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Novel haloarchaeon Natrinema 
thermophila having the highest 
growth temperature among 
haloarchaea with a large  
genome size
Yeon Bee Kim1,2, Joon Yong Kim3, Hye Seon Song1,2, Changsu Lee1, Seung Woo Ahn1, Se Hee Lee1, 
Min Young Jung1, Jin-Kyu Rhee2, Juseok Kim1, Dong-Wook Hyun3, Jin-Woo Bae  3 &  
Seong Woon Roh  1

Environmental temperature is one of the most important factors for the growth and survival of 
microorganisms. Here we describe a novel extremely halophilic archaeon (haloarchaea) designated 
as strain CBA1119T isolated from solar salt. Strain CBA1119T had the highest maximum and optimal 
growth temperatures (66 °C and 55 °C, respectively) and one of the largest genome sizes among 
haloarchaea (5.1 Mb). It also had the largest number of strain-specific pan-genome orthologous groups 
and unique pathways among members of the genus Natrinema in the class Halobacteria. A dendrogram 
based on the presence/absence of genes and a phylogenetic tree constructed based on OrthoANI 
values highlighted the particularities of strain CBA1119T as compared to other Natrinema species and 
other haloarchaea members. The large genome of strain CBA1119T may provide information on genes 
that confer tolerance to extreme environmental conditions, which may lead to the discovery of other 
thermophilic strains with potential applications in industrial biotechnology.

The growth of most microorganisms is influenced by physical factors such as temperature, water activity, pH, 
pressure, salinity, and oxygen concentration as well as chemical factors such as availability of nutrients (e.g., 
carbon and nitrogen)1–4. Microorganisms are usually classified based on optimal growth temperature-i.e., as 
psychrophiles, mesophiles, thermophiles, and hyperthermophiles, which grow best at temperatures of ≤15 °C, 
15 °C–45 °C, >45 °C, and 80 °C, respectively5. These classes also differ in terms of the amino acid composition, 
structure, and thermostability of proteins6. Growth temperature seems to be related to genomic features; one 
study showed that the average length of proteins is shorter in thermophiles (growing best at temperatures of 
>45 °C) as compared to their homolog in mesophiles (15 °C–45 °C), whereas the proportion of purine bases in 
the coding strand is higher in the former than in the latter7. Other environmental factors besides temperature 
affect genome size: for example, the small genomes of prokaryotes are thought to reflect adaptation to strong 
selective pressures in large microbial populations, while the genome size in geophytes was found to be positively 
correlated with early flowering and growth tendency under humid conditions8,9.

Extremely halophilic archaea (haloarchaea) belonging to the domain Archaea are usually found in hypersaline 
environments such as salt lakes and crystallizer ponds from artificial marine solar salterns and in salty fermented 
foods and salted hides10,11, as well as in avian feather12. The growth temperature of haloarchaeal type strains 
ranges from −1 °C to 62 °C, with few growing at temperatures >60 °C (see Supplementary information). Genus 
Natrinema in the family Natrialbaceae includes eight known species of haloarchaea: Natrinema altunense, Nnm. 
ejinorense, Nnm. gari, Nnm. pallidum, Nnm. pellirubrum, Nnm. salaciae, Nnm. soli, and Nnm. versiforme13–19. In 
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this study we describe strain CBA1119T isolated from solar salt, which has the highest growth temperature and 
one of the largest genome sizes among all of the haloarchaeal members. We identified and characterized ther-
mophilic strain CBA1119T and investigated the relationship between two strain-specific features, namely growth 
temperature and genome size.

Results and Discussion
Polyphasic taxonomic analysis (see Supplementary Information) revealed that strain CBA1119T belonged to the 
genus Natrinema and was a novel member of the genus Natrinema. Interestingly, strain CBA1119T grew at a tem-
perature of 20 °C–66 °C; optimal growth was observed at 50 °C–55 °C. Of the four strains with an optimal growth 
temperature >50 °C; three belonged to the family Haloferacaceae and one was strain CBA1119T, which belongs 
to the family Natrialbaceae (Fig. 1a). The maximum growth temperatures of haloarchaea varied within each 
family (Fig. 1b). It is worth noting that there were no strains belonging to the family Halococcaceae that grew at 
temperatures >50 °C, and only those belonging to the family Natrialbaceae had a maximum growth temperature 
>60 °C, including strain CBA1119T. The maximum and optimal growth temperatures of strain CBA1119T were 
the highest recorded to date among haloarchaea. Environmental temperature underlies the evolution of various 
biological phenomena such as the density of hydrogen bonds in nucleic acid20.
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Figure 1. Comparison of the highest optimal (a) and maximum growth temperatures (b), and genome sizes 
(c) among haloarchaeal species. Strain CBA1119T has the highest optimal and maximum growth temperature, 
and the third largest genome size among type strains belonging to haloarchaea. Red circles indicate strain 
CBA1119T.



www.nature.com/scientificreports/

3Scientific REpoRTs |  (2018) 8:7777  | DOI:10.1038/s41598-018-25887-7

General genomic features of strain CBA1119T were described in Supplementary Information (Supplementary 
Tables S2 and S3; Supplementary Fig. S2b). The ways in which the microbial genome is affected by environmen-
tal factors can be understood by pan-genome comparisons21. The number of pan-genome orthologous groups 
(POGs) and strain-specific POGs (singletons) were compared among strain CBA1119T and seven species of the 
genus Natrinema (Fig. 2). The flower plot showed that strain CBA1119T had the largest number of singletons 
among Natrinema species. The number of singletons in strain CBA1119T was 1.4 times that in Nnm. salaciae JCM 
17869T (which had the second largest number) and four times that in Nnm. altunense AJ2T (which had the small-
est number). The heat map based on gene content also showed that strain CBA1119T had more exclusive POGs 
than other related species (Fig. 3). Additionally, each genome within the genus Natrinema had distinct KEGG 
pathway profiles based on POGs (Table 1). Strain CBA1119T had specific enzymes listed on the KEGG pathway 
named propanoate metabolism, geraniol degradation, fatty acid biosynthesis, metabolism and degradation, and 
valine, leucine and isoleucine degradation, with P values of zero.

For genome size and growth temperature comparisons among haloarchaeal type strains, information on the 
strains was obtained from the GenBank database and previous studies, and is shown in Supplementary Table S4. 
Genome size comparison at the class level revealed that most haloarchaea (104/128 species) had a genome rang-
ing between 3.0 and 4.5 Mb in size, with the class Natrialbaceae having the largest average genome size (Fig. 1c). 
Interestingly, only three strains had a genome size >5 Mb, including strain CBA1119T. Besides a high growth tem-
perature, strain CBA1119T had an unusually large genome size. Haloarchaea species with a genome >5 Mb are 
uncommon; only two such type strains (and three in total) are found in the GenBank database. Strain CBA1119T 
had the third largest genome among haloarchaeal type strains (and the fourth among total haloarchaeal strains). 
Genome size was shown to be related to COG categories and pathways in bacteria; COG categories related to 
secondary metabolism and energy conversion were more highly represented in larger genomes, as were KEGG 
categories related to various cellular processes and metabolism with the exception of nucleotide metabolism22. 
Free-living bacteria with a genome size >6 Mb such as Bacteroides thetaiotaomicron and Streptomyces avermitili  
can grow in various environments and use a wide range of substrates for energy production. Thus, strain 
CBA1119T with its large genome size may be capable of growing under different conditions, and can potentially 
utilize different substrates to produce energy. Genome size increases with the level of environmental instability; 
that is, large genomes are also more resistant to environmental perturbations than smaller ones23. It remains to 
be determined whether this applies to strain CBA1119T. Clarifying the genomic and environmental factors that 
affect growth temperature and genome size can provide insight into environment-microbe interactions and evo-
lutionary adaptations of various microorganisms, while additional studies on the enzymes of strain CBA1119T 
can reveal new tools for industrial biotechnology applications.
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Figure 2. Flower plot showing strain-specific and core POGs of eight Natrinema species.
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Figure 3. Heatmap based on gene content. A dendrogram was generated using Jaccard coefficients and 
unweighted pair-group method with arithmetic mean clustering. Blue and red indicate present and absent 
genes, respectively. Values in the brackets indicate number of POGs of each strain.
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Materials and Methods
Isolation of archaeal strain. Strain CBA1119T was isolated from unrefined solar salt obtained from a salt 
field (34.587738 N, 126.105372 E) in the Republic of Korea and aerobically cultured in DBCM2 medium (JCM 
medium no. 574; 833 ml MDS salt water [240 g NaCl, 30 g MgCl2∙6H2O, 35 g MgSO4∙7H2O, 7 g KCl, 5 ml 1 M 
CaCl2 solution per liter], 1 ml FeCl2 solution [10 ml 25% HCl, 1.5 g FeCl2∙4H2O per liter], 1 ml trace element 
solution [70 mg ZnCl2, 100 mg MnCl2∙4H2O, 6 mg H3BO3, 190 mg CoCl2∙6H2O, 2 mg CuCl2∙2H2O, 24 mg NiCl2∙6 
H2O, 36 mg Na2MoO4∙2H2O per liter], 0.25 g peptone [Oxoid, Chesire, UK], 0.05 g yeast extract [BD Biosciences, 
Franklin Lakes, NJ, USA], 5 ml 1 M NH4Cl, 3 ml vitamin solution [3 mg biotin, 4 mg folic acid, 50 mg pyridox-
ine·HCl, 33 mg thiamine·HCl, 10 mg riboflavin, 33 mg nicotinic acid, 17 mg DL-calcium pantothenate, 17 mg 
vitamin B12, 13 mg para-aminobenzoic acid, 10 mg lipoic acid per liter], 10 ml of 1 M sodium pyruvate solution, 
2 ml potassium phosphate buffer [417 ml 1 M K2HPO4 and 83 ml 1 M KH2PO4 per liter], and 50 ml 1 M Tris-HCl, 
pH 7.5 per liter) at 37 °C for 4 weeks. To obtain pure culture, a single colony was transferred repeatedly to the agar 
medium.

Phenotypic, chemotaxonomic, and phylogenetic analyses. Phenotypic tests were performed 
according to the minimal standards for description of new taxa in the order Halobacteriales24. Cell morphology 
and size were examined by field emission transmission electron microscopy (Chuncheon Center, Korea Basic 
Science Institute, Korea). Gram staining was performed as previously described25. For comparative phenotypic 
analyses, reference strains were selected based on the relatedness of 16S rRNA gene sequences (>97%). For this 
purpose, Nnm. soli LMG 29247T18, Nnm. salaciae JCM 17869T17, and Nnm. ejinorense JCM 13890T14 obtained 
from the Japan Collection of Microorganisms (JCM) or Belgian Coordinated Collections of Microorganisms 
(BCCM) were cultured at 37 °C in DBCM2 medium. Growth at different temperatures (4 °C, 15 °C–60 °C at inter-
vals of 5 °C, and 61 °C–70 °C at intervals of 1 °C), NaCl concentrations (0–30% [w/v] at intervals of 5%), pHs 
(5.0–11.0 at intervals of 1.0), and Mg2+ concentrations (0, 5, 10, 20, 50, 100, 200, and 500 mM) were tested using 
DBCM2 medium as the basal medium for 4 weeks. pH was adjusted by adding the following buffers: 10 mM 
2-(N-morpholino)-ethanesulfonic acid (MES) (pH 5–6), 1,3-bis[tris(hydroxymethyl)methylamino]propane 
(Bis-TRIS propane) (pH 7–9), or N-cyclohexyl-3-aminopropanesulfonic acid (CAPS) (pH 10–11). Anaerobic 
growth in the presence of 0.5% l-arginine, trimethylamine-N-oxide (TMAO), dimethyl sulfoxide (DMSO), or 
30 mM nitrate was evaluated on DBCM2 medium at 37 °C in an anaerobic chamber (Coy Laboratory Products, 
Grass Lake, MI, USA) with an N2·CO2·H2 (90:5:5, v-v:v) atmosphere. Catalase and oxidase activities26 as well 

Strain
KEGG 
pathway ID Pathway name

Differentially 
present POGs P value

CBA1119T*

MAP00281 Geraniol degradation 13 0.0000

MAP00640 Propanoate metabolism 31 0.0000

MAP00061 Fatty acid biosynthesis 16 0.0000

MAP01212 Fatty acid metabolism 36 0.0000

MAP00071 Fatty acid degradation 26 0.0000

MAP00280 Valine, leucine, and isoleucine degradation 28 0.0000

MAP00780 Biotin metabolism 12 0.0001

MAP00072 Synthesis and degradation of ketone bodies 8 0.0001

MAP00650 Butanoate metabolism 24 0.0002

MAP01040 Biosynthesis of unsaturated fatty acids 12 0.0011

MAP00380 Tryptophan metabolism 18 0.0026

MAP00410 beta-Alanine metabolism 13 0.0032

MAP00930 Caprolactam degradation 7 0.0064

MAP00903 Linonene and pinene degradation 7 0.0168

MAP00310 Lysine degradation 16 0.0173

MAP00620 Pyruvate metabolism 18 0.0295

MAP03022 Basal transcription factors 9 0.0408

MAP00720 Carbon fixation pathways in prokaryotes 21 0.0414

JCM 17869T MAP00072 Synthesis and degradation of ketone bodies 4 0.0101

JCM 13890T

MAP00780 Biotin metabolism 5 0.0180

MAP00625 Chloroalkane and chloroalkene degradation 6 0.0298

MAP00633 Nitrotoluene degradation 4 0.0394

JCM 14663T MAP00072 Synthesis and degradation of ketone bodies 4 0.0033

JCM 10478T MAP00983 Drug metabolism – other enzymes 5 0.0304

DSM 3751T
MAP00250 Alanine, aspartate and glutamate metabolism 7 0.0356

MAP00650 Butanoate metabolism 8 0.0363

DSM 15624T MAP03022 Basal transcription factors 7 0.0067

Table 1. Strain-specific POGs listed on the KEGG pathway (P < 0.05). *Strain CBA1119T is estimated to 
contain the largest number of singletons.
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as the hydrolysis of starch and casein27 and of Tween 40 and Tween 8028 were evaluated according to estab-
lished protocols. Antibiotic susceptibility was tested on DBCM2 medium using antibiotic discs with ampicillin 
(10 μg per disc), erythromycin (15 μg), gentamicin (10 μg), kanamycin (30 μg), nalidixic acid (30 μg), rifampicin 
(10 μg), and streptomycin (10 μg). The effectiveness of various substrates as a sole carbon and energy source 
and acid production were determined in HMD medium29. A total of 20 carbon sources were tested: D-fructose, 
D-galactose, D-mannitol, D-mannose, D-sorbitol, D-xylose, fumarate, glycerol, maltose, pyruvate, starch, succi-
nate, sucrose, L-alanine, L-arginine, L-aspartate, L-glutamate, L-lysine, L-malate, and L-sorbose. Polar lipids from 
strain CBA1119T were extracted, analyzed, and compared with those of the three reference strains as previously 
described30. The DNA-DNA hybridization (DDH)31 was performed to determine the genetic relationship between 
strain CBA1119T and the three reference strains. To determine the taxonomic identity based on 16S rRNA gene 
sequence, chromosomal DNA was extracted using a commercial DNA extraction kit (iNtRON Biotechnology, 
Sungnam, Korea) and the 16S rRNA gene was amplified using PCR PreMix (iNtRON Biotechnology) with uni-
versal primers 0018 F and 1518R32. Amplified 16S rRNA PCR products were sequenced and assembled as previ-
ously described33 and 16S rRNA sequences were compared using EzTaxon-e34 or NCBI BLAST35. Phylogenetic 
trees were constructed based on the three 16S rRNA gene sequences of strain CBA1119T obtained from the 
genome sequencing data (see below) and other related species using MEGA6 software36. Phylogenetic trees were 
generated with neighbor-joining (NJ)37, maximum likelihood (ML)38, and maximum parsimony (MP)39 methods 
with 1 000 bootstrap replications based on the NJ tree.

Library preparation, sequencing, genome assembly, and annotation. To clarify the relationship 
between physiological characteristics (especially capacity for growth at high temperatures) and genomic fea-
tures, we performed genome sequencing of strain CBA1119T and Nnm. ejinorense JCM 13890T as previously 
described40. In brief summary, the genomic DNA shearing and SMRTbell library preparation were carried out 
according to the standard PacBio 20-kb Template Preparation Using BluePippin Size-Selection System protocol 
by P6-C4 chemistry (Pacific Biosciences, Menlo Park, CA, USA), respectively. The strain CBA1119T genome 
and Nnm. ejinorense JCM 13890T genome sequences were determined using the PacBio RS II system (Pacific 
Biosciences). De novo genome assembly of each genome was performed using Hierarchical Genome Assembly 
Process v.2 software with default parameters supported by PacBio SMRT Analysis v.2.3.041. rRNA and tRNA 
prediction was carried out using RNAmmer v.1.242 and tRNAscan-SE v.1.2143, respectively. Genes were predicted 
using Glimmer3 in Rapid Annotation using Subsystem Technology server (http://rast.nmpdr.org), and functional 
gene annotations were performed based on the SEED, COG (http://www.ncbi.nlm.nih.gov/COG), and KEGG 
(http://www.genome.jp/kegg/) databases. The GenBank/EMBL/DDBJ accession numbers for the Natrinema ther-
mophila CBA1119T and Natrinema ejinorense JCM 13890T are PDBS00000000 and NXNI00000000, respectively.

Comparative genomic analysis. For genomic comparisons, Natrinema species genomes were obtained 
from the NCBI genome database, except those of strains CBA1119T and JCM 13890T, which were sequenced as 
described above. The OrthoANI algorithm was used to analyze the genomic relatedness between strain CBA1119T 
and other species. OrthoANI percentages were calculated and a phylogenetic tree was constructed44. Orthologs 
in strain CBA1119T and the reference strains were predicted and mapped using the reciprocal best hit method 
in UBLAST45. Pan-genome orthologous groups (POGs) were estimated using the EzBioCloud Comparative 
Genomics Database (http://cg.ezbiocloud.net/)46, and their presence was calculated using the Jaccard coefficient. 
The unweighted pair-group method with arithmetic mean (UPGMA) clustering was then used to assess cluster-
ing between strain CBA1119T and the reference strains from a dendrogram constructed based on the presence or 
absence of gene content. Haloarchaea genomes for comparisons were obtained from the NCBI genome database 
according to the following criteria: genomes with optimal or maximum growth temperature information were 
selected for comparisons of optimal and maximum growth temperature, respectively; genomes of unclassified 
strains47 were excluded; and genomes with fewer contigs that are less incomplete were selected, when multiple 
genomes were available for a single strain.
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