and shortcomings of various classified offloading optimization methods are compared and analyzed respectively. In the end, 
technical challenges and future research directions are briefly discussed. However, selected articles are not in the IoT context, but more 
about the optimization methods of common computing task offloading in MEC. 

Some task offloading solutions in mobile edge computing networks are reviewed in Ref. [24], and a model of the process of 
executing computation offloading for users is given. According to different optimization methods for task offloading in MEC, this study 
compared the characteristic and application scenario adaptability of traditional mathematical solving methods, heuristic methods, and 
reinforcement learning methods. The main task offloading optimization objectives considered in this study include latency, energy 
consumption, comprehensive offloading benefits, and system resource utilization. Meanwhile, this study also discusses the impact of 
partial task offloading, resource allocation, and inter-task dependencies on task offloading decisions. Finally, real-time environment 
awareness and security issues are considered challenges for future research. However, most of the articles do not engage with IoT and 
there is no discussion related to performance evaluation of task offloading. 

According to the above discussion, we summarize and find that there are two main weaknesses in existing research as shown in 
Table 1. One of the main weaknesses is that the articles selected in the review are not related to IoT. Many studies have been conducted 
on the optimization of task offloading by mobile user devices in MEC environments. However, numerous studies for IoT task offloading 

Table 1 
Summary of related works.  

Ref. Main work Advantage Weakness 

[66] Investigated the computing offloading methods and 
key indicators in MEC, and focused on the 
optimization of computing offloading based on 
artificial intelligence technology. 

A comprehensive survey of computational offloading 
methods based on AI techniques. 

Articles are not relevant to the IoT. The 
process of literature selection is not 
transparent. 

[67] The Task offloading paradigm in MEC was 
systematically reviewed, and three main task 
offloading optimization routes were identified based 
on quantitative analysis methods. 

Distinguishes between MEC and regular edge 
computing in terms of computational offloads. 

Most of the articles are not relevant to 
the IoT. 

[68] The research results related to IoT application models 
and computing task offloading decision engines were 
investigated, with a focus on task division 
optimization during the computing offloading 
process. 

Comprehensive classification metrics are proposed 
for joint optimization of different application types. 

Lack of focus on the mobility of MEC 
but rather on cloud-edge. The process 
of literature selection is not 
transparent. 

[69] This paper systematically reviews the research 
progress and ongoing issues on the mechanism of IoT 
computing task offloading and proposes future 
research challenges. A parameter comparison 
between offloading methods is also provided. 

A new classification method based on offloading 
decision-making mechanisms and architectures is 
proposed. 

Articles are not relevant to the IoT. 

[70] Researched enabling technologies for IoT task 
offloading in a fog computing environment. Some 
standards for task offloading between fog and cloud 
layers are proposed. 

The differences in task offloading in different 
network layers are distinguished. 

Articles are not focused on MEC. The 
process of literature selection is not 
transparent. 

[71] Reviewed machine learning technology for 
computation offloading in Fog-based IoT, and 
discussed the challenges and opportunities of 
computing offloading in IoT to Fog and Fog to cloud 
environment. 

Different data volume scales for IoT computing 
offloading are distinguished. 

Articles are not focused on MEC. The 
process of literature selection is not 
transparent. 

[72] The computing offloading strategy of user equipment 
in MEC is discussed, and the task offloading between 
computing resource nodes in MEC is focused on. 

A new classification of MEC internal task offloading 
strategies is proposed. 

Articles are not relevant to the IoT. The 
process of literature selection is not 
transparent. 

[24] Reviewed various methods of task offloading in MEC, 
traditional mathematical solution methods, heuristic 
methods, and reinforcement learning methods, and 
discussed partial offloading, resource allocation, and 
task dependency. 

A model of the Process of executing computation 
offloading for users is given, and the impact of task 
dependencies on task offloading decisions is 
discussed. 

Most of the articles are not relevant to 
the IoT. The process of literature 
selection is not transparent.  
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have not considered the characteristics of MEC but rather discussed it together with ordinary edge computing and fog computing. 
Thus, there is no comprehensive review focused on IoT computing task offloading in MEC environments. The goal of this study is to 
systematically review the research progress, ongoing issues, and future directions for further research in IoT task offloading optimi-
zation in MEC network environments. 

Briefly, there are some weaknesses in the work mentioned above as follows:  

• Some papers do not provide IoT task offloading in MEC  
• Some papers do not include MEC features for IoT task offloading  
• Some papers do not distinguish the differences between MEC and traditional Edge computing  
• Some papers do not differentiate between IoT task offloading and ordinary computation offloading  
• Some papers do not provide IoT task offloading in the MEC selection process for the article 

The above-mentioned explanations were the inspiration and motivation to organize a survey paper on IoT task offloading in MEC to 
overcome all of these lacks. 

4. Research methodology 

The study formulated some research questions which were used to search various data sources using different keywords. The search 
process was conducted in various databases based on inclusion and exclusion criteria. Afterward, the study assesses the quality of the 
papers through the article selection and screening process. 

The research methodology employed in this review is designed to ensure a rigorous, transparent, and replicable process for 
identifying, screening, and synthesizing relevant literature. The methodology follows established guidelines and best practices for 
conducting literature reviews, which aim to minimize bias and enhance the validity of the findings. 

A deep search is conducted by seeking keywords related to IoT task offloading in MEC. The selection time range of the literature is 
set from 2016 to the current time because the MEC specification was officially released in 2016 [9]. Next, a multi-level screening of the 
collected literature was conducted based on titles, keywords, and abstracts. In the next step, the screened literatures were scored 
according to the set rules, and 138 eligible literatures were finally selected for in-depth analysis. Fig. 2 presents the year-wise pub-
lication of IoT task offload in MEC, which is selected for the study. 

4.1. Research questions 

In order to have a comprehensive understanding, this study investigates several aspects such as task offloading mechanism, 
network environment support, task offloading architecture, evaluation tools, and data. The primary research questions for this paper 
are listed below:  

• RQ1: What main problems does the IoT task offloading mechanism solve?  
• RQ2: What are the main goals of the offloading mechanism?  
• RQ3: What technologies are based on various mechanisms and algorithms to achieve offloading optimization?  
• RQ4: What network access methods does the offload mechanism support in MEC?  
• RQ5: Which MEC network architectures can the offloading mechanism work on?  
• RQ6: How many target compute nodes are tasks offloaded?  
• RQ7: What are the main input parameters considered by the offloading mechanism?  
• RQ8: What methods are used to implement the evaluation of offloading mechanisms?  
• RQ9: What baselines are mainly compared in the evaluation of offloading mechanisms?  
• RQ10: What metrics are used to evaluate the performance of the offloading mechanism?  
• RQ11: Which datasets are used to evaluate offloading mechanisms? 

Fig. 2. Articles selected for review are published year wise.  
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4.2. Keywords 

To identify relevant literature, a search strategy is meticulously constructed. This strategy includes a set of carefully chosen 
keywords, Boolean operators, and search strings tailored to the research topic. The goal is to cast a wide net across selected databases 
while maintaining specificity and precision in the search. These keywords used in searching are presented in Table 2. 

During the keyword-based literature retrieval process, the selected keywords are divided into three categories: IoT, edge computing 
environment, and optimization of task offloading. For each category, multiple different keywords with similar meanings are used, and 
then the Boolean-based document retrieval of command is created. After that, multiple retrieval restrictions such as time range and 
language are set. The following are the advanced search commands with the literature retrieval of the IEEE Explore as an example. 

((“All Metadata”:Internet of things) OR (“All Metadata”:IoT)) AND ((“All Metadata”:Edge computing) OR (“All Metadata”:Mobile 
edge computing) OR (“All Metadata”:Multi-access edge)) AND ((“All Metadata”:Computation offloading) OR (“All Metadata”:Task 
Offloading)) AND ((“All Metadata”:Offloading Decision) OR (“All Metadata”:Offloading optimization) OR (“All Metadata”:IoT Task 
scheduling) OR (“All Metadata”:MEC-IOT)) 

4.3. Inclusion and exclusion criteria 

Inclusion and exclusion to filter the most suitable research literature on IoT task offloading in MEC are given in Table 3. 

4.3.1. Inclusion and Exclusion Criteria 
From the articles which are selected for review, Fig. 4 shows the number of articles published year-wise, which are selected for the 

study. 
The articles are categorized based on the methods they have used as Classic mathematical, Lyapunov optimization, Heuristic, Game 

theory, and AI-base IoT task offloading techniques in MEC. Out of these 83 articles were from IEEE, 18 articles from Science Direct, 7 
from Springer, 6 from ACM, 5 from Elsevier, 3 from MDPI, 1 from Willey, and 15 from others. 

4.4. Quality assessment 

The methodology employed in this review is underpinned by a commitment to minimizing bias, ensuring the inclusion of relevant 
literature, and providing a strong foundation for the analysis. It is designed to yield a comprehensive and reliable synthesis of the 
existing research in the field. The quality and relevance of included articles are assessed to ensure the integrity of the review. Quality 
assessment tools, where applicable are used to evaluate the methodological rigor of primary studies. Table 4 shows the strategy for 
scoring article quality. 

4.5. Article selection and screening 

A multiple-step screening process is implemented. Initially, articles are screened based on titles and abstracts against predefined 
inclusion/exclusion criteria. Subsequently, full-text articles that pass the initial screening are assessed against the same criteria to 
determine their eligibility for inclusion. 

The researchers minimized the possible impact of potential information bias by ensuring that the exercise was a rigorous review of 
the literature, carefully selecting the sources and selection criteria for the data and using software tools to verify the data entries 
thereby avoiding duplication of data. 

Four researchers (authors of this paper) were involved in the strategies developed to minimize selection bias. The process of 
literature screening was conducted independently by four researchers in a stepwise manner. The first researcher conducted the first 
search using a predefined search equation and subsequently performed the process of eliminating duplicate documents. The second 
researcher re-examined the results obtained in the first search and performed a second exclusion based on the criterion of document 
relevance to the topic. The third researcher analyzed the body of the search results in depth and publicly answered the previously 
defined research questions with her researcher. The fourth researcher organized the review of the obtained results by all participants of 

Table 2 
Keywords used in searching.  

S# Keyword Broader term 

1 Internet of things/IoT IoT computing architecture 
2 Edge computing Edge computing environment 
3 Mobile edge computing MEC features 
4 Multi-access edge computing MEC features 
5 Computation offloading Computation offloading in MEC 
6 Task Offloading Task offloading algorithm and mechanism 
7 Offloading Decision Decision-making methods for offloading 
8 Offloading optimization The multi-objective offloading optimization mechanism 
9 IoT Task scheduling Task scheduling methods 
10 MEC-IOT IoT features in MEC  
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this study. 

5. IOT task offloading mechanism in MEC 

Based on detailed investigation, the IoT task offloading mechanisms in MEC are classified based on technical principles. The wide 
variety of offloading mechanisms are divided into the Classic mathematical optimization approach, Lyapunov optimization based 
approach, Heuristic based approach, Game theory based approach, and AI-based approach. In addition, multiple technical methods 
have been involved in combination in some studies. Fig. 3 shows the taxonomy of IoT task offloading mechanisms in MEC based on 
different technologies. 

5.1. Classic mathematical optimization based offloading mechanisms 

The task offloading mechanism based on classical mathematical optimization is the most basic IoT task offloading coordination 
method, aiming to optimize the distribution of computing tasks in heterogeneous computing environments. These mechanisms rely on 
mathematical optimization techniques to determine which tasks should be offloaded to remote resources, taking into account factors 
such as network conditions, device capabilities, and user preferences. By formulating the offloading decision as a mathematical 
optimization problem, these methods aim to find the most efficient task allocation, providing rigorous and optimal solutions to task 
allocation challenges. 

There are a great number of articles that study classic mathematical optimization based IoT task offloading mechanisms. Some of 

Table 3 
Inclusion and exclusion criteria.  

Inclusion Criteria Exclusion Criteria 

The study focuses on IoT task offloading The study that focuses on other computation offloading issues 
The study focuses on task offloading in MEC network Task offloading in cloud, fog computing, and cloud-let are not considered 
Published papers since 2016 Articles before ETSI officially released the MEC specification in 2016 are not 

considered 
Publications written in English The articles written in other languages are not considered 
Peer-reviewed publications in high-quality journals and conferences that can be 

accessed 
Disreputable and inaccessible articles are not considered  

Table 4 
Articles quality score.  

Factor Points Description 

Topic 0–4 Strong correlation 
Algorithm or mechanism 0–4 A complete and clear description 
Performance metrics 0–4 Clear definition 
Experiment 0–4 A complete and clear description 
Benchmark 0–4 Explicit comparative analysis 
WOS ranking 0–4 Q1 = 1, Q2 = 2, Q3 = 3, Q4 = 4, none = 0  

Fig. 3. Taxonomy of IoT task offloading mechanism in MEC.  
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Fig. 4. Distribution of problems addressed of IoT task offloading in MEC.  

Table 5 
A side-by-side comparison of offloading mechanisms based on classic mathematical optimization.  

Ref. Problems 
addressed 

Technique Network Objective Evaluation tools Baseline Advantages Limitations 

[73] Task 
assignment 

BCD OFDMA, 
WPT 

Maximize total 
computation 
rate 

Python based 
implementation 

ES, BA, EC, LC Joint optimization 
of transmit power of 
the GW, backscatter 
coefficient, TS ratio, 
and computing 
mode 

The impact of TD 
mobility on 
energy 
consumption 
optimization is not 
considered 

[74] Task 
assignment 

Lagrangian 
multipliers, 
mixed-integer 
programming 

Mixed Minimize total 
network delay 
and network 
price 

Testbed SDTO, 
FLAVOUR 

Provide fair QoS Inadequate 
consideration of 
wireless network 
characteristics 

[75] Task 
assignment, 
resource 
allocation 

Hierarchical 
iterative search 

TDMA Minimize 
energy 
consumption 

Matlab JCCO, CPLEX, 
HD, 

Tradeoff between 
transmission 
efficiency and MEC 
utilization 

Collaborative 
offloading of 
multiple MEC 
nodes is not 
supported 

[76] Task 
assignment, 
resource 
allocation 

SCA RAN Minimize 
latency and 
energy 
consumption 

Matlab Random, UAV- 
Only, EC-Only, 
Fixed UAV-EC 

Jointly optimizing 
UAV position, 
communication and 
computing resource 
allocation, and task- 
splitting decisions 

Multi-UAV 
collaborative 
uninstallation is 
not supported 

[77] Task 
assignment 

GRP RAN Minimize 
latency and 
energy 
consumption 

Matlab MOEA/D-DE, 
MOEA/D-DRA, 
MOEA/D-CMA, 
MOEA/D-PaS 

Higher exploration 
ability and better 
generalization 

Concurrent task 
offloading is not 
considered 

[78] Resource 
allocation 

Iterative 
search 

NOMA Maximize 
energy 
efficiency 

Testbed OMA, NOMA- 
EPA 

Joint radio and 
computation 
resource allocation 

Task offloading 
between TDs is not 
supported 

[79] Task 
assignment 

SCA RAN Minimize 
latency and 
energy 
consumption 

Matlab DMin-SCO, 
EMin-SCO 

Taking each user’s 
satisfaction into 
account 

Collaborative 
offloading of 
multiple MEC 
nodes is not 
supported 

[80] Task 
assignment, 
resource 
allocation 

Linear search RAN Minimize 
overall delay 

Matlab Solver of integer 
programming 
from MATLAB 

Joint optimization 
of the secrecy- 
provisioning, 
computation 
offloading, and 
radio resource 
allocation 

Collaborative 
offloading of 
multiple MEC 
nodes is not 
supported 

[81] Task 
assignment 

Linear search RAN Minimize 
overhead 

Matlab Unsecure LBCO, 
Secure LBCO, 
CO, LE, FO 

Balance the loads 
among BSs 

TD movement 
between BSs is not 
supported 

[82] Resource 
allocation 

Lagrangian 
multipliers, LP, 
critical-value, 
VCG 

RAN ILOG CPLEX Matlab BDA, DPDA, 
McAfee, 
OPTIMAL 

Acceptable simple 
framework 

Does not support 
large-scale 
network scenarios 
and does not 
consider the 
impact of the 
network 
environment  

W. Dayong et al.                                                                                                                                                                                                       



Heliyon 10 (2024) e29916

10

them are presented in Table 5. In Ref. [73] the problem is decomposed into two sub-problems: time split ratio optimization and 
offloading decision optimization. The authors proposed an iterative algorithm based on the block coordinate descent (BCD) method. 
The algorithm consists of two main steps: exhaustive search (ES) and the proposed fast exhaustive algorithm (FEA). The generation of 
an offloading decision matrix and the allocation of communication resources are realized respectively. A mathematical framework 
based on Lagrangian multipliers is proposed in Ref. [74]. The framework is designed for dynamically scheduling microservices to 
optimize network latency and price costs of task offloading. The goal is to maximize energy efficiency, provide fair quality of service 
(QoS), minimize network latency and price, and improve satisfaction levels, energy consumption rates, failure rates, and network 
throughput. 

Research focusing on the energy consumption of networked nodes is conducted in Ref. [75]. They study the joint optimization 
problem of task offloading, transmission power, time, and computing resources of full-duplex communication in MEC-aided cellular 
IoT. The coupling constraint problem is solved through a mixed integer nonlinear programming method. For the decoupled case, the 
optimal conditions for transmission power and computation offloading are derived, and the optimal time allocation is obtained using 
the Karush-Kuhn-Tucker (KKT) condition. For the coupled case, the problem is reformulated as a two-level knapsack problem, and an 
efficient algorithm is developed to solve it. This solution is then used to modify the solution for the decoupled case to ensure that the 
coupling constraints are met. 

In [76] the IoT task offloading process is modeled as a non-convex optimization problem. The goal is to minimize the service delay 
weighting and UAV energy consumption of all IoT devices by jointly optimizing task splitting decisions, UAV locations, communi-
cation bandwidth allocation, and computing resource allocation of UAVs and ECs. To solve this challenging problem, the authors 
propose an algorithm based on continuous convex approximation. 

A UAV hybrid MEC system is studied in Ref. [77] that realizes the cooperation of edge cloud and UAV to achieve flexible computing 
offloading. The computation offloading problem is modeled as a multi-objective optimization process taking into account latency, 
energy consumption, and server cost. The authors propose an intelligent computational offloading algorithm based on a compre-
hensive optimization framework, which includes a mixed integer transformation solving framework, an improved multi-adaptive 
MOEA/D-DE algorithm, and a gray relational projection (GRP) method for selecting the optimal compromise Offload decision. 

In the application scenario of large-scale IoT device access, the characteristics of the wireless access network can be used to 
optimize task offloading [78]. The goal of this study is to propose a NOMA-based energy-efficient MEC design for multi-cell networks 
with IoT devices and formulate a joint communication and computing resource allocation problem to maximize energy efficiency and 
ensure timely task execution. This scheme uses the nearest base station association strategy to associate each IoT device with the 
nearest SBS that provides the maximum average channel gain. It then continuously and iteratively optimizes sub-channel allocation, 
transmission power allocation, and computing resource allocation to maximize energy efficiency. 

A task offloading method that maximizes user demand satisfaction has been proposed in Ref. [79], which considers offloading rate, 
tolerable delay, task workload, and maximum power constraints by formulating an optimization problem. The proposed scheme 
obtains suboptimal solutions to non-convex optimization problems based on the algorithm of continuous convex approximation (SCA). 
In Ref. [80], the optimization goal is to minimize the total delay in completing a computational task taking into account confidentiality 
requirements and energy consumption constraints. The proposed method transforms the overall optimization problem into multiple 
sub-problems and solves them iteratively. In Ref. [81] the research aims to propose a comprehensive load balancing and computing 
offloading technology to solve resource constraints, latency, and security issues in multi-layer IoT and edge cloud computing systems. 
The problem is constructed as a single optimization task with a linear objective function and constraints, and the branch-and-bound 
method is used to find the optimal solution. However, this method can only decide whether the task should be executed locally or 
offloaded to a remote node for execution. 

In [82], a true combinatorial two-way auction mechanism called TCDA for the resource exchange process in the Industrial Internet 
of Things (IIoT) is presented. This mechanism takes into account the locality constraints of the MEC system. The mechanism uses a 
linear programming-based filling method for allocation, critical value-based pricing strategy, and VCG-based pricing strategy to 
achieve authenticity and budget balance of MDs and ESs. The ultimate goal is to maximize social welfare under locality constraints. 

Such methods are based on iterative search mechanisms and are therefore not suitable for large-scale networks. Otherwise, a large 
number of iterations will be required to find the optimal solution, and the computational cost will increase significantly. In addition, 
such methods cannot comprehensively analyze too many input parameters, which makes it difficult for such methods to describe 
complex mobile edge computing systems and can only achieve relatively simple task offloading optimization. 

5.2. Lyapunov optimization based offloading mechanisms 

The task offloading mechanism based on Lyapunov optimization represents a type of offloading strategy commonly used in wireless 
communication networks and resource-constrained environments. These mechanisms leverage Lyapunov optimization to make real- 
time decisions about task offloading and resource allocation. Lyapunov-based task offloading mechanisms are good at managing the 
inherent trade-offs between conflicting goals. They cleverly allocate resources to tasks, weighing the need to reduce latency against the 
need to conserve energy. By continuously optimizing Lyapunov functions, they can adapt in real-time to achieve the proper balance. 

A dynamic computing resource allocation algorithm based on Lyapunov optimization is proposed in Ref. [83]. This algorithm 
independently optimizes the offloading decision of TD and the calculation management of the MEC server. Minimize the average 
timeout probability by managing resources and selectively discarding tasks. The algorithm does not require a priori knowledge of task 
running time costs. 

In [84], the research problem is transformed into a deterministic optimization problem. The author proposes a virtual queue model 
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and a Lyapunov online energy consumption optimization algorithm to balance the backlog and energy consumption of the task off-
loading queue. Moreover, the overhead of wireless transmission is considered in the offloaded transmission model. 

While the work in Ref. [85] an offloading decision-making model for the IoT edge cloud computing model based on a weighted call 
graph is presented, which determines the computing location of tasks based on the computing cost. This mechanism can allocate tasks 
to MEC servers and cloud platforms at the same time. This mechanism uses an offloading decision matrix to represent offloading 
decisions, which results in an exponential increase in the number of possible combinations. 

A parallel offline processing method based on Lyapunov optimization is presented in Ref. [86], which achieves joint optimization 
through cubic decoupling objective functions. This study focuses on considering the delay sensitivity of computing tasks and the 
energy consumption saving of the system. In addition, a MEC heterogeneous network system model is constructed in Ref. [87] that 
supports 5G communication characteristics and proposed a dynamic task offloading optimization scheme based on a combination of 
queuing theory and Lyapunov optimization. In addition, the study considers static and dynamic sub-channels and uses Lyapunov 
optimization and simulated annealing genetic algorithm (SAGA) for static sub-channels, and SAGA and sequential quadratic pro-
gramming (SQP) for dynamic sub-channels. 

In [88], the perturbed Lyapunov optimization method is adopted. The perturbed Lyapunov function and drift plus penalty function 
are defined, and a knapsack problem is solved for each time slot to obtain optimal scheduling. This method dynamically analyzes the 
available computing resources of TD and MEC servers to minimize the length of the task offloading queue and maximize system utility. 

A global energy consumption optimization of task offloading based on Lyapunov optimization theory is implemented in Ref. [89]. 
In addition, this study also focuses on multi-task parallel offloading for each TD, rather than just offloading multiple computing tasks in 
a serial sequence manner. 

The principle of this type of task offloading optimization method is to use Lyapunov functions to model and analyze the system 
state, and to achieve a dynamic allocation of resources by constructing Lyapunov drift to meet performance indicators and constraints. 
The Lyapunov optimization method brings significant advantages in IoT task offloading. It can ensure the stability of the system. By 
constructing the Lyapunov function and Lyapunov drift, the system can adaptively maintain a stable state, which is crucial for 
application scenarios that require high system stability. In addition, the Lyapunov optimization method can effectively guarantee 
performance, such as latency and throughput, and meet performance requirements while fully considering system resource con-
straints. This makes it suitable for various IoT application scenarios and improves the adaptability of the system. However, the 
complexity and computational overhead of the Lyapunov optimization method are its main challenges, requiring in-depth mathe-
matical and engineering knowledge, as well as balancing performance guarantees with computational resources. Table 6 presents a 
side-by-side comparison of offloading mechanisms based on Lyapunov optimization. 

Table 6 
A side-by-side comparison of offloading mechanisms based on classic Lyapunov optimization.  

Ref. Problems 
addressed 

Technique Network Objective Evaluation tools Baseline Advantages Limitations 

[83] Task 
assignment, 
resource 
allocation 

Lyapunov 
optimization 

LTE Minimize 
average timeout 
probability 

Implementation 
with TensorFlow 

Standard 
queuing 

Acceptable 
framework 

Parallel 
uninstallation is 
not supported 

[84] Task 
assignment 

Lyapunov 
optimization 

RAN Minimize 
energy 
consumption 

Matlab Local-only, 
edge-only 

High stability Not included in the 
task deadline 

[85] Task 
assignment 

Lyapunov 
optimization 

RAN Minimize 
energy 
consumption 
and delay 

Implementation IoT-Only, Edge- 
Only, Cloud- 
Only, LARAC, 
EEDTO 

Automatically 
distinguish task 
types 

Ignores the 
differences in 
characteristics 
between different 
types of wireless 
networks 

[86] Task 
assignment 

Lyapunov 
optimization 

5G Minimize 
system cost and 
task drop ratio 

Matlab LODCO, OEA, 
DOA 

Ensure the 
robustness of task 
processing 

Resource 
utilization is not 
considered 

[87] Task 
assignment, 
resource 
allocation 

Lyapunov 
optimization 

5G Minimize 
energy 
consumption 
and latency 

Matlab Genetic 
algorithm, 
simulated 
annealing 
algorithm 

Make full use of 5G 
communication 
features  

[88] Task 
assignment 

Lyapunov 
optimization 

RAN Maximize 
network utility 
balancing 
throughput and 
fairness 

Matlab Round Robin, 
Proportional 
Fair 

Self-learning 
network 
fluctuations 

Collaborative 
offloading of 
multiple MEC 
nodes is not 
supported 

[89] Task 
assignment, 
resource 
allocation 

Lyapunov 
optimization 

RAN Minimize 
response time 
and dropping 
tasks 

Matlab Greedy, 0–1 
offloading, 
complete edge, 
complete local 

Jointly optimized 
for fast response 
and energy 
sustainability 

Collaborative 
offloading of 
multiple MEC 
nodes is not 
supported  
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5.3. Heuristic based offloading mechanisms 

Heuristic-based task offloading mechanism is a type of offloading strategy aim to provide an optimal solution in a short time. It is a 
type of algorithm based on intuition or experience, which provides a feasible solution for each instance of the combinatorial opti-
mization problem to be solved at an acceptable cost (referring to computing time and space), and the degree of deviation of the feasible 
solution from the optimal solution. 

The work [56] presents a heuristic algorithm that is aimed at finding a near-optimal scheduling solution for a given number of task 
offloading requests from TDs to a given set of MEC servers. The algorithm first calculates the number of offloading requests accepted 
based on the data size of the computing task. The probability is based on existing historical records. Second, try to distribute computing 
tasks to multiple edge servers with the goal of minimizing latency. In addition, the algorithm continuously improves the strategy based 
on benchmark feedback of execution results during the iterative process of task allocation. 

A simple offloading mechanism is developed in Ref. [90] that jointly considered the deadline requirement of the task and the 
energy consumed by the device, and modeled the task offloading problem as MINLP. The response time and energy consumption are 
minimized by scheduling the distribution of offloading tasks in the MEC network. However, this mechanism does not consider the 
mobility of TD. 

An enhanced version of the opportunity cost-based offloading algorithm is proposed in Ref. [91]. This algorithm supports off-
loading computing tasks to MEC and cloud platforms and makes full use of the characteristics of the 5G communication environment to 
optimize task offloading. 

An integer linear programming (ILP) and approximation algorithm for problems without bandwidth capacity constraints is pre-
sented in Ref. [92]. Afterward, a greedy algorithm is proposed to solve the bandwidth capacity constraint problem. The algorithm 
decides whether to accept the task offloading request initiated by IoT based on the computing resource and bandwidth resource cost 
model. 

The task offloading problem in the IoV is formalized as a set of coverage problems in Ref. [93]. Additionally, a submodule opti-
mization framework is proposed to derive an optimal set of collected images to minimize data redundancy and maximize coverage of 
the reconstructed road scene. This method jointly considers cost and delay constraints to allocate the tasks to be offloaded to nearby 
MEC computing nodes. 

An SDN-based task offloading architecture for industrial IoT is proposed in Ref. [94], and the optimization problem is divided into 
multiple sub-areas or communities. The distributed industrial IoT controller and the edge orchestration module coordinate and process 
task offloading requests based on the network available resource information provided by SDN, thereby meeting the strict latency 
requirements of industrial IoT tasks. 

In [95], the proposed Min-CCV and Min-V algorithms search for computing nodes that meet the requirements based on minimizing 
delay and default cost until a suitable target server is found. However, this method is difficult to achieve good task allocation results in 
scenarios with insufficient computing resources. 

Table 7 
A side-by-side comparison of offloading mechanisms based on heuristic.  

Ref. Problems 
addressed 

Technique Network Objective Evaluation tools Baseline Advantages Limitations 

[56] Task 
assignment 

Probability 
distributions 

Undefined Minimize 
computational 
time 

Python based 
implementation 

CPLEX Global 
knowledge 
utilization 

Ignore energy 
consumption 

[90] Task 
assignment 

Greedy Undefined Maximize 
deadline 
satisfaction ratio 

Python based 
implementation 

NECS, Detour Joint 
optimization of 
deadlines and 
energy 
consumption 

Not suitable for 
large networks 

[91] Task 
assignment, 
resource 
allocation 

Greedy 5G Maximize utility, 
Minimize energy 
consumption 

Testbed UGA, DFA Tradeoff 
between utility 
and energy 
consumption 

Parallel task 
offloading of a 
single TD is not 
supported 

[92] Task 
assignment 

Greedy Wifi Maximize total 
utility 

GT-ITM ILP, classic 
greedy algorithm 

Support 
cloudlets 

Not suitable for 
large-scale 
networks 

[93] Task 
assignment 

Greedy X2 link Maximize cost 
while the latency 
of tasks is 
guaranteed 

NS-3 MC-RDA, MC- 
UNA, MC-GA 

Reduce the 
redundant data 

Task offloading 
between TDs is 
not supported 

[94] Task 
assignment, 
resource 
allocation 

Greedy SDN Minimize 
response latency 

Python based 
implementation 

Local_NO_SDN, 
GATO, Max_C, 
Min_Q 

Features that 
support SDN 

Not suitable for 
large-scale 
networks 

[95] Task 
assignment 

Linear search RAN Minimize latency 
and villation cost 

Matlab RR, TcaS, 
Random 

Lightweight 
algorithm 

Ignore server 
overload 
situation  
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Task offloading optimization methods based on heuristic algorithms can obtain approximately optimal decisions at low compu-
tational costs. However, such algorithms need to work in conjunction with specific problem characteristics. Therefore, the scalability 
and flexibility of such methods are limited. In addition, task offloading decision-making methods based on heuristic algorithms are 
usually difficult to support large-scale MEC network environments due to the slow convergence speed. Table 7 presents a more detailed 
comparison of task offloading and resource allocation schemes based on heuristic algorithms. 

5.4. Meta-heuristic based offloading mechanisms 

Meta-heuristic algorithm is a generalized form of heuristic algorithm. It is not designed for a specific problem, but is a general 
heuristic algorithm framework. This type of method is more suitable for solving combinatorial optimization problems. In computing 
task offloading optimization scenarios, task offloading decision-making and resource allocation methods based on meta-heuristic 
algorithms can quickly obtain acceptable near-optimal solutions at low computational costs. 

The work [96] used the greedy algorithm and discrete bat algorithm to explore the optimal decision of task offloading. This 
mechanism is aimed at the dynamic and mobile Internet of Vehicles computing environment, so it focuses on the important parameter 
of network communication hop. The mechanism works in a distributed manner and supports task offloading to MEC and other 
vehicles. 

The study [97] proposed the concept of computational paths, thereby allocating computational tasks to multiple nodes on the 
computational path. The allocation process is based on a heuristic strategy and mainly considers the processing capabilities of edge 
devices, task deadline requirements, and dynamic changes in real-time workloads. In addition, this mechanism also incorporates user 
offloading references into decision optimization. 

A heuristic based offloading method is proposed in Ref. [98] that uses an interior point algorithm (IPA) and Lagrangian multiplier 
(LM) to solve the optimization problem. This method optimizes task offloading while also taking into account reliability guarantees 
based on network fault tolerance. 

For the cooperative application scenario of high-altitude platforms (HAPs) and unmanned aerial vehicles (UAVs), a layered aerial 
computing offloading framework for IoT is proposed in Ref. [99]. A matching game mechanism is introduced in this framework to 
select the highest priority UAV for each IoT device as the target execution node for task offloading. This mechanism supports 
many-to-one matching between IoT devices and UAVs. 

An algorithm based on Lagrange Dual Decomposition (LDD) and a heuristic algorithm is proposed in Ref. [100], which solves the 
IoT task offloading optimization problem in MEC networks built based on low Earth orbit (LEO) satellite networks. The algorithm 
jointly optimizes task offloading decisions and allocation of limited available resources. 

In [101], a GA based task offloading method was proposed for jointly optimization of UAV-server energy consumption and task 
execution latency. The method works by optimizing the trajectory of the UAV for providing the appropriate communication bandwidth 
and signal power for mission data transmission from the TD. Both battery-powered TDs and UAVs extended effective operating time. 
However, such algorithms will have difficulty in finding an acceptable approximate optimal solution quickly when the scale of MEC 
network is very large. 

A multi-user MEC system using NB-IoT and taking into account the unique characteristics of NB-IoT compared to other wireless 
technologies is introduced in Ref. [102]. This research will model the NB-IoT system as a continuous-time MDP (CTMDP) model and 
propose a task offloading optimization method based on approximate dynamic programming (ADP). The algorithm allows IoT devices 
to make distributed offloading decisions and supports task scheduling and distribution among base stations. 

A framework for joint task offloading, communication, and computing resource allocation for sequential tasks is proposed in 
Ref. [103]. Slow-fading and fast-fading channels are considered. The goal is to minimize energy consumption while ensuring task 
computation latency. The authors decompose the problem into a one-dimensional search and non-convex optimization problem of task 
offloading decision problems. Through mathematical processing, the non-convex problem is converted into a convex problem and 
solved using the Golden search method. 

A low-complexity heuristic algorithm is provided in Ref. [104]. The principle is to adjust the scheduling strategy, minimum delay, 
and energy consumption by calculating the scheduling value and data transmission rate of IoT offloading tasks. This algorithm mainly 
considers energy consumption and time constraints for task completion. 

In [105], the study focuses on the task offloading request from TDs and UAVs’ intermediate relay scheme with dual constrains of 
QoE and battery limitation. The study proposes a HJPQ algorithm based on meta-heuristic method. The HJPQ included genetic al-
gorithm and jointly consider task excuation delay, wireless network status, and the mobility of TDs. In addition, A DDPG-based task 
scheduling method was also implemented in this study. Experimental results show that HJPQ is better at guaranteeing QoE while 
optimizing latency and energy consumption. However, the proposed algorithm is difficult to support complex dependencies between 
multiple tasks. 

The IoT task offloading mechanism in MEC based on heuristic and meta-heuristic algorithms has multiple advantages. First, 
heuristic algorithms usually exhibit fast calculation speed, allowing them to quickly generate solutions in IoT applications with high 
real-time requirements. Secondly, the implementation of these algorithms is relatively simple and does not require complex mathe-
matical modeling and solving, thereby reducing system deployment and maintenance costs. Furthermore, they have broad applica-
bility and are suitable for various IoT application scenarios regardless of the problem structure. In addition, the heuristic algorithm can 
quickly adapt to dynamic changes, such as device connection, disconnection, and data traffic fluctuations, and dynamically adjust 
resource allocation and task offloading. However, the limitation of heuristic and meta-heuristic algorithms is that they usually provide 
approximately optimal solutions rather than optimal solutions, which not be suitable in some applications that require high accuracy, 
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and the performance is greatly affected by the problem instance and algorithm parameters. Furthermore, they sometimes get stuck in 
locally optimal solutions and fail to find the global optimal solution and thus perform poorly in situations of high problem complexity. 
In actual applications, choosing an appropriate task-offloading method requires comprehensive consideration of application scenarios 
and performance requirements. Table 8 presented a side-by-side comparison of IoT task offloading mechanisms based on heuristics. 

5.5. Game theory based offloading mechanisms 

Game theory provides a framework to model and analyze how multiple entities make decisions and how their choices affect the 
overall system. In the context of task offloading, game theory is applied to scenarios where multiple agents decide whether to offload a 
task to other resources or execute it locally. The player’s goal is to optimize his own goals, such as minimizing energy consumption or 
task execution time, while taking into account the actions and strategies of other players. Task offloading mechanisms based on game 
theory are particularly important in scenarios where multiple entities with conflicting interests interact, and the optimization of 
resource allocation depends on the behavior of multiple entities for all participants in the system. 

While the work in Ref. [93] a game theory method for optimizing computation offloading strategies is proposed. The authors first 
established a system model in satellite edge computing, taking into account intermittent Earth-satellite communications caused by 
satellite orbits. Then, a computational offloading game model is proposed, in which each device selfishly chooses a strategy that 
minimizes its cost. The response time and energy consumption of tasks are calculated through queuing theory and these metrics are 
used to optimize performance. In order to find the Nash equilibrium of the game, an iterative algorithm is proposed. 

In [94], the author provided a cooperative game algorithm based on cooperative offloading for single-task models and extended it 

Table 8 
A side-by-side comparison of offloading mechanisms based on meta-heuristic.  

Ref. Problems 
addressed 

Technique Network Objective Evaluation tools Baseline Advantages Limitations 

[96] Task 
assignment 

BAT WAVE Minimize 
latency 

Python based 
implementation 

Classic 
greedy 
algorithm 

Multi-hop Lack of MEC 
available 
resources to 
consider 

[97] Task 
assignment 

Greedy winner 
selection 

Undefined Minimize 
latency, 
Maximize 
success rate 

EdgeCloudSim, 
ElasticSim 

Nearest, 
Selfish 

Support 
dependencies 
between tasks 

Lack of network 
feature support 

[98] Task 
assignment, 
resource 
allocation 

Greedy, gradient 
decent 

5G, WiFi, 
and ZigBee 

Minimize 
switching 
latency, 
maximize QoS 

Mininet JONSSPE, 
SDENTO, 
JONSSPE 

Probabilistic 
guarantees of 
offloading 

Low resource 
utilization 

[99] Task 
assignment 

Greedy, game 
theory 

AAN Maximize total 
IoT data 
computed 

Matlab Exhaustive 
searching 

Support 
offloading to TD 
and MEC 

Channel 
utilization is not 
considered 

[100] Task 
assignment, 
resource 
allocation 

Greedy, lagrange 
dual 
decomposition 

Low-earth 
orbit 
satellite 
networks 

Minimize total 
delay 

Matlab Optimal 
exhaustive 
search 

Low 
computational 
complexity 

Load balancing 
is not considered 

[101] Task 
assignment, 
resource 
allocation 

GA MIMO Minimize 
latency and 
energy 
consumption 

Undefined DQN UAV trajectory 
optimization and 
battery life 
constraints 

Slow 
convergence in 
large-scale MEC 
network 
scenarios 

[102] Task 
assignment 

Linear value- 
function 
approximation, 
temporal- 
difference learning 

NB-IoT Minimize 
latency and 
energy 
consumption 

Matlab RR, QA, 
MUMTO 

Simple, consider 
load balancing 

Multi-objective 
optimization is 
not supported 

[103] Task 
assignment, 
resource 
allocation 

Golden search 
method 

NOMA Maximize 
efficiency 

Implementation LARAC Support task 
dependencies 

Only for a 
special type of 
computation 
task in a MEC 
system 

[104] Task 
assignment 

Greedy DAG graph 
calculation 

Universal Minimize 
latency and 
energy 
consumption 

Implementation PGBO, 
DEFO, 
PCDO, 
LOCOM 

Support task 
dependencies 

Does not support 
dependent 
subtasks with 
tight deadlines 

[105] Task 
assignment, 
resource 
allocation 

GA MIMO minimize the 
overall cost, 
but also meet 
QoE 
requirement. 

Matlab, Python Random, 
DDPG 

Lower 
complexity, 
faster 
convergence 

Difficulty in 
dealing with 
dependencies 
between tasks  
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to a multi-task model algorithm. In the single-task model, the algorithm starts with all players joining a remote alliance and then 
iteratively performs alliance splitting until a stable split is reached. In the multitasking model, the algorithm additionally calculates the 
cumulative cost and remote incremental cost of each device and determines the optimal upload completion time. This algorithm 
realizes collaborative computing offloading of tasks, thereby improving the timeliness of task completion and reducing energy 
consumption. 

A sub-gradient-based non-cooperative game model is presented in Ref. [95], which solves the task offloading problem in 
ultra-dense network environments. Taking into account the limited computing resources and dynamic needs of mobile users, the 
author proposes a Multi-objective Non-dominated Sorting Genetic Algorithm (MO-NSGA) based on Non-dominated Sorting Genetic 
Algorithm II (NSGA-II) to solve the problem of scheduling numerous task offloading requests in ultra-high-density networks. This 
mechanism adapts to the dynamic system environment and tries its best to reduce the energy consumption for data transmission while 
ensuring low-latency responses to task requests. 

A computation offloading strategy based on a two-stage latent game is proposed in Ref. [96], which optimizes resource allocation 
strategy while taking into account the priorities of tasks and users in edge-enabled Wireless Body Area Network (WBAN). The original 
problem is reduced to a non-cooperative game process based on the underlying game model. Each task in the game attempts to 
maximize its utility and increase the effectiveness of the overall system. Two different policies in the policy space are resource allo-
cation and offloading decisions. The first stage of the algorithm focuses on resource allocation and offloading decisions within the 
WBAN, while the second stage moves the game space to the MEC server. Tasks from different WBANs start the game in the second 
phase and obtain computing resources according to their utility. 

In [97], the task offloading is modeled as a non-cooperative game and uses Nash equilibrium as the basis for decision-making. In 
order to solve the game problem, a distributed iterative algorithm is designed. This algorithm uses the Proximal Decomposition Al-
gorithm as a regularization technique to solve the game problem through iterative convergence. The objective function of the algo-
rithm includes two aspects: local computing cost and transmission cost. By minimizing the objective function, each MEC-BS can 
achieve its own optimal task offloading decision. 

The IoT task offloading mechanism using game theory-based algorithms in MEC has unique advantages. First, they allow nego-
tiation and gaming between devices to obtain maximum personal benefit, thereby promoting efficient allocation of resources. Sec-
ondly, this mechanism can achieve a fair allocation of resources among multiple devices, ensuring that all devices can obtain 
reasonable service quality. In addition, algorithms based on game theory usually have high flexibility and can adapt to various IoT 
application scenarios. However, these algorithms also have some limitations, including higher computational complexity, the need for 
cooperation from game participants, greater demand for information, and the possibility of introducing additional communication 
overhead. Table 9 presented a side-by-side comparison of IoT task offloading mechanisms based on game theory. 

5.6. AI based offloading mechanisms 

Artificial intelligence-based task offloading mechanism is a strategy that uses artificial intelligence technologies such as machine 
learning to make intelligent decisions about the allocation of computing tasks in a distributed computing environment. These 
mechanisms utilize artificial intelligence algorithms to analyze various factors, including network conditions, device capabilities, and 
user preferences, to determine the best offload strategy. The main advantage of AI-based offloading mechanisms is their ability to 
adapt to changing conditions and uncertainties, providing real-time and context-aware decision-making. Moreover, large-scale net-
works and massive devices often require automated and intelligent decision-making processes. Table 10 presented a side-by-side 
comparison of IoT task offloading mechanisms based on AI. 

Table 9 
A side-by-side comparison of offloading mechanisms based on game theory.  

Ref. Problems 
addressed 

Technique Network Objective Evaluation tools Baseline Advantages Limitations 

[93] Task 
assignment 

Game 
theory 

Satellite Minimize average 
cost 

Iridium 
constellation 

Unknown Nash equilibrium 
decisions 

Lack of global 
optimization 

[94] Task 
assignment 

Game 
theory 

5G Minimize the overall 
cost of all TDs 

Test-bed Local 
executions 

Nash-stable 
solution with 
convergence 
guarantee 

Not suitable for 
high-density large- 
scale networks 

[95] Task 
assignment, 
resource 
allocation 

Game 
theory 

NOMA Minimize energy 
consumption and 
latency 

Matlab Yalmip, 
ROGS, 
HOBS 

Good 
convergence 
property 

Ignores the impact 
of communication 
noise 

[96] Task 
assignment 

Game 
theory 

WBANs, 
RAN 

Maximize system 
utility, minimize 
delay and energy 
consumption 

Python based 
implementation 

All local, all 
offload 

Acceptable 
framework 

Not compared with 
other algorithms 

[97] Task 
assignment 

Game 
theory 

RAN Minimize latency Matlab IPA, OPEN Support multiple 
scenarios 

Not optimized 
energy consumption  
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Table 10 
a side-by-side comparison of offloading mechanisms based on AI.  

Ref. Problems 
addressed 

Technique Network Objective Evaluation tools Baseline Advantages Limitations 

[98] Task 
assignment 

SVM RAN Minimize service 
delay, 
computation 
time, and service 
lag 

OPNET IHRA, COM, 
PCOA 

Acceptable 
framework 

Difficult to 
implement on 
large-scale training 
samples 

[99] Resource 
allocation 

CNN, 
RNN, 
LSTM 

5G Maximize 
accuracy and 
detection rate 

Python based 
implementation 

RP, DE Predict task 
offloading 
timeliness 

Lack of 
comprehensive 
consideration of 
network 
parameters 

[100] Task 
assignment, 
resource 
allocation 

DNN WPT Maximize 
efficiency of the 
edge server 

Python based 
implementation 

DROO, C D, 
OP, KNN 

Support task 
offloading between 
TDs 

If the MDs have a 
high mobility, the 
framework could 
be difficult to 
converge. 

[101] Task 
assignment, 
resource 
allocation 

DNN RAN Maximize system 
utility and 
bandwidth 
allocation for 
each MD 

Python based 
implementation 

Local-Only, 
Edge-Only, 
Central-Only, 
Local and 
Central 

Acceptable 
framework 

Lack of 
comprehensive 
consideration of 
network 
parameters 

[102] Task 
assignment, 
resource 
allocation 

DNN OFDMA, 
SDN 

Minimize delay 
and energy 
consumption 

Python based 
implementation 

GA, BNB, DQN Good tradeoff 
between 
complexity and 
utility performance 

The multi-tasking 
offloading scenario 
on TD is not 
considered 

[103] Resource 
allocation 

DNN WPT, 
NOMA, 
TDMA 

Maximize 
computation rate 

PyTorch based 
implementation 

OFS + CVX, 
local-Only, 
edge-only 

Acceptable 
framework 

Ignores the 
mobility of TD 

[104] Task 
assignment 

DNN RAN Minimize delay, 
energy 
consumption, and 
offloading 
overhead 

Matlab TOT, ROT, 
DOT, EEDOT, 
DIOT 

Acceptable 
framework 

Ignores the 
mobility of TDs 

[105] Resource 
allocation 

SARSA, 
fuzzy logic 

5G Maximize service 
time, minimize 
task failure rate 

EdgeCloudSim Util, owb, fu- 
comp, hybrid 

Taking into 
account system 
overhead 

Only for specific 
application 
scenarios 

[106] Task 
assignment 

Q- 
Learning, 
game 
theory 

RAN Maximize system 
utility 

Matlab Local-lony, 
Edge-only, 
Random 
assignment, BR 

does not require 
environment model 
and payment 
information of 
other devices 

Ignores the 
mobility of TDs 

[107] Task 
assignment, 
resource 
allocation 

DQN, ACS, 
PSO 

RAN Maximize system 
utility 

Testbed BNEA, LCPSO, 
MOACS 

Support multi-hop 
network 

System overload is 
not considered 

[108] Task 
assignment 

DQN, PDS- 
learning 

RAN Minimize delay 
and energy 
consumption 

Keras and 
TensorFlow 

DECENT, 
OEOFG, 
POOIE, 
OCODR 

Supports both 
Online and Offline 
Offloading 
optimization 

Ignoring the 
dynamic 
scalability of MEC 
computing power 

[109] Task 
assignment 

DQN RAN Minimize delay 
and energy 
consumption 

TensorFlow and 
Cooja 

DTODR, ODRL, 
JMOR, ECCO, 
JSOE 

Battery lifetime 
optimization 

Task offloading 
between TDs is not 
supported 

[110] Task 
assignment 

DQN RAN Minimize energy 
consumption 

Tensor flow Q-learning, 
FRAA 

Both delay-tolerant 
and non-delay 
tolerant scenarios 
are considered 

Collaborative 
offloading of 
multiple MEC 
nodes is not 
supported 

[111] Resource 
allocation 

DQN 6G Minimize 
consumption 
overheads of 
system energy 
and latency 

TensorFlow Traditional 
DQN 
Algorithm, FL, 
Random 
Selection 
Scheme 

Better convergence TD movement at 
the edge of the 
covered area is not 
considered 

[112] Task 
assignment, 
resource 
allocation 

DQN RAN Maximize the 
total utility 

Implementation VES, FES Support task 
offloading between 
TDs 

Energy 
consumption 
optimization is 
ignored 

(continued on next page) 
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Table 11 
Parameters supported by the iot task offloading mechanism in MEC.  

Work Size of 
task 

Task 
dependency 

Dead- 
line 

Capacity of 
TD 

Capacity of 
MEC 

Trans-mission 
delay 

Channel 
bandwidth 

Noise 
power 

Location of 
TD 

Network 
hop 

Transmit 
power 

Battery 
level 

Pay-ment 
cost 

[83] ✓  ✓ ✓ ✓ ✓ ✓    ✓   
[84] ✓  ✓ ✓ ✓ ✓ ✓    ✓ ✓  
[85] ✓  ✓ ✓ ✓ ✓ ✓ ✓   ✓   
[86] ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓  
[87] ✓  ✓ ✓ ✓ ✓ ✓    ✓   
[88] ✓  ✓ ✓ ✓  ✓ ✓   ✓   
[89] ✓  ✓ ✓ ✓ ✓ ✓    ✓   
[138] ✓  ✓ ✓ ✓ ✓ ✓       
[139] ✓  ✓ ✓ ✓ ✓ ✓ ✓   ✓   
[140] ✓  ✓ ✓ ✓    ✓    ✓ 
[141] ✓  ✓ ✓ ✓ ✓ ✓       
[142] ✓   ✓ ✓ ✓ ✓ ✓   ✓   
[143] ✓     ✓ ✓  ✓  ✓   
[144] ✓  ✓ ✓ ✓ ✓ ✓ ✓   ✓ ✓  
[145] ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓  
[146] ✓  ✓ ✓ ✓  ✓    ✓ ✓  
[147] ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓  
[96] ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓   
[97] ✓  ✓ ✓ ✓ ✓        
[90] ✓  ✓ ✓ ✓  ✓    ✓  ✓ 
[91] ✓  ✓ ✓ ✓  ✓ ✓      
[98] ✓  ✓ ✓ ✓  ✓    ✓  ✓ 
[99] ✓  ✓ ✓ ✓ ✓ ✓  ✓  ✓ ✓  
[100] ✓  ✓ ✓ ✓    ✓     
[102] ✓   ✓       ✓   
[103] ✓ ✓ ✓   ✓ ✓ ✓   ✓   
[104] ✓ ✓ ✓ ✓ ✓  ✓ ✓   ✓   
[92] ✓  ✓ ✓ ✓ ✓ ✓ ✓   ✓   
[93] ✓  ✓ ✓ ✓ ✓ ✓  ✓ ✓   ✓ 
[94] ✓  ✓ ✓ ✓ ✓ ✓ ✓   ✓   
[107] ✓   ✓ ✓ ✓ ✓    ✓   
[108] ✓  ✓ ✓ ✓ ✓ ✓    ✓   
[109] ✓  ✓ ✓ ✓  ✓    ✓   
[110] ✓  ✓ ✓ ✓  ✓       
[111] ✓  ✓ ✓ ✓  ✓       
[112] ✓  ✓ ✓ ✓  ✓       
[113] ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓  
[114] ✓  ✓ ✓ ✓ ✓ ✓       
[115] ✓  ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓  
[116] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓   ✓   
[117] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓   ✓ ✓  
[118] ✓  ✓ ✓ ✓ ✓ ✓       
[119] ✓  ✓ ✓ ✓ ✓ ✓ ✓   ✓   
[120] ✓  ✓ ✓  ✓ ✓   ✓ ✓   
[121] ✓  ✓ ✓ ✓ ✓ ✓ ✓   ✓ ✓  
[122] ✓  ✓ ✓ ✓ ✓ ✓  ✓  ✓ ✓  
[123] ✓  ✓ ✓ ✓ ✓ ✓ ✓   ✓   
[124] ✓  ✓ ✓ ✓   ✓      

(continued on next page) 
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Table 11 (continued ) 

Work Size of 
task 

Task 
dependency 

Dead- 
line 

Capacity of 
TD 

Capacity of 
MEC 

Trans-mission 
delay 

Channel 
bandwidth 

Noise 
power 

Location of 
TD 

Network 
hop 

Transmit 
power 

Battery 
level 

Pay-ment 
cost 

[125] ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓   
[126] ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓  
[127] ✓  ✓ ✓ ✓   ✓      
[128] ✓  ✓ ✓ ✓ ✓ ✓       
[129] ✓  ✓ ✓ ✓ ✓ ✓  ✓  ✓   
[130] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓   ✓   
[131] ✓  ✓ ✓ ✓ √ ✓ ✓   ✓ ✓  
[132] ✓  ✓ ✓ ✓ ✓ ✓    ✓   
[133] ✓  ✓ ✓ ✓ ✓ ✓    ✓   
[134] ✓  ✓ ✓ ✓ ✓ ✓ ✓   ✓   
[135] ✓  ✓  ✓ ✓ ✓ ✓   ✓   
[136] ✓  ✓ ✓ ✓ ✓ ✓       
[137] ✓  ✓ ✓ ✓ ✓ ✓    ✓   
[148] ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓  
[149] ✓  ✓ ✓ ✓ ✓ ✓ ✓   ✓   
[150] ✓  ✓ ✓ ✓ ✓ ✓ ✓   ✓   
[151] ✓  ✓ ✓ ✓  ✓ ✓ ✓  ✓   
[152] ✓  ✓ ✓ ✓ ✓ ✓    ✓ ✓  
[153] ✓  ✓ ✓ ✓ ✓ ✓ ✓   ✓   
[154] ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓   
[155] ✓  ✓ ✓ ✓ ✓ ✓ ✓  ✓    
[156] ✓  ✓ ✓ ✓ ✓ ✓ ✓   ✓   
[157] ✓  ✓ ✓ ✓ ✓ ✓    ✓ ✓  
[158] ✓  ✓ ✓ ✓ ✓ ✓ ✓   ✓ ✓  
[159] ✓  ✓ ✓ ✓  ✓ ✓   ✓   
[160] ✓  ✓ ✓ ✓ ✓ ✓  ✓  ✓    
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Table 10 (continued ) 

Ref. Problems 
addressed 

Technique Network Objective Evaluation tools Baseline Advantages Limitations 

[113] Task 
assignment, 
resource 
allocation 

DQN RAN, 
WPT 

Maximize 
computation time 
and execution 
latency 

Testbed Coordinate 
Descent, Linear 
Relaxation 

Support task 
offloading between 
TDs 

The mobility of the 
TDs would make it 
harder to converge 

[114] Task 
assignment, 
resource 
allocation 

DQN RAN Maximize number 
of tasks 
completed on 
time, minimizing 
energy 
consumption 

PyTorch based 
implementation 

Greedy Maximize long- 
term accumulated 
rewards instead of 
a one-time step 

Energy 
consumption 
optimization is not 
considered 

[115] Task 
assignment, 
resource 
allocation 

DQN RAN Minimize 
offloading cost 

Matlab OOS, DROS, 
GOS, ROS, 
EOS, COS 

Supports offloading 
tasks to edge and 
cloud at the same 
time 

Task offloading 
between TDs is not 
supported 

[116] Resource 
allocation 

DQN NB-IoT Minimize long- 
term average 
weighted sum of 
delay and power 
consumption 

Implementation QA, MUMTO, 
Neural-ICO 

tradeoff in 
minimizing the 
weighted sum of 
the delay and 
power 
consumption 

Collaborative 
offloading of 
multiple MEC 
nodes is not 
supported 

[117] Task 
assignment, 
resource 
allocation 

DQN NOMA Minimize the total 
energy 
consumption 

TensorFlow, 
Keras 

FDMA joint optimization 
of the computation 
offloading, NOMA 
transmission, and 
computation 
resource allocation 

Only supports 
static channel 
scenario 

[118] Task 
assignment, 
resource 
allocation 

DQN RAN Minimize delay 
and energy 
consumption 

Testbed NO, EO, CMDP Differentiated 
levels of task 
privacy 
requirements 

Only for specific 
application 
scenarios 

[119] Task 
assignment, 
resource 
allocation 

DQN, 
CNN, 
Lyapunov 

LOS, 
NLOS 

Minimize delay 
and energy 
consumption 

Python based 
implementation 

Random 
policy, greedy 

tradeoff between 
edge preprocessing 
and network 
transmission 

Ignores the 
mobility of TDs 

[120] Task 
assignment, 
resource 
allocation 

DQN Wi-Fi, 
LTE 

Minimize delay 
and energy 
consumption 

Testbed Greedy, DQL- 
non-DP 

Self-learning of 
wireless channel 
characteristics 

Does not support 
multiple UAV 
scenarios 

[121] Resource 
allocation 

DDQN, 
DDPG 

RAN Minimize 
computational 
cost 

Python based 
implementation 

OS, ES, LC Acceptable 
framework 

Only for specific 
application 
scenarios 

[122] Task 
assignment, 
resource 
allocation 

DDQN RAN Minimize 
offloading and 
smart contract 
costs 

TensorFlow, 
Testbed 

DRLO, EO, CO High security of 
offloaded data 

Lack of 
consideration for 
optimizing 
offloading between 
TDs 

[123] Task 
assignment, 
resource 
allocation 

PG RAN Minimize 
computation time 

TensorFlow Random, FIFO, 
SJF, PEFT, SAC 

More robust 
approach 

lack of energy 
consumption 
optimization 

[124] Task 
assignment, 
resource 
allocation 

DDPG 5G Minimize delay 
and energy 
consumption 

PyTorch based 
implementation 

Edge-only, 
DQN-based 
offloading, AC 

Avoid noise 
interference 

Assume that the 
network 
environment is 
stable and 
controllable 

[125] Task 
assignment 

MADDPG 5G Maximize utility 
of UAVs 

TensorFlow DDPG, A3C, 
Dueling-DQN 

Support cluster- 
based multi-UAV 
network 

Only for specific 
application 
scenarios 

[126] Task 
assignment, 
resource 
allocation 

DDPG RAN Minimize total 
energy and delay 

TensorFlow, 
tkinter 

Greedy MECF, 
Optimal MECF, 
RRA, URA, 
DDPG, DDPG- 
PER 

Load balancing 
among MEC nodes 

Ignores the 
mobility of TDs 

[127] Task 
assignment 

DDPG MIMO Minimize data 
buffer delay, 
energy 
consumption, 
bandwidth cost 

Python based 
implementation 

Dueling-DQN, 
DDQN, greedy 
policy 

Taking into 
account the 
caching process 
during data 
offloading 

Lack of 
optimization of 
system resource 
utilization 

(continued on next page) 
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5.6.1. Support vector machine 
In [98] a distributed computing and resource-sharing task offloading framework is proposed, which is based on a Support Vector 

Machine (SVM) for resource-sharing and service allocation in edge computing. This framework classifies pipeline and distributed 
computing and adjusts the configuration of services oriented to offload tasks from IoT. Services are assigned to requesting users in the 
MEC network environment. Use SVM for task and pipeline instrumentation for decision-making and resource-oriented computing. 
Edge devices are responsible for checking service allocations and providing resource sharing to requesting users to reduce service 
latency and task computation time. 

5.6.2. Neural Network 
Compared with simple SVM, CNN, DNN, and LSTM are also used as supporting technologies for task offloading. A framework based 

on hybrid deep learning algorithms is proposed in Ref. [99] to solve the dynamic multi-task offloading problem in IIoT networks. The 
framework uses a combination of CNN and LSTM algorithms to learn the spatiotemporal characteristics of tasks, and then outputs task 
offloading decisions and corresponding resource allocations based on conditions such as time-sensitivity constraints of the task. 

In [100], a parallel offloading framework is proposed that uses deep neural networks as parallel offloading executors to generate 
offloading actions. This framework decomposes the optimization problem into offloading decision sub-problems and resource 

Table 10 (continued ) 

Ref. Problems 
addressed 

Technique Network Objective Evaluation tools Baseline Advantages Limitations 

[128] Task 
assignment, 
resource 
allocation 

MADDPG OFDMA Minimize delay 
and energy 
consumption 

TensorFlow DDPG, 
Dueling-DQN, 
DQN, greedy 

QoS guarantee No joint 
consideration of 
UAV trajectory 
planning 

[129] Task 
assignment, 
resource 
allocation 

MADDPG RAN Maximize service 
satisfaction for 
IoTDs 

PyTorch based 
implementation 

ACS_CS, 
RO_CS, DDPG- 
JAPORA 

Support multi-UAV 
collaborative task 
offloading 

No joint 
consideration of 
UAV trajectory 
planning 

[130] Task 
assignment 

MAQDRL Wifi Minimize delay 
and energy 
consumption 

TensorFlow MAPPO, 
InDRL, 
MADDQN, 
MARAND 

Acceptable 
lightweight 
framework 

Collaborative 
offloading of 
multiple MEC 
nodes is not 
supported 

[131] Task 
assignment 

Actor 
Critic 

RAN Minimize total 
task processing 
delay in a long- 
term period 

Python based 
implementation 

NN, AC, Vehicles can select 
multiple MEC 
offloading nodes in 
parallel 

Lack of energy 
consumption 
optimization 

[132] Task 
assignment, 
resource 
allocation 

MADRL NOMA Minimize delay 
and energy 
consumption 

PyTorch based 
implementation 

DDPG, I-DDPG, 
Expert 
Algorithm 

Strong robustness High vector 
dimension in large- 
scale network 
application 
scenarios 

[133] Task 
assignment, 
resource 
allocation 

Actor 
Critic 

Satellite Minimize total 
task delay 

Test bed Random, 
Greedy 

Low computational 
complexity 

Lack of joint 
optimization of 
computing and 
communication 
resources 

[134] Task 
assignment, 
resource 
allocation 

Meta-RL RAN Minimize delay 
and energy 
consumption 

TensorFlow Optimal 
Exhaustive 
Search, 
Random 
Offloading, 
Greedy, PPO- 
Based DRL 

Quickly adapt to 
changes in the 
network 
environment 

Task offloading 
between TDs is not 
supported 

[135] Task 
assignment, 
resource 
allocation 

DRL, FL WPT Minimize delay 
and energy 
consumption 

PyTorch based 
implementation 

Linear 
relaxation 
algorithm, CD 

High accuracy of 
offloading action 

Collaborative 
offloading of 
multiple MEC 
nodes is not 
supported 

[136] Task 
assignment, 
resource 
allocation 

FL, DDPG OFDMA Minimize delay 
and energy 
consumption 

PyTorch based 
implementation 

Random 
Offload, 
Greedy, DQN, 
DDPG 

Incorporates the 
protection of user 
data privacy 

Task offloading 
between TDs is not 
supported 

[137] Task 
assignment 

FL Q- 
learning 

FDMA Maximize 
accuracy 

PyTorch based 
implementation 

PQB-OS, POS- 
CSI 

High effectiveness 
for obtaining the 
optimal offloading 
strategy 

Ignoring the 
optimization of 
bandwidth and 
transmission 
energy 
consumption  
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allocation sub-problems. It automatically improves its action generation strategy based on different wireless fading conditions. In 
addition, the impact of wireless power transfer on wireless IoT task offloading decisions is also discussed. A DNN-based hybrid off-
loading model for MCC and MEC is proposed in Ref. [101]. The algorithm utilizes multiple parallel DNNs to generate optimal off-
loading decisions. The algorithm requires prior training of a DNN model using a dataset containing workloads and corresponding 
offloading decisions. Therefore, the adaptability of this algorithm is limited. A computational offloading and resource allocation al-
gorithm based on distributed deep learning is introduced in Ref. [102], which utilizes multiple parallel DNNs to generate optimal 
offloading decisions and resource scheduling. In Ref. [103], the researcher uses the experience replay technique to train DNN, 
randomly selecting a batch of training samples from memory. In addition, this method takes into account the application scenario of 
wireless power transmission to power IoT nodes and considers the joint optimization between optimizing wireless power supply and 
wireless communication. In Ref. [104] the author also proposed a task offloading decision-making method based on DNN to reduce the 
delay of task execution and the battery consumption of TD. However, this method takes into account the type of distinction of tasks, 
thereby enabling finer-grained task offloading scheduling and optimization. 

5.6.3. Q-learning 
In [105] the author proposed a task-offloading algorithm that combines fuzzy logic and SARSA reinforcement learning. The al-

gorithm determines the MEC computing node used to process the task by considering the network environment and mobile access 
network parameters. It defines the communication model and calculation model and calculates the transmission time and calculation 
time of the task. The algorithm solves optimization problems and makes task offloading decisions by minimizing latency and balancing 
load among MEC nodes. The algorithm uses a SARS-based reinforcement learning algorithm to iteratively update the Q value until it 
converges to the optimal Q value. The authors aim to optimize service times and task failure rates, especially when the system is 
overloaded. A system model for offloading IoT tasks to MEC networks is established in Ref. [106]. This model considers the available 
computing resources of TD, the available resources of each computing node of MEC, and multiple indicators related to wireless 
network transmission. This study considers the interference of wireless channels and multi-user computing offloading scenarios in 
dynamic environments and proposes an evolutionary game model combined with reinforcement learning to optimize IoT task 
offloading. 

5.6.4. Deep Q-learning 
In [107], the author designed a two-layer intelligent optimization algorithm based on DRL to solve the joint optimization problem 

of IoT task offloading and resource allocation. In this study, a virtual backbone network architecture was constructed based on 
available MEC resources and based on DRL, a search was performed from TD to MEC Compute the best path between nodes. The IoT 
task offloading problem is modeled as a Markov decision process (MDP) in Ref. [108]. Information such as the number of MEC 
computing nodes, task attributes, network status, and number of TDs are used for DRL learning. This scheme can be used to auto-
matically optimize offline and online task offloading strategies. In Ref. [109], the author uses Q-tables to learn offline task offloading 
strategies and utilizes CNN to accelerate the learning process. This study adopted a transfer learning method, which improved the 
offloading efficiency. A study [110] modeled the problem as a Markov decision process (MDP) and solved it using the DRL algorithm. 
The state space takes into account the network environment, wireless communication resources, channel state changes, etc. This study 
lacks attention to the availability status of computing resources. A work [111] further proposed research on task offloading optimi-
zation for sixth-generation (6G) communication technology and introduced collective reinforcement learning methods for resource 
allocation and network optimization. 

In the scenario studied by Ref. [112], the on-board computer has relatively sufficient computing resources. Therefore, vehicles are 
treated as computing nodes in the MEC network. Computational tasks from the TD or vehicle can be offloaded to other vehicles or fixed 
MEC servers. Since the offloading decision-making problem in this scenario is not a convex optimization problem, the author proposed 
a method based on reinforcement learning to dynamically adjust the task offloading decision and resource allocation strategy. In 
Ref. [113] an online task offloading algorithm based on deep reinforcement learning is proposed to optimize computing task offloading 
in large-scale networks. The algorithm learns from past task-offloading experiences through reinforcement learning and improves its 
task-offloading actions through DNN. Order-preserving quantization and adaptive parameter setting methods are used to achieve fast 
algorithm convergence. A work [114] proposed an end-to-end DRL algorithm to select the best edge server for offloading and allocate 
appropriate computing resources. The algorithm learns optimal strategies through interaction with the MEC computing environment 
to maximize long-term utility. 

A new deep imitation learning (DIL)-driven edge cloud computing offloading framework is proposed in Ref. [115], which aims to 
minimize costs in MEC task offloading environments through optimal behavioral cloning. The authors formalize the problem as a 
multi-label classification problem and use the generated optimal offloading actions to train the model in an offline manner. In 
Ref. [116] the researcher modeled IoT task offloading as an average reward continuous-time Markov decision process model under an 
infinite time perspective. The author implemented a distributed resource auction mechanism based on deep reinforcement learning 
technology to coordinate TD’s task offloading requests. A work [117] introduced new equations and constraints to transform the 
problem into multiple equivalent forms with convex properties. Afterward, the dual optimization problem was iteratively updated 
using deep learning methods. In Ref. [118], the author also optimizes task offloading decisions based on deep learning technology. 
However, this research focuses more on supporting task offloading cost optimization in blockchain application scenarios. 

The work [119] studied the IoT task offloading application scenario in which UAVs act as MEC computing nodes. As an MEC base 
station, the UAV can continue to offload tasks to the cloud, thus forming a multi-layer offloading architecture. Different from other 
deep learning-based task-offloading mechanisms, this research focuses on UAV trajectory planning to improve the task-offloading 
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efficiency of IoT. In Ref. [120], the researcher also studied the task offloading optimization problem in MEC networks involving UAVs. 
However, this study optimizes the cumulative policy gradient calculation step in policy update. This research ensures the efficiency of 
task offloading while also taking into account the privacy protection of task offloading. 

5.6.5. Double DQN 
The work [121] focuses on task offloading and resource allocation issues in MEC-assisted Railway Internet of Things (RIoT) net-

works. The algorithm proposed by the authors handles mixed integer nonlinear programming (MINLP) problems by combining DDQN 
and DDPG. This method takes into account the allocation of wireless communication resources and the allocation optimization of MEC 
computing resources to minimize the weighted total cost of energy consumption and delay. The deep learning technology is used in 
Ref. [122] to optimize computing task offloading in task offloading scenarios for blockchain applications. Compared with the usual 
DRL-based task offloading mechanism, this research takes more into account the characteristics of task activities such as access control 
and authorization of blockchain business. 

5.6.6. Deteministic policy-gradient 
While the study in Ref. [123] a MEC resource scheduling and IoT task offloading mechanisms based on graph neural network are 

discussed. This research combines reinforcement learning with graph convolutional network technology to model the interaction 
between the agent and the environment by modeling it as a Markov decision process (MDP). The training process uses the Monte Carlo 
method. The work [124] adopted a DDPG (Deep Deterministic Policy Gradients) based approach to jointly schedule resource allocation 
and computation offloading in multiple UAV-assisted MECs. This method can optimize the distributed parallel task offloading ac-
tivities of multiple TDs on multiple UAVs, thereby avoiding network transmission bottlenecks and reducing the overall task offloading 
delay. In Ref. [125] the application scenario of combining multi-agent deep reinforcement learning (MADRL) with unmanned aerial 
vehicle (UAV)-driven IoT networks is studied. This study utilized a Stackelberg game model and transformed it into an MDP model. 
After that, the author constructed a model-free multi-agent deep deterministic policy gradient (MADDPG) algorithm to find the 
optimal task offloading decision-making strategy. The work [126] also proposed a task offloading optimization model based on DDPG. 
The model is designed to be relatively simple, and it mainly considers task delay and energy consumption optimization issues in the 
IIoT network environment. 

In [127] a deep reinforcement learning-based data offloading and renewable energy aware model is provided, and the goals are 
minimizing the total system cost of energy consumption, data transmission delay, and bandwidth allocation under time-varying 
channel states. A study [128] uses multi-agent deep reinforcement learning (MADRL) technology to optimize the allocation of 
limited computing resources in an MEC environment composed of multiple UAVs to minimize long-term computing costs in terms of 
energy and latency. The work [129] combined deep deterministic policy gradient (DDPG) with a cooperative multi-agent learning 
framework in their research, and used a centralized training and distributed execution solution to solve the non-stationary problem of 
the network environment. 

5.6.7. Actor-critic based policy-gradient 
In [130] a lightweight optimal task offloading algorithm called MAQDRL based on queuing theory is presented. The algorithm 

integrates queuing theory and uses multi-agent deep reinforcement learning to obtain optimal offloading strategies in dynamic and 
stochastic multi-user offloading environments. The decision-making network is trained in a centralized manner in a data center, while 
the vehicles perform task-offloading decisions in a distributed manner. The work [131] proposed a centralized training algorithm and 
distributed execution algorithm based on multi-agent DRL for IoV task offloading application scenarios [132]. proposed an offloading 
decision-making framework consisting of a hierarchical coalition of multi-agents, in which upper-level agents receive decision-making 
experience from lower-level agents and perform reinforcement learning. The Air-Ground Integrated Network (SAGIN) architecture is 
studied in Ref. [133], which uses UAVs for edge computing and satellites for cloud computing. A method based on deep reinforcement 
learning is proposed to optimize the dynamic offloading strategy in a dynamic SAGIN environment. 

5.6.8. Meta reinforcement learning 
The work [134] proposed a cache-assisted collaborative task offloading and resource allocation mechanism that can achieve 

collaboration and resource sharing between multiple edge nodes and mobile devices. This mechanism takes cache status into account 
when performing offloading, allowing tasks offloaded to edge servers to obtain raw data and calculation results directly from existing 
caches. This reduces the overhead caused by redundant computation and transmission for repeated tasks. The author also established 
multi-dimensional indicators based on the concept of quality of experience (QoE) and constructed a QoE-aware utility function that 
considers subjective user preferences, objective execution costs, task cache status, task allocation status, and resource and network 
status, and achieved rapid Decision making and resource allocation. 

5.6.9. Joint federated learning and reinforcement learning 
Federated Learning (FL) is a distributed learning framework that improves decision-making efficiency by allowing IoT devices and 

MEC servers to jointly train a shared global model. The IoT task offloading algorithm proposed by Ref. [135] includes four main 
components: offloading action generation, offloading policy update, DNN model aggregation, and adaptive learning rate method. The 
algorithm generates offloading decisions for each TD based on distributed reinforcement learning, regularly updates the offloading 
strategy, aggregates DNN models from TDs, and adjusts the learning rate based on the performance of the algorithm. The goal is to 
adaptively allocate computing and communication resources in large-scale dynamic MEC scenarios. The task offloading algorithm 
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proposed by Ref. [136] combines federated learning to protect privacy and improve training performance. The actor network and critic 
network are each composed of multiple fully connected layers and use RELU as the activation function. The work [137] also proposed 
an edge-assisted federated learning framework for IIoT networks to alleviate the hysteresis effect of task offloading and improve the 
training efficiency of the decision-making system. 

5.7. Parameters to be determined for all type of machanism 

In the field of task offloading within MEC networks, a series of key parameters must be carefully determined to ensure the efficient 
execution of computing tasks. These parameters serve as a compass for optimizing offloading decisions and resource utilization. Basic 
considerations involve aspects, such as the characteristics of the task itself, processing power requirements, expected execution time, 
and timeout tolerance. This understanding forms the basis for discerning whether tasks are better suited for offloading to a more 
powerful MEC server or local processing. 

5.7.1. Task load 
The properties of the computing task itself are one of the basic parameters that need to be considered by the offloading mechanism. 

Such parameters are the main basis for various algorithms to judge whether a task can benefit from the offloading process and where to 
offload it. 

The most basic parameter in the properties of the task itself is the size of the task, which is usually expressed in terms of the number 
of CPU cycles required to complete task execution. In addition, in some algorithms, the amount of data carried by the task will be 
additionally considered. In this study, all task offloading mechanisms support this parameter. 

The task completion time is another important parameter. Task offloading is meaningless if its execution time is longer than the 
local execution time. In addition, some tasks contain both a desired execution deadline and a tolerable execution deadline. 

For algorithms that support partial task offloading, they also need to obtain dependency constraints between task fragments and 
between tasks and tasks, and thus to avoid waiting conditions between offloaded tasks. 

5.7.2. Computing capacity 
The computational capacity is specific to TD and MEC. The computational capacity of TD is used to predict the time a task will take 

to execute locally. Similarly, the computational flux of the MEC is used to predict the time the task will take to offload. 

5.7.3. Network status 
Network state information is used to predict the time it will take for a task to be transmitted. This time, together with the task 

computation time, constitutes the total time cost of task offloading. Such parameters are mainly presented as delay and channel 
bandwidth. 

For algorithms that support TD mobility, it is also necessary to obtain the location of the TD and the network hop that the task 
transmission needs to pass through. This information can support the algorithm to infer the cost of task transmission in a more fine- 
grained way. 

5.7.4. Energy consumption 
Energy consumption is mainly for TDs due to their limited battery capacity. The basic task energy consumption is inferred from the 

amount of computation of the task. In addition, wireless data transmission also consumes energy. Therefore, some task-offloading 
algorithms also support network state monitoring. Most of such state parameters are in the form of noise power, transmit power, 
and battery level of the TD. 

5.7.5. Payment cost 
Payment cost is a parameter that needs additional consideration for task offloading. It can be expressed as the cost of using MEC 

computational resources and the cost of task data transfer for TD. Such parameters are used as one of the reference conditions for multi- 
objective optimization in the decision-making process of task offloading. Table 11 shows the main parameters supported by the IoT 
task offloading mechanism in MEC. 

6. Result and discussion 

The results and analysis section of this review provide a comprehensive synthesis of the included literature to provide insights and 
answers to the research questions. It is structured to promote a clear understanding of the findings and their implications. As 
mentioned in the previous sections, the systematic approach adopted in the review process ensured the reliability and robustness of the 
analysis. Furthermore, we summarize the analytical reports of the research questions previously presented in Section IV, as follows: 

6.1. AQ1: problems addressed 

RQ1 aims to determine what the main problems are that the IoT task offloading mechanism tries to solve. According to the 
investigation, it was found that task assignment and resource allocation are the basic parts of the IoT task offloading strategy in MEC. 
These processes involve determining which tasks are performed locally on the device and which tasks are offloaded to remote 
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resources. Resource allocation involves the allocation of specific resources (e.g., computing power, storage, network bandwidth) to 
efficiently perform offloaded tasks. 

Over 40 % of the literature surveyed in this survey focused on task allocation as the primary problem-solving goal [73,74,77,79,81, 
84–86,88,138–140,143,145,90,91,147,94,96–98,100,104,106,108–110,125,130,131,137]. The goal of resource allocation is 
addressed in approximately 10 % of the reviewed literature [99,103,105,111,116,121]. In addition, 48 % of the research work focuses 
on both task allocation and resource allocation issues [76,80,83,87,89,141,142,144,146,92,95,101,102,107,112–115,117–120, 
122–124,126–129,132–136,148,149]. The Distribution and overlay of IoT task offloading problems addressed in MEC are shown in 
Fig. 4. 

6.2. AQ2: optimization objectives 

The second research question (RQ2) to be answered refers to the goals of existing IoT task offloading mechanisms and algorithms to 
be optimized. Based on the above-mentioned reviewed papers, it was found that the optimization goals of task offloading are divided 
into three broad categories: Delay, Energy consumption, and resource utilization. 

6.2.1. Offloading efficiency 
The primary goal of optimizing the task-offloading mechanism is to improve the success rate of task-offloading and reduce costs as 

much as possible. The survey results show that performance metrics related to offloading efficiency are the most numerous [73,75,76, 
142,146,94,100–104,113,124,125,128]. 

6.2.2. Delay and Energy consumption 
For many IoT applications, especially those that require real-time data processing and fast response (such as smart transportation, 

telemedicine, etc.), latency is a key indicator. The optimization goal is to ensure that the computing tasks of IoT devices can be 
processed in the shortest time to meet the real-time requirements of the application. Latency-related performance indicators can be 
presented in a variety of ways, including Response time, Completion time, and Makespan, etc. [89,139,92,105,109,123,124,132,134]. 

Another important goal of optimizing the IoT computing task offloading mechanism is to reduce energy consumption, thereby 
extending the life cycle of battery-powered devices. Energy consumption indicators are expressed in many studies as Device energy 
consumption, Total energy consumption, and Average energy efficiency, etc [140,143,116–118,125,136]. 

6.2.3. Resource utilization 
While ensuring the efficiency of task offloading, the offloading mechanism also tries its best to reasonably allocate computing tasks 

to MEC servers to make full use of the computing, storage, and network resources of these servers. Balanced allocation of resources 
helps avoid resource waste and improve overall system performance. Fig. 5 shows the Optimization objectives of task offload 
scheduling in MEC [82,83,141,90,96,105,112]. 

Fig. 5. Optimization objective of task offload scheduling in MEC.  
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6.3. AQ3: techniques 

RQ3 intends to identify which techniques are used to implement the improved IoT task offloading algorithms and mechanisms. 
According to the proposed taxonomy, the technological evolution of IoT computing task-offloading mechanisms is moving from 
traditional methods to AI-based technologies in MEC networks. Traditional methods have the advantages of low computational 
complexity and accurate decision-making. However, AI-based offloading solutions are better suited to the IoT task offloading needs of 
large-scale complex application scenarios. 

6.3.1. Traditional approach 
Traditional approaches to computational task offloading in MEC network environments have unique advantages and disadvan-

tages, and understanding this balance is critical in the context of modern, dynamic, and evolving network applications. On the positive 
side, traditional approaches are promoted for their simplicity, often relying on uncomplicated heuristics or simple task allocation rules. 
This simplicity means ease of implementation, making these methods available to a wide range of users and applications. In scenarios 
where rapid deployment and low complexity are critical, traditional approaches have clear advantages. Furthermore, traditional 
approaches typically have low computational and communication overhead compared to the complexity associated with optimization 
algorithms. This reduced overhead is especially beneficial in situations where minimal latency is critical, allowing for faster responses 
to real-time demands. Additionally, these methods provide a degree of predictability in task allocation and resource management, 
following predefined rules to provide users with consistent and expected performance. This predictability is invaluable in applications 
where stable and reliable operation is a fundamental requirement. 

However, traditional methods are not without limitations. A significant drawback is their limited optimization capabilities. They 
often lack the sophistication to account for the full range of factors, such as dynamic network conditions, user preferences, or real-time 
changes. This limitation leads to suboptimal task allocation and thus reduced efficiency, which is a considerable problem in resource- 
limited MEC environments. Furthermore, traditional approaches have difficulty adapting to the dynamics and complexity of MEC 
network environments. They not be able to respond effectively to changing workloads, changing resource availability, or changing 
user needs. In environments where adaptability is critical, a lack of adaptability can lead to inefficiencies and degraded performance. 
In this study, traditional mathematical methods, Lyapunov optimization, heuristics, and game theory-based task offloading mecha-
nisms are considered as traditional approaches. 

6.3.2. AI-based approach 
Artificial intelligence-based approaches to offloading computing tasks in MEC network environments constitute a dynamic field 

characterized by a subtle interplay between advantages and disadvantages. These aspects are critical to understanding the importance 
and potential impact of incorporating AI into the MEC framework. 

In terms of advantages, artificial intelligence has demonstrated excellent optimization and adaptability, driven by the application 
of machine learning and deep learning algorithms. It is capable of dynamically assessing a wide range of factors, including real-time 
network conditions, user behavior, application-specific prerequisites, and edge device capabilities [150–152]. This adaptability en-
ables smart task allocation to improve performance and optimize resource utilization. The strength of AI in predictive analytics le-
verages historical data and patterns to predict future network dynamics and user needs. This predictive capability enables proactive 
task allocation, ensuring tasks are assigned to the most appropriate edge resources. The result is reduced latency and an improved 
overall user experience, especially in applications where real-time responsiveness is critical. Furthermore, AI helps improve energy 
efficiency by coordinating task offloading strategies to reduce the energy consumption of edge devices. Tasks are judiciously allocated 
to edge servers that consume less power, thus extending the battery life of mobile devices – especially important in resource-limited 
environments and battery-powered devices. 

Fig. 6. The technical distribution of task offload scheduling mechanism in MEC.  
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Conversely, AI-based approaches also face several challenges. Their implementation is complex and often requires expertise in data 
science. The development and training of machine learning models are resource-intensive in terms of computing power and data, 
which creates barriers to adoption, especially in small-scale deployments. Scalability poses significant challenges given the volume of 
data and complexity of AI models. Large-scale deployment of AI-based methods requires significant computing resources and infra-
structure, making scalability a key consideration. Artificial intelligence introduces computational overhead, which can lead to latency, 
which is a problem in scenarios where ultra-low latency is non-negotiable. Finally, deploying AI models in edge servers consumes 
resources and power. Balancing the resource consumption of AI against the benefits it provides, especially in resource-constrained 
MEC environments, remains a key consideration. Fig. 6 shows the technical distribution of the task offload scheduling mechanism 
in MEC. 

In summary, Classic mathematical optimization ensures optimality through rigorous models but struggle with scalability and 
dynamic IoT environments. Lyapunov optimization, emphasizing stability, is adaptable but can be complex. Heuristic approaches offer 
speed and adaptability but yield suboptimal solutions. Game theory models strategic interactions, providing equilibrium solutions but 
can be computationally intensive. AI-based approaches have developed very rapidly since 2019. They are highly adaptable and can 
solve complex task-offloading optimization problems. Fig. 7 compares different task offloading approaches across different taxonomies 
of technology regarding adaptability, overhead, Multi-objective optimization capabilities, ability to support large-scale IoT and 
multiple parameters. 

6.4. AQ4: network environments 

The analysis of which network technologies are considered in IoT task offloading approaches in MEC is necessary to answer RQ4. 
Heterogeneous network environments play a crucial role in computing task offloading, affecting decisions about when, where, and 
how to offload tasks. The literature surveyed in this survey covers a wide range of wireless communication network technologies. 

6.4.1. RAN 
Radio Access Network (RAN) is a critical component of a mobile telecommunication system that connects user devices (such as 

smartphones, tablets, and IoT devices) to the core network and enables wireless communication. RAN manages the radio resources and 
communication between user devices and the core network, making it a fundamental part of cellular networks [153]. Some studies do 
not distinguish between multiple advanced wireless communication characteristics, but only consider several parameters of the basic 
RAN communication model [76,77,80,82,84,85,154–156]. 

6.4.2. LTE 
A mobile communications standard built on RAN. Provides high-speed data transmission and better performance for 4G networks. 

A small number of task offloading optimization mechanisms take into account resource allocation and task scheduling based on LTE 
network characteristics [83,120]. 

6.4.3. 5G 
5G, or the fifth generation of wireless technology, is the latest standard for cellular networks. It represents a significant leap forward 

in mobile communication technology, offering faster data speeds, lower latency, increased connectivity, and improved support for a 
wide range of applications and devices [157]. In the research on some task offloading mechanisms, full consideration has been given to 
using the characteristics of the 5G network to optimize the transmission process of task data [86,87,141,94,99,105,124,125,149,158, 
159]. In addition, there are also a small number of research attempts to explore the advanced features of future networks based on 6G 

Fig. 7. Network environments of task offload scheduling in MEC.  
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to build IoT task offloading mechanisms in MEC [111]. 

6.4.4. TDMA and OFDMA 
TDMA and OFDMA are multiple access techniques that divide communication resources differently. TDMA allocates time slots for 

different users, while OFDMA assigns sub-carriers in the frequency domain. Multiple access technology, is widely used in different 
mobile communication standards, including 4G LTE and 5G. In Refs. [75,103] the characteristics of TDMA were introduced into the 
communication model. The characteristics of OFDMA are used by several projects such as [73,102,128,136,137,160,161] to build 
communication models in task offloading. In Ref. [127] the author uses MIMO as the wireless communication environment for MEC 
networks. 

6.4.5. NOMA 
NOMA, or Non-Orthogonal Multiple Access, is a wireless communication technology that enables multiple users to share the same 

frequency, time, and code resources simultaneously within a cell in a cellular network [162]. 
In [78,146,95,117,163] the construction of the communication model fully takes into account the advantages of NOMA, so that the 

transmission of task data can be coordinated more precisely. 

6.4.6. NB-IOT 
Narrow-band IoT is a communication technology used to connect numerous low-power IoT devices, providing long-distance 

coverage and low power consumption. It is a communication technology specifically designed to connect low-power IoT devices. It 
can be used with modern communication networks such as 4G LTE and 5G to support IoT applications. However, there are relatively 
few studies on the task offloading mechanism of NB-IoT networks [145,116]. 

6.4.7. Wi-fi 
A Wi-Fi network, also known as a wireless local area network (WLAN), is a type of local area network that uses radio waves to 

connect devices to the internet and each other without the need for physical wired connections. MEC supports Wi-Fi access mode to 
transmit data [164]. There have been some works studying the IoT task offloading mechanism based on Wi-Fi network [142,90,130, 
158,165]. 

6.4.8. WPT 
Many TDs are powered by wireless methods due to the particularity of IoT. Therefore, WPT-based IoT task offloading methods have 

been considered in some studies [73,100,103,113,135,160,165]. The difficulty of such research lies in how to alternately transmit data 
and wirelessly supply power to TDs in a limited wireless spectrum. 

6.4.9. SDN 
Software-defined network is a network architecture and technology. Its core idea is to separate the network control plane and data 

plane to improve the flexibility, programmability, and automation of the network. The task offloading mechanism based on this 
network architecture can better obtain the status of network available resources and realize dynamic allocation of network resources, 
due to SDN’s powerful management capabilities for the overall network [92,102]. 

6.4.10. Satellite 
A satellite network is a telecommunications network that uses communication satellites to relay data signals between widely 

dispersed geographic areas on Earth. These networks provide global or regional coverage and are crucial for various applications, 

Fig. 8. Network environments of task offload scheduling in MEC.  
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including television broadcasting, internet access, and long-distance communication [166]. In Refs. [93,133,167] the task offloading 
mechanism fully takes into account the low bandwidth and high latency characteristics of the communication link. The network 
environments supported by task offloading in MEC are given in Fig. 8. 

6.5. AQ5: architecture 

Aiming to answer RQ5, the description, and architecture of IoT task offloading in MEC were extracted from the analyzed papers. 
Device-to-edge-and-cloud (D2EC) architecture in task offloading for computational tasks within a MEC network combines the pro-
cessing capabilities of both edge servers and cloud resources to optimize task execution. This architecture provides flexibility and 
scalability, allowing users to select the most appropriate destination based on the specific requirements of their tasks. Fig. 9 presents 
the architectural distribution of task offloading scheduling in MEC. 

6.5.1. TD to TD 
TD to TD task offloading in a MEC network involves offloading a task from one user’s device to another user’s device for execution, 

rather than sending it to an edge server or cloudlet. This approach leverages the computational capabilities of nearby user devices to 
collaboratively execute tasks, providing various advantages and challenges [138,143]. 

6.5.2. TD to edge 
Device-to-edge (D2E) task offloading in a Multi-Access Edge Computing (MEC) network involves offloading a task from a user’s 

device to an edge server or cloudlet located at the network’s edge. This approach allows tasks to be processed closer to the source of 
data, reducing latency and improving the overall performance of applications [73,74,76,77,79,80,83,84,86–89,144–147,91,94,97, 
100,102–104,106,107], [113,114,116–118,120,123,126–128,130,132,135,137,148,160,161,167]. 

6.5.3. TD to edge-cloud 
Device-to-edge-cloud (D2EC) task offloading in a MEC network involves offloading a task from a user’s device to a cloud infra-

structure that is located at the network’s edge. This approach combines the benefits of both edge computing and cloud computing to 
optimize task execution [81,85,139–142,90,92,95,96,98,99,101,108–112,115,119,121,122,124,125,129,131,133,134,136,149,156, 
168]. 

6.6. AQ6: offloading destination 

RQ6 aims to determine whether algorithms and mechanisms are more inclined to offload IoT tasks to single or multiple servers in 
MEC. According to the results of the research analyzed, the offloading destination refers to the target resource or location to which a 
computational task is assigned for execution. Selecting the appropriate offloading destination is a crucial decision, as it significantly 
impacts factors like task execution time, energy consumption, and overall system performance. Offloading destinations can vary based 
on the nature of the computing environment and the specific objectives of the task offloading strategy. Fig. 10 shows the offloading 
destinations of the task offloading schedule in MEC. 

6.6.1. Single server 
In computational offloading within a MEC network, a single server as a task offloading destination refers to the scenario where a 

task from a user’s device is offloaded and executed on a single edge server or cloudlet. This means that the entire computational load of 
the task is handled by a single server [73,80,84,88,89,143,145,146,100,103,104,106,110,113,116,120,130,135,137,148,149]. 

6.6.2. Multiple server 
In computational offloading within a MEC network, multiple servers as task offloading destinations refer to the scenario where a 

Fig. 9. The architecture of task offload scheduling in MEC.  
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task from a user’s device is offloaded and executed on more than one edge server or cloudlet. This approach involves parallel execution 
of the task, with different servers sharing the computational load [74,77,81,85–87,138–142,144,90–92,147,94–99,101,102,105, 
107–109], [111,112,114,115,117–119,121–129,131–134,136,160,161,167,169]. 

6.7. AQ7: parameters 

RQ7 aims to identify which parameters are used to support IoT task offloading algorithms in extracting state information from the 
MEC network environment that influences task offloading decisions. Parameters in computational task offloading algorithms are the 
configurable settings, variables, or inputs that allow researchers and practitioners to fine-tune the behavior and performance of task 
allocation and resource assignment strategies. These parameters influence how offloading decisions are made and the overall behavior 
of the algorithm. Fig. 11 illustrates the main parameters of the task offloading scheduling algorithm in MEC. 

6.7.1. Size of tasks 
The parameter size of a computational task in the context of computational offloading in a MEC network refers to the amount of 

data or the size of the task’s parameters that need to be transferred between the user’s device and the edge server or cloudlet for 
processing. The parameter size is a critical factor in determining whether offloading a task to the edge is practical and efficient. Almost 
every job considers this parameter. 

6.7.2. Task dependency 
Task dependency in computational offloading within a MEC network refers to the relationships and dependencies that exist be-

tween different computational tasks when determining whether and how they can be offloaded to edge servers for execution [146, 
170–176]. Task dependency plays a crucial role in optimizing the offloading process and ensuring that tasks are executed correctly and 
efficiently. Some task offloading solutions based on different technologies support dependency constraints between tasks [146,147, 
103,104,117,154,167,177–180]. However, some methods to support dependent task offloading do not consider load balancing 

Fig. 10. Offloading destination of task offload scheduling in MEC.  

Fig. 11. Parameters of task offload scheduling in MEC.  
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[181–184] and heterogeneous network support for cloud-edge structures [185]. In addition, some studies only considered 
single-objective optimization [186–189]. 

6.7.3. Dead line 
The deadline of a task in computational offloading within a MEC network refers to the maximum allowed time within which the 

task must be completed or delivered after it is offloaded to an edge server or cloudlet. Meeting task deadlines is critical, especially for 
real-time and time-sensitive applications, to ensure that results are available within the required timeframe. Almost every job con-
siders this parameter. 

6.7.4. Capacity of TD and MEC 
The computational capacity of a terminal device is a pivotal factor within the realm of computational offloading in MEC networks. 

It encompasses the device’s ability to perform computational tasks efficiently and includes aspects such as processing power, memory 
capacity, GPU capabilities, and latency sensitivity. 

The computing capacity of the MEC server is one of the key parameters in the IoT task offloading mechanism. It represents the 
computing resources and processing power available on the server. This parameter is usually expressed in MIPS terms. 

6.7.5. Transmission delay 
The transmission delay of a task in computational offloading within a MEC network refers to the time it takes for the data associated 

with a task to be transmitted from the user’s device to the edge server or cloudlet where the task will be executed. Transmission delay is 
a critical factor in the overall latency of task execution. 

6.7.6. Channel bandwidth 
The channel bandwidth in computational offloading within a MEC network refers to the amount of available frequency spectrum or 

bandwidth on the wireless communication channel used to transmit data between the user’s device and the edge server or cloudlet 
where a task will be executed. The channel bandwidth is a critical factor that influences the data transfer rate, which, in turn, affects 
the transmission speed and overall task execution performance. 

6.7.7. Location Of TD 
The location of TDs in computational offloading within a MEC network refers to where and how the offloading of tasks is 

implemented in the network architecture. Task offloading involves creating multiple copies of a task for parallel execution on multiple 
edge servers or cloudlets to improve performance, ensure redundancy, or meet specific requirements [76,82,87,89,138,143,144,91, 
100,109,112,113,116,125,128,131,137,149,156,167,169]. 

6.7.8. Network hop 
The network hop in computational offloading within a MEC network refers to the number of intermediate network devices or points 

that data associated with a task must traverse between the user’s device and the edge server or cloudlet where the task will be executed. 
Each network device or point, such as routers, switches, and gateways, represents a "hop” in the network path. The network hop count 
is a critical factor that influences the overall latency and efficiency of data transmission in the context of task offloading [138,91,102, 
107,132,169]. 

6.7.9. Transmit power and NOISE POWER 
The transmit power in computational offloading within a MEC network refers to the amount of power utilized by the user’s device 

or the transmitting equipment to send data associated with a task to the edge server or cloudlet where the task will be executed. 
Transmit power is a critical factor that impacts the efficiency and reliability of data transmission in MEC network task offloading. 

The noise power in computational offloading within a MEC network refers to the presence of unwanted or random electrical signals 
and interference in the wireless communication channel used to transmit data between the user’s device and the edge server or cloudlet 
where a task will be executed. Noise power is a critical factor that affects the quality of the communication channel and can impact the 
reliability and performance of data transmission [78,81,84,86,87,89,138,90,146,147,92,95,100,103,104,106,108,111–114,117,121, 
122,126–128,130–133,135,136,167]. 

6.7.10. Battery level 
The device’s battery level in computational offloading within a MEC network refers to the remaining charge or energy capacity of 

the user’s device, such as a mobile phone, IoT device, or sensor, which initiates the task offloading process. The device’s battery level is 
a critical factor that influences offloading decisions and strategies to optimize the use of available energy [74,76,85–89,143,100,102, 
104,108,109,113,118,125,129,134,135,168,177,180,190]. 

6.7.11. Payment cost 
The payment cost in computational offloading within a MEC network refers to the financial or monetary expenses associated with 

offloading a task from the user’s device to an edge server or cloudlet for execution. This cost vary based on various factors and can 
impact the decision-making process for task offloading [82,140,142,91,93,190–193]. 
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6.8. AQ8: evaluation METHODS 

The RQ8 is to be answered according to the evaluation scheme stated in the literature surveyed. Evaluation methods in compu-
tational task offloading are techniques used to assess the performance, effectiveness, and efficiency of task-offloading strategies and 
algorithms in distributed computing environments. These methods help researchers and practitioners understand how well a particular 
task allocation and resource assignment approach meets the defined objectives. Fig. 12 shows the evaluation method of the task 
offloading mechanism in MEC. 

6.8.1. Testbed 
In order to evaluate the ability of the offloading mechanism, experimental environments have been built based on physical 

equipment in some studies. This type of experimental bed includes TD, MEC server, and network communication equipment [74,78, 
141,94,107,113,118,120,122,133,149]. 

6.8.2. Simulator 
MATLAB (Matrix Laboratory) is a high-level programming and simulation environment widely used in performance evaluation and 

modeling for various technologies, including IoT (Internet of Things) task offloading mechanisms [194]. Judging from the survey 
results, Matlab is the main tool used for testing IoT task offloading algorithms and mechanisms. Researchers simulate TDs, MEC servers 
and network communication environments in Matlab, and load data sets to evaluate task offloading mechanisms or algorithms [75–77, 
79–81,84,86–89,143–145,95,97,104,106,115,165]. 

EdgeCloudSim is a simulation framework designed for evaluating the performance of IoT (Internet of Things) task offloading 
mechanisms in edge and cloud computing environments [195]. In Refs. [139,105] is used to build MEC infrastructure. 

ElasticSim is a versatile performance evaluation tool designed for assessing IoT task offloading mechanisms. It provides a flexible 
simulation environment that accommodates various scenarios, allowing researchers and engineers to model and analyze task distri-
bution strategies among edge and cloud resources [196]. In Ref. [139], the experimental environment used to evaluate task offloading 
algorithms is built on ElasticSim. 

Mininet is an open-source network emulation tool that provides a lightweight and scalable platform for evaluating IoT (Internet of 
Things) task offloading mechanisms. It allows users to create virtual networks, mimicking real-world network topologies, and emulate 
various IoT device interactions and communications [197]. In Ref. [142] the author built the infrastructure of the IoT network based 
on Mininet. 

NS-3, or Network Simulator 3, is a popular open-source simulation tool designed for performance evaluation in the context of IoT 
(Internet of Things) task offloading mechanisms [198]. In Ref. [91] NS-3 is used to build a network communication simulation 
environment for IoT and MEC. 

OPNET (Optimized Network Engineering Tool) is a comprehensive and widely used simulation and modeling tool for assessing the 
performance of IoT task offloading mechanisms [199]. In Ref. [98] The author built a complex IoT deployment environment based on 
OPNET. 

GT-ITM (Georgia Tech Internetwork Topology Models) is a simulation tool that focuses on evaluating the performance of IoT task 
offloading mechanisms by modeling network topologies. It offers a lightweight and scalable environment for simulating network 
scenarios [200]. In Ref. [90] GT-ITM is used to simulate various application scenarios of IoT networks. 

Fig. 12. Evaluation methods of task offload scheduling in MEC.  
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Cooja is an open-source simulator. It is a part of the Contiki operating system and provides a platform for modeling and simulating 
IoT networks and devices [201,202]. In Ref. [109] researchers use Cooja to assess task offloading strategies and network performance 
under various conditions. 

6.8.3. Implement 
In some studies, programming is used to simulate the IoT network environment to more accurately evaluate the application sce-

narios of IoT task offloading. Such implementations all use Python as the programming language. 
[73,85,138,140,146,147,92,96,99–102,112,116,119,121,127,131,148]. In addition, Pytorch is introduced in some implementa-

tions to support machine learning algorithms involved in task offloading mechanisms [103,114,124,129,132,135–137]. Besides, in 
Refs. [108,117] Keras is also used to assist in the implementation of various AI-based task offloading algorithms. Relatively, Tensor 
Flow is the most widely used basic platform for task offloading AI algorithm implementation [83,108–111,117,123,125,126,128,130, 
134]. 

6.9. AQ9: baselines 

The analysis of which baselines are considered in IoT task offloading approaches in MEC is necessary to answer RQ9. In compu-
tational task offloading, baselines serve as reference points or control strategies against which the performance of new or proposed task 
offloading mechanisms is compared. Baselines are essential for evaluating the effectiveness and efficiency of novel strategies and 
algorithms. They provide a standard for assessing whether a new approach outperforms existing, well-established methods. Upon 
investigation, it was found that the baseline chosen for evaluating the various algorithms and mechanisms was very decentralized. As a 
result, 80 different baselines are identified. Fig. 13 shows the evaluation of the top 10 baselines (occurrences at least twice) for IoT task 
offloading mechanisms. 

6.10. AQ10: performance metrics 

Aiming to answer RQ10, the performance metrics were extracted from the analyzed papers. Performance metrics in computational 
task offloading are quantitative measures used to assess the effectiveness and efficiency of task allocation and resource assignment 
strategies in distributed computing environments. These metrics help researchers evaluate how well an offloading mechanism per-
forms and whether it meets the defined optimization objectives. Metrics have different designs in multiple studies, and they can be 
roughly classified into 5 categories. Fig. 14 shows the performance metrics of the task offloading mechanism in MEC. Based on the 
statistical analysis it can be visualized that the performance evaluation indexes are mainly distributed in energy consumption, time and 
task offloading efficiency. 

6.10.1. Offload efficiency 
Offload efficiency is a critical performance metric in the context of computational offloading within a MEC network. It measures 

how effectively and optimally tasks are offloaded from a user’s device to edge servers, cloud resources, or other destinations. A high 
offload efficiency implies that the offloading process is achieving its intended objectives efficiently. 

6.10.2. Time 
Time-related performance metrics play a central role in evaluating the performance of computational offloading in MEC networks. 

The ability to minimize latency and optimize the timing aspects of task offloading, execution, and response is crucial for various real- 
time and latency-sensitive applications. 

6.10.3. Energy consumption 
Energy consumption is a key aspect of performance metrics for computational offloading within MEC networks. Efficient energy 

Fig. 13. Top 10 baselines of task offload scheduling in MEC.  
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management is critical to extending the battery life of user devices, lowering operating costs and reducing environmental impact. 
Efficient offloading decisions aim to minimize energy usage, especially during data transfer between the device and the offloading 
destination. 

6.10.4. Accuracy 
Real-time accuracy is especially important for applications such as autonomous vehicles and augmented reality, where tasks must 

be performed accurately within tight time constraints. This metric evaluates the speed and effectiveness of error handling and recovery 
mechanisms in identifying and correcting errors. 

6.10.5. Others 
In a few studies, task offloading mechanisms additionally take into account feedback from security requirements and offloading 

satisfaction. 
For these performance metrics, it was found that some numerical expression methods with similar functions but different forms 

were used in different papers. In addition, some researchers have chosen different words to represent the same meaning. Fig. 15 shows 
the details of the performance metrics of the task offloading mechanism in MEC. 

6.11. AQ11: dataset 

RQ11 intends to identify which datasets are used to support the performance evaluation of the proposed IoT task offloading 
approach. According to the survey results, the data used in most of the work are specifically generated based on the experimental 
environment settings, and there is a lack of public datasets. Only a few works have evaluated and validated their proposed algorithms 

Fig. 14. Performance metrics of task offload scheduling in MEC.  

Fig. 15. Year wise publication of task offload scheduling in MEC.  
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and mechanisms using data collected from the real world. Some of these datasets provide computational tasks, while others provide 
trajectories for simulating TDs motion. Otherwise, most research works set their simulation parameters and generate special test data 
sets. Fig. 16 shows the data set used for the evaluation of the task offloading scheduling mechanism in MEC. 

6.11.1. Compute load data set 
DTLZ series functions have been widely used in the evaluation and benchmarking of multi-objective optimization algorithms and 

provided a standardized set of test cases to assess their efficiency and effectiveness in solving real-world multi-objective optimization 
problems [203,204]. Reference [77] evaluated and verified the effectiveness of the proposed task offloading mechanism based on this 
data set. 

The ECG-ID database consists of 310 ECG signals obtained from different persons aged between 13 and 75 years [205,206]. This 
dataset is often used to generate keys for encryption algorithms due to the discrete nature of the data. The research work [81] generates 
random task offloading requests based on the ECG-ID dataset to test the performance of the proposed offloading mechanism. 

The work [141] introduces five Chicago street video clips from the real world. This data set contains 9 types of target objects 
(people, handbags, backpacks, bicycles, cars, motorcycles, buses, trucks, and traffic lights) classification. In the evaluation experiment, 
the author used video content recognition as a computing task that needs to be offloaded to verify the effectiveness of the offloading 
mechanism. 

A study [99] evaluated its work based on improved original data to verify its advantages in industrial computing task offloading 
scenarios. It contains a variety of service types with different timeliness requirements and can support task awareness in IIoT scenarios 
[207,208]. 

These TPC-H query workloads contain 22 different query models (i.e., the different DAG topologies) with 7 different query sizes 
[209,210]. Query workloads in Spark were selected as the computing task load to test the efficiency of the offloading mechanism in 
Ref. [123]. 

The MNIST dataset contained a training set of 60,000 samples and a test of 10,000 samples of handwritten digits from 0 to 9, which 
is widely used in the relative research work [211–216]. A study [137] takes the recognition process based on the MNIST dataset as a 
computational task to evaluate the proposed offloading mechanism. 

6.11.2. TD movement trajectory data set 
This type of data set provides TD’s movement trajectory information and is used to generate distance changes between the TD and 

the base station, thereby affecting communication quality and delay factors. 
A work [131] recorded the real vehicle trajectory of Rome city collected in 30 days. The time ranges from 2014/02/01 to 

2014/03/02. The period is from 7 a.m. to 8 a.m. used to provide TD mobile trajectory simulation. 
The infocom06 dataset was collected by the Cambridge Haggle projects. For the Infocom06 trace, it records 98 people’s contact 

during the conference of IEEE Infocom 2006, and 40 IDs are randomly utilized to simulate the social relationship network [217,218]. A 
study [156] extracts the user movement process in this data set as the TD movement trajectory to evaluate the task offloading 
mechanism’s ability to support TD mobility. 

EUA is a public real-world dataset, which includes the geographical locations of 816 end-users and 125 base stations in Melbourne, 
Australia [219,220–222]. References [180,192,223,224] selected this data set as the distribution of MEC base stations and the activity 
trajectories of mobile devices, and then superimposed specific generated computing tasks to build a verification environment for the 
offloading mechanism. 

Fig. 17 shows the distribution of the data set used for the evaluation of the task offloading scheduling mechanism in MEC. 

7. Open issues and future research directions 

In the journey through the existing literature, this review has identified several open issues and areas of continued inquiry within 
the field. The purpose of this section is to shine a light on these unresolved questions and highlight the frontiers of knowledge that 

Fig. 16. Dataset of task offload scheduling in MEC.  
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warrant further exploration. By recognizing and discussing these open issues, we contribute to the ongoing dialogue and evolution of 
the field. 

7.1. Joint decision-making by TD and MEC 

Centralized and distributed offloading decision-making mechanisms each have advantages and disadvantages. The centralized 
offloading decision-making mechanism can grasp more global information and therefore can better achieve global optimization ob-
jects. The distributed decision-making mechanism has the advantage of being fully aware of the limitations of the terminal’s local 
computing resources and has higher reliability. However, such methods lack awareness of global information. Moreover, large-scale 
distributed decision-making networks are difficult to converge quickly. This way, it would be interesting to study the joint offloading 
decision-making mechanism of TD and MEC. 

7.2. Highly reliable offloading scheduling 

TD encounter signal obstruction or even communication interruption during movement, but existing research has not fully 
considered such situations. The re-established communication connection cause TD to jump to a new MEC service area, which has a 
greater impact on the dependent partial task offloading paradigm. Therefore, it is necessary to study task offloading scheduling and 
migration mechanisms with communication failure detection. 

7.3. TD offload request activity prediction 

Most existing research assumes that requests to offload tasks arrive randomly. However, IoT task offloading usually follows a 
certain pattern. The prediction of IoT task offload requests should be interesting to study. Thereby improving MEC resource prepa-
ration and allocation. Although there are a few studies that predict the data volume of offloading tasks, there is no prediction of the 
computing resource requirements for task processing. In addition, some studies predict the mobility trend of devices, based on which 
the nearby EMC nodes can be inferred. It would be an interesting research direction to improve/improve resource preparation and 
decision-making effects with characteristic task offloading request prediction. 

7.4. Practicable partial task offloading 

Many studies have considered dividing computing tasks and then offloading part of them to MEC to improve task processing speed 
and make full use of computing resources. However, such methods lack awareness of differences in task types and unrealistically 
assume that tasks can be divided into arbitrary sizes. In addition, such research usually estimates CPU resource requirements based on 
the size of task shards, but the size of the task does not correspond to the computing resources required for the task to be processed. 
Furthermore, the granularity of task segmentation is also affected by differences in task types. Therefore, it should be study more on 
partial task offloading optimization with task splitting constraints awareness. 

7.5. Multi-objective optimization task offloading with dependencies 

When offloading tasks with dependencies, some existing research tends to build serialized models to support processing logic 
between tasks. However, this is not conducive to parallel processing of tasks on multiple MEC servers. Some studies have considered 
task-dependent parallel processing, but have not simultaneously considered joint optimization of multiple dimensions such as latency 
and energy consumption. In addition, some studies do not consider load balancing in Edge-Cloud and support for heterogeneous MEC 
resources. On the contrary, some dependent task offloading methods that support heterogeneous MEC resources lack optimization of 

Fig. 17. Dataset of task offload scheduling in MEC.  
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communication delays. A further study could introduce application type-awareness to improve multi-objective optimization capa-
bilities of constrained task offloading in large-scale heterogeneous computing environments. 

7.6. Open MEC architecture 

Open-MEC runs open-source software on common hardware platform and uses SDN and virtualization technology to decouple MEC 
functions from specific physical devices. This way, decoupled MEC functional modules and resources can be reconfigured into 
customized edge instances. Similarly, the Open Radio Access Network (ORAN) allows MEC to have more control over the RAN to 
optimize communication resource allocation. Therefore, researchers should conduct more research on resource allocation based on 
open-source MEC architecture and ORAN to optimize the offloading of IoT computing tasks. 

7.7. Aerial access network 

Unmanned Aerial Vehicle (UAV) carry wireless communication and computing resources and can serve as MEC computing nodes to 
provide task offload support for the IoT. In addition, UAVs can also serve as relays for wireless communications to build Air-Ground 
Collaborative MEC (AGC-MEC) using Reconfigurable Intelligent Ground (RIS) technology. Therefore, it would be very interesting to 
study MEC computation offloading with air-ground communication support for multi-UAV collaboration. 

8. Conclusion 

Large numbers of random task offloading requirements and limited MEC resources make the IoT task offloading optimization 
problem in MEC very complex. Therefore, effective task-offloading and resource allocation mechanisms are needed to maximize task- 
offloading efficiency and enhance resource utilization. Previous studies have focused on IoT task offloading and MEC resource 
management respectively. However, there is a lack of comprehensive review on IoT task offloading in MEC. Filling this gap, a 
comprehensive review is conducted to give a panoramic view of the IoT task offloading mechanism in MEC to help researchers quickly 
understand the subdivision structure and research paths in this area. The different problems addressed by the task offloading 
mechanisms and the various approaches proposed to address them are discussed. In addition, the input parameters supported by 
different offloading methods are explored to analyze the factors affecting the task offloading decision as well as the ability of the 
offloading mechanism to perceive the realistic environment. Moreover, the problem modeling and the technologies underlying the 
solutions are carefully examined and categorized. Furthermore, tools and datasets for evaluating task offloading mechanisms and 
algorithms are also compared and counted. Finally, the open issues and future research directions are presented. According to the 
research, this is the first time a comprehensive literature review focus on the IoT task offloading in MEC. 
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