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Background.  Human papillomavirus (HPV) vaccination is still not reaching many high-risk populations. HPV16/18 vaccines 
offer cross-protection against other types, for example, HPV45. Both direct vaccine efficacy and indirect herd protection contribute 
to vaccination effectiveness.

Methods.  We used a dynamic transmission model, calibrated to cervical screening data from Italy, to estimate vaccination effec-
tiveness against HPV16 and HPV45 infection, assuming for HPV45 either 95% or lower cross-protection.

Results.  Basic reproductive number was smaller (2.1 vs 4.0) and hence vaccine effectiveness and herd protection stronger for 
HPV45 than for HPV16. The largest difference in the reduction of infection prevalence in women <35 years old was found at 70% 
coverage in girls-only vaccination programs (99% vs 83% for total protection for HPV45 and HPV16, respectively, mainly owing to 
stronger herd protection, ie, 37% vs 16%). In gender-neutral vaccination, the largest difference was at 40% coverage (herd protection, 
54% vs 28% for HPV16 and HPV45, respectively). With ≥80% coverage, even 50% cross-protection would reduce HPV45 by ≥94%.

Conclusions.  The characteristics of individual high-risk HPV types strongly influence herd protection and determine the level 
of coverage and cross-protection required to reduce or eliminate the infection through HPV vaccination. HPV16 infection and 
related cancers are the most difficult to eliminate.
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Currently licensed viruslike particle vaccines against human pap-
illomavirus (HPV) are nearly 100% efficacious in the prevention 
of infection from vaccine targeted HPV types [1]. Both the biva-
lent (2V) and quadrivalent (4V) vaccines target the high-risk (HR) 
types HPV16 and HPV18, which account for approximately 70% 
of all cervical cancers worldwide [2], whereas the newer 9-valent 
vaccine also targets HR HPV31/33/45/52/58 [3], raising the pro-
portion of preventable cervical cancers to approximately 90% [2]. 
However, findings from randomized controlled trials [4–6] and 
population-based surveys conducted after the implementation of 
HPV vaccination programs [7–10] showed that the 2V vaccine 
and, to a lesser extent, the 4V vaccine also offer some cross-pro-
tection against other HR types that are phylogenetically related to 
HPV16 or HPV18, such as HPV31, HPV33, and HPV45.

Adequate vaccination coverage in adolescent girls (or in girls 
and boys, ie, gender-neutral vaccination) is a key condition for 
the favorable impact of vaccination. Minimal coverage thresh-
olds for HPV control or elimination depend on the efficacy of 

the vaccine in vaccinated individuals (direct protection) and 
the strength of herd protection, that is, the indirect protection 
against the infection among unvaccinated individuals [11]. In 
a sexually transmitted infection, such as HPV infection, herd 
protection is governed by the probability of infection transmis-
sion, the duration of the infection, and sexual activity pattern, 
which varies in different populations [11]. As a result, the over-
all effectiveness of HPV vaccination at a population level, that 
is, the sum of vaccine efficacy and herd protection, is population 
specific and, within the same population, type specific.

Empirical data have provided early evidence of substantial 
herd protection in the few years after the start of HPV vacci-
nation programs [1, 7–10]. In the present report, we used the 
International Agency for Research on Cancer’s deterministic 
transmission dynamic model [12, 13] to estimate long-term 
effectiveness and herd protection by coverage, separately for 
girls-only and gender-neutral vaccination programs. The focus 
is on HPV16, the most prevalent [14] and most carcinogenic 
[15] type, which is the most apt to persist [5, 16], and HPV45, 
as an example of another relatively common carcinogenic type 
targeted by one but not all available HPV vaccines.

METHODS

Study Population and Assumptions About Sexual Behavior and 

Vaccination

We simulated a population with a sex-equal and assortative 
sexual behavior characteristic of many high-income countries, 
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that is, with relatively similar sexual behavior in women and 
men, including similar age between partners [13]. In particu-
lar, we simulated the sexual behavior of the Italian population 
as reported in a nationwide population-based survey [17]. The 
observed and modeled age-specific prevalence of HPV16 and 
HPV45 in the prevaccination era is shown in Figure 1A. The sim-
ulated population was open stable and stratified by age (range, 
10–70 years) and 3 classes of sexual activity (high, intermediate, 
and low), characterized by an age-specific number of new sex-
ual partners per year (Supplementary Table S1). Sexual mixing 
is measured on a scale from 0 (fully assortative, ie, like with like) 
to 1 (random mixing). In the present study, we set the assorta-
tive mixing for sexually activity classes or age groups to either 
0.30 (high) or 0.75 (low) as shown in Table 1. We also assumed 
that sexual activity did not start before age 14 years and that all 
women and men were initially susceptible to HPV16 and HPV45.

Vaccine efficacy against HPV16 and HPV45, when targeted 
by the vaccine, was set to be 95% [5]. The strength of cross-pro-
tection against HPV45 in randomized controlled trials [4–6] 
and population-based surveys [7, 9, 10, 19] is lower and less 
consistently reported, and we therefore investigated 3 possible 
levels: 70%, 50%, and 30%. Finally, we assumed that immunity 
for HPV16 and HPV45 (targeted and cross-protection) from 3 

or 2 doses (at 6-month intervals) was the same and lifelong in 
both sexes [6, 20], and that vaccine coverage in gender-neutral 
vaccination programs was the same in boys and girls.

Model Parameterization and Calibration

In a previous article [12] we reported the calibration and valida-
tion process of our model for 13 HR HPV types. Briefly, 100 000 
sets of parameter values were generated by independently 
sampling, for each parameter, a uniform distribution within 
a prespecified range of values, using a Latin hypercube algo-
rithm. Each set of values was used to generate a model-based 
age-specific curve of prevalence for each HPV type. Finally, 
each model’s output was compared with the observed age-spe-
cific prevalence of each HR HPV type, by calculating binomial 
log likelihood. We fitted our model to HPV16 and HPV45 
age-specific prevalence curves in Italian women [12, 18, 21] 
by calibrating the average persistence (determined by the rate 
of clearance) of HPV16 and HPV45 infections [5]. Figure 1B 
shows the per capita annual clearance rates of incident HPV16 
and HPV45 infection, as estimated by calibrating the base-case 
model to type and age-specific prevalence curves from Italy. 
Early HPV45 clearance rate was higher (2.7 per person-year on 
average, or 22% per month) than HPV16 clearance rate (1.5 per 
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Figure 1.  Age-specific prevalence of human papillomavirus (HPV)16 and HPV45 in the prevaccination era, including observed data [18] and model outputs [12] (A) and rates 
of clearance according to model outputs (B). CIs, confidence intervals.
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person-year or 12% per month). Clearance rates of both types 
decrease over time and converge at approximately 0.14 per per-
son-year after 6 years since infection (Supplementary Table S2), 
in accordance with empirical evidence [22, 23].

Different parameter values were either assumed or calibrated 
according to a base-case scenario and various sensitivity anal-
yses (Table 1). In the base-case scenario, we set (1) the average 
duration of infection to be 11 and 5 months for HPV16 and 
HPV45, respectively; (2) the probability of transmission per 
sexual partnership of both HPV16 and HPV45 to be 70% in 
both sexes [12, 24, 25]; and (3) the probability of developing 
type-specific immunity after infection clearance, for both types, 
to be 30% in women and 0% in men [26]. For both HPV16 and 
HPV45, we also assessed the sensitivity of model outputs to 
alternative sexual mixing patterns forcing assortative mixing by 

sexually activity class and by age to be alternatively high (ie, 0.3) 
or low (ie, 0.75). A larger number of different scenarios were 
considered for HPV45 to assess the impact of different levels of 
cross-protection from vaccines that do not target HPV45 and 
the robustness of model outputs to the uncertainty of type-spe-
cific natural history, that is, duration of infection and immunity 
after clearance [26] (Table 1). For each sensitivity analysis, we 
used the single best-fitting set of parameters corresponding to 
the prespecified assumptions. Details about the model structure 
and calibrating process are reported in the Supplementary Data.

Model-Based Analyses

For each scenario, we calculated the basic reproductive number 
(R0, ie, the average number of secondary infections resulting 
from 1 case of either HPV16 or HPV45 infection in a totally 

Table 1.  Model Parameters Related to Sexual Behavior, Vaccine Performance, and Infection for HPV16 and HPV45

Parameter

HPV16 HPV45

Base Case

Sensitivity Analysis by 
Sexual Assortative Mixing

Base Casea

Sensitivity Analysis by

Infection Durationb
Immunity 

After Clearancec

Sexual Assortative 
Mixing

High Low High Low

New sexual partners 
per year, mean, 
No.

1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

Mixing between 
sexual activity 
classesd

0.75 0.3 0.75 0.75 0.75 0.75 0.3 0.75

Mixing between age 
groupsd

0.3 0.3 0.75 0.3 0.3 0.3 0.3 0.75

Vaccine efficacy, % 95 95 95 95 or less 95 or less 95 or less 95 or less 95 or 
less

Duration of vaccine 
protection

Lifelong Lifelong Lifelong Lifelong Lifelong Lifelong Lifelong Lifelong

Assumed or 
calibrated

  Infection duration, 
mean, mo

11e 11f 11f 5e 11f 3e 5f 5f

  Transmission prob-
ability per sexual 
partnership, %

70f 70f 70f 70f 25e 70f 70f 70f

  Immunity after 
infection clearance 
in women, %f

30 30 30 30 30 0 30 30

Calculated

  Basic reproductive 
number (R0)

4.1 5.6 2.9 2 1.5 1.3 2.7 1.4

  Gender-neutral 
vaccination cover-
age sufficient for 
elimination, %

75 81 67 49 38 21 62 30

Abbreviation: HPV, human papillomavirus.
aSame type-specific transmission probability as HPV16.
bSame type-specific infection duration as HPV16.
cAbsence of immunity after HPV45 clearance.
dThis is a measure of the tendency for individuals with similar sexual activity to form sexual partnerships. It is measured on a scale where fully and randomly assortative (ie, like-with-like) 
mixing corresponds to values of 0 and 1, respectively.
eParameters that have been calibrated.
fParameters that have been assumed.
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susceptible population), using the next-generation matrix 
method [27]. For model predictions, outcomes were measured 
as the percentage prevalence reduction (%PR) in HPV16 and 
HPV45 compared with no vaccination in women aged 15–34 
years at postvaccination equilibrium (ie, approximately 50 years 
after the introduction of vaccination).

The primary outcome was overall vaccine effectiveness. Herd 
protection was the difference between overall effectiveness, esti-
mated by the model, and direct vaccine efficacy, estimated by 
multiplying vaccination coverage by 95% efficacy or by the level 
of cross-protection against HPV45, as reported. Girls-only and 
gender-neutral vaccination programs were separately assessed.

RESULTS

In the base-case scenario, R0 estimate is substantially larger for 
HPV16 than for HPV45 (4.1 and 2.0, respectively) (Table 1), and 
this difference has a large influence on the effectiveness of vac-
cination. Figure 2A and 2B show the type-specific %PR by cov-
erage from a vaccine targeting both types in either a girls-only 

or a gender-neutral vaccination program, respectively. The area 
between the curve of overall effectiveness against HPV45 and 
HPV16 and the straight curve of 95% vaccine efficacy (com-
mon to the 2 types) represents herd protection. In a girls-only 
vaccination program, the largest difference in overall effec-
tiveness between HPV16 and HPV45 steadily increases up to 
approximately 70% coverage (%PR, 99% for HPV45 vs 83% for 
HPV16). The difference between types is entirely accounted for 
by the larger contribution of herd protection for HPV45 than 
HPV16 (33% vs 16% of the %PR, respectively) (Figure 2A). In 
a gender-neutral vaccination program, the largest difference in 
%PR is already reached at approximately 40% coverage (92% 
for HPV45 vs 66% for HPV16), with herd protection account-
ing for more than half of the total %PR of HPV45 (Figure 2B). 
Coverage of 75% and 49%, respectively, therefore seems suffi-
cient in gender-neutral vaccination for the elimination HPV16 
and HPV45 among women aged 15–34 years. 

Figure 3 shows the effectiveness of a vaccine that offered only 
50% cross-protection against HPV45 by coverage level. At 70% 
coverage in girls-only vaccination, the %PR is 59% and herd 
protection accounts for 24% of this effect. If boys were also vac-
cinated, the %PR from cross-protection would increase to 86%, 
of which 51% is from herd protection.

Sensitivity analyses, for example, assuming no difference 
in duration of infection between HPV16 and HPV45 or no 
immunity after clearance for HPV45, had little impact on 
the greater difficulty in eliminating HPV16 compared with 
HPV45 shown by the base-case scenario (Table 1). Likewise, 
an increase and a decrease in assortative mixing between 
sexual classes or age groups increased and decreased, respec-
tively, the coverage level necessary to eliminate both HPV16 
and HPV45 (Table 1).

Table 2 shows the overall effectiveness and herd protec-
tion against HPV16 and HPV45 according to coverage level, 
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Figure 2.  Relative reduction in prevalence of human papillomavirus (HPV)16 and 
HPV45, among all women aged 15–34 years after vaccination of 11-year-old girls 
(A) or girls and boys (B), by coverage and type of protection.
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Figure 3.  Relative reduction of prevalence of human papillomavirus (HPV)45 
from 50% cross-protection among all women aged 15–34 years after vaccination 
of 11-year-old girls only and gender-neutral vaccination, by coverage and type of 
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inclusion of boys, and, for HPV45, different assumptions about 
vaccine efficacy and type-specific natural history (see Table 
1). Compared with the base-case model, sensitivity analyses 
produced higher %PR for nearly all different combinations of 
factors, mainly owing to stronger herd protection. The data in 
Table 2 therefore confirm the general finding that HPV45 is eas-
ier to eliminate than HPV16 and that the higher the coverage, 
the lower the contribution of vaccinating boys in addition to 
girls.

Figure 4A and 4B show the %PR of HPV45 from gender-neu-
tral vaccination by coverage in 2 hypothetical populations with 
sexual mixing patterns different from that in the base-case 
scenario. In a population with high assortative mixing (Figure 
4A), the curves for HPV45 and HPV16 become closer, and the 
difference in herd protection diminishes. Conversely, the dif-
ference in %PR between the 2 HPV types in a population with 
low assortative mixing (Figure 4B) is even larger than in the 
base-case scenario (Figure 2B), and herd immunity increases. 
This difference reaches a maximum at 30% coverage (already 
sufficient to eliminate HPV45).

Figure 5 presents a comparison of the %PR of HPV45 that 
can be achieved by a vaccine’s 50% cross-protection by coverage 
and sexual mixing. The impact of such a vaccine is much stron-
ger in a population with low assortative mixing; in such a pop-
ulation, HPV45 elimination is seen at 60% coverage whereas 
the same coverage approximately halves HPV45 prevalence in a 
population with high assortative mixing. Supplementary Table 

S3 shows detailed estimates of %PR and herd protection for 
girls-only vaccination and several levels of cross-protection.

Changes in R0 estimate underlie the findings of sensitiv-
ity analyses. The assumption of the same infection duration 
for HPV16 and HPV45, and of no acquired immunity after 
HPV45 clearance, slightly decreases the HPV45 R0 (from 1.5 to 
1.3) (Table 1). Changes in the assortativeness of sexual mixing 
produce opposite effects (Table 1). In a highly assortative pop-
ulation, the R0 increases for HPV16 (from 4.1 in the base-case 
model to 5.6) and HPV45 (from 2.0 to 2.7). Conversely, in a 
population with low assortative mixing, the R0 decreases to 2.9 
for HPV16 and 1.4 for HPV45, thus explaining the vast pre-
dominance of the herd effect in Figure 4B.

DISCUSSION

Our present report highlights the important role of herd pro-
tection in the elimination of HPV infection, especially of HPV 
types less prone to long-term persistence than HPV16. It also 
shows that for any level of population coverage, and also in 
the presence of less than 95% vaccine efficacy, the success of 
a vaccination program is larger the lower the prevaccination 
prevalence of an individual HPV type. At ≥60% coverage in 
gender-neutral programs, for instance, even 50% cross-pro-
tection could eliminate HPV45. This phenomenon is mainly 
due to larger herd protection for HR types such as HPV45 that 
are less able than HPV16 to induce long- term persistence [5, 
16]. In fact, for any infection, the magnitude of herd protection 

Table 2.  Percentage Reduction in HPV16 and HPV45 Prevalence Among Women Aged 15–34 Years After Girls-Only or Gender-Neutral Vaccination 
Compared With No Vaccination by Vaccine Efficacy, Coverage, and Biological Scenarios

Vaccine 
Efficacy, % Coverage, %

Reduction in Prevalence, % (Herd Protection, %)

Girls-Only Vaccination Gender-Neutral Vaccination

Base Case Sensitivity Analysis (HPV45) by Base Case Sensitivity Analysis (HPV45) by

HPV16 HPV45a Infection Durationb
Immunity After 

Clearancec HPV16 HPV45a Infection Durationb
Immunity After 

Clearancec

95 40 51 (13) 63 (25) 93 (55) 100 (62) 67 (29) 90 (52) 99 (61) 100 (62)

60 74 (17) 89 (32) 99 (42) 100 (43) 90 (33) 100 (43) 100 (43) 100 (43)

80 92 (16) 100 (24) 100 (24) 100 (24) 100 (24) 100 (24) 100 (24) 100 (24)

70d 40 … 47 (19) 80 (52) 84 (56) … 69 (41) 97 (69) 100 (72)

60 … 68 (26) 95 (53) 100 (58) … 96 (54) 100 (58) 100 (58)

80 … 88 (32) 99 (43) 100 (44) … 100 (44) 100 (44) 100 (44)

50d 40 … 34 (14) 63 (43) 63 (43) … 51 (31) 51 (31) 99 (79)

60 … 50 (20) 84 (54) 89 (59) … 73 (43) 73 (43) 100 (70)

80 … 65 (25) 94 (54) 100 (60) … 94 (54) 94 (54) 100 (60)

30d 40 … 21 (9) 40 (28) 40 (28) … 31 (19) 66 (54) 68 (56)

60 … 31 (13) 58 (40) 58 (40) … 46 (28) 85 (67) 94 (76)

80 … 41 (17) 72 (48) 74 (50) … 60 (36) 94 (70) 100 (76)

Abbreviation: HPV, human papillomavirus.
aSame type-specific transmission probability as HPV16.
bSame type-specific infection duration as HPV16.
cAbsence of immunity after HPV45 clearance.
dLevel of cross-protection.
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against an individual HPV type is governed by its transmission 
potential (R0), which depends on the duration of the infec-
tious period [11, 28]. Our estimate of R0 for HPV16 (4.1) was 
larger than that for HPV45 (2.0) in our base-case scenario that 
assumes the same transmission probability and immunity after 
clearance and found an approximately 2-fold longer duration of 
HPV16 than of HPV45 infection. Alternative hypotheses that 
assumed no difference in infection duration between the 2 types 
and no natural immunity for HPV45 showed, an even greater 
difference between the 2 types.

Another enhancer of herd protection is vaccinating boys 
in addition to girls. The benefit of gender-neutral vaccina-
tion is therefore most important if either coverage or vaccine 
efficacy are suboptimal, for example, with coverage <60% for 
the elimination of HPV16 using an HPV16 targeting vaccine 
or with partial cross-protection only against HPV45. We also 
projected the effects of different vaccination scenarios on the 
eventual decline of cervical cancer due to HPV16 and HPV45 
in a country such as Italy (Supplementary Table S3). As for the 

corresponding infections, the elimination of HPV16-related 
cervical cancer requires the highest level of vaccine efficacy and 
coverage, whereas partial cross-protection may be sufficient to 
eliminate cervical cancer associated with HPV45 and possibly 
other HR HPV types that may share with HPV45 a shorter 
infection duration and less ability to produce cancer than 
HPV16 and HPV18.

We think that the assumptions used in the base-case scenario 
best reflected the findings of studies on HPV natural history, 
for example, lack of substantial heterogeneity between carcino-
genic HPV types in transmission rates [12, 24, 25, 29] and in the 
probability of developing type-specific immunity after infection 
clearance [26]. In contrast, the duration of carcinogenic HPV 
infection has been shown to be heterogeneous by type [5, 16], 
with HPV16 the type the most apt to persist, thus its greater 
ability to induce long-term persistence and malignant transfor-
mation than other HR types [14, 30]. Indeed, the estimate of the 
difference in the average duration of HPV16 and HPV45 (11 
and 5 months, respectively) calibrated by the base-case scenario 
was even larger than in previous work, for example, 12 and 8 
months, according to the largest published meta-analysis [16]. 
In fact, the average duration of HPV16 infection was generally 
evaluated over relatively short follow-up periods and predom-
inantly among cytologically normal women [16], or was trun-
cated by detection and treatment of HPV16-associated lesions.

Nevertheless, we performed several sensitivity analyses based 
on assumptions about the natural history of HPV45 or sexual 
mixing that differed from those used in the base-case scenario. 
They confirmed the greater difficulty of eliminating HPV16 
compared with HPV45. Only high assortativeness in sexual 
mixing between sexual classes and age groups raised the HPV45 
R0 sufficiently to attenuate the difference in type-specific herd 
immunity.
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Figure 4.  Relative reduction of prevalence of human papillomavirus (HPV)16 and 
HPV45, among all women aged 15–34 years after vaccination of 11-year-old girls 
and boys in a population with high (A) or low (B) assortative sexual mixing, by cov-
erage and type of protection.
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Figure  5.  Relative reduction of prevalence of human papillomavirus (HPV) 45 
from 50% cross-protection among all women aged 15–34 years after vaccination of 
11-year-old girls and boys in populations with high or low assortative sexual mixing, 
by coverage and type of protection.
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The differences between HPV16 and HPV45 herein reported 
agree with the findings of Brisson et al [31, 32], who showed 
stronger vaccine effectiveness against HPV11/6 types than 
against HPV16/18 owing to differences in duration of infec-
tiousness and, hence, in R0. Indeed, these relationships between 
HPV types may be generalizable, because the R0 range calcu-
lated by our model (2.1–4.0 in the baseline scenario) plausibly 
reflects those of the most important carcinogenic HPV types. 
Our estimates fall within the range of other sexually transmitted 
infections, such as human immunodeficiency virus [33], syph-
ilis [34], gonorrhea, and chlamydia [35]. Conversely, R0 values 
for sexually transmitted infections are substantially lower than 
those for childhood epidemic infections (eg, measles, whooping 
cough, rubella, and poliomyelitis), which require >90% cover-
age to be controlled [36].

The strengths of the present study include the use of a vali-
dated transmission model to represent changes in HPV prev-
alence. Transmission models can capture the dynamics of 
infection circulation [11] in a population and have the distinct 
advantage of including the effect of herd immunity attribut-
able to vaccination [37]. We could also derive estimates of 
the parameters governing the natural history of HPV16 and 
HPV45 infections from the calibration to a large clinical trial 
conducted in Italy [18], whereby we were able to predict accu-
rately the incidence of HPV infection in HPV negative women. 
This allowed us to provide a range of uncertainty for each 
parameter estimate [12].

The limitations of the present study mainly derive from the 
uncertainties that remain in some of the model assumptions. 
Cross-protection against HPV45 in clinical trials, for instance, 
ranged between 8% and 79% and was consistently higher for 
2V than for 4V vaccine [5, 6]. Population-based studies from 
postvaccination surveys also showed a partial efficacy against 
HPV31/33/45 as a combined end point of approximately 40% 
for 4V [9] and 50% for 2V [7, 10] vaccine. Preliminary data also 
suggest that cross-protection against HPV31/33/45 is compa-
rable for 2 or 3 doses [6, 7, 9, 10] and may be of long duration 
[6, 20], and that precancerous lesions deriving from nonvaccine 
HPV types are also substantially reduced by 2V vaccination 
[38]. Obviously, the sexual behavior of women and men is pop-
ulation-specific, and its description is always an oversimplifi-
cation because accurate information on sexual networks (eg, 
sequential or concurrent sexual partnerships) are very difficult 
to obtain.

In conclusion, the characteristics of individual HR HPV 
types strongly influence herd immunity and determine the 
level of coverage and type-specific vaccine efficacy (including 
cross-protection) that are required to reduce or eliminate the 
infection through HPV vaccination. HPV16 is harder to elim-
inate than HPV45 and, probably, any other type. Our findings 
are particularly relevant to low- and middle-income countries 
that are especially challenged by programmatic difficulties [39] 

and increases in the cost of vaccines according to the number of 
targeted types [40].
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