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Abstract

To assess morbidity and mortality of parainfluenza virus (PIV) infections in immunocompro-

mised patients, we analysed PIV infections in a hematology and stem cell transplantation

(SCT) unit over the course of three years. Isolated PIV strains were characterized by

sequence analysis and nosocomial transmission was assessed including phylogenetic anal-

ysis of viral strains. 109 cases of PIV infection were identified, 75 in the setting of SCT. PIV

type 3 (n = 68) was the most frequent subtype. PIV lower respiratory tract infection (LRTI)

was observed in 47 patients (43%) with a mortality of 19%. Severe leukopenia, prior steroid

therapy and presence of co-infections were significant risk factors for development of PIV-

LRTI in multivariate analysis. Prolonged viral shedding was frequently observed with a

median duration of 14 days and up to 79 days, especially in patients after allogeneic SCT

and with LRTI. Nosocomial transmission occurred in 47 patients. Phylogenetic analysis of

isolated PIV strains and combination with clinical data enabled the identification of seven

separate clusters of nosocomial transmission. In conclusion, we observed significant mor-

bidity and mortality of PIV infection in hematology and transplant patients. The clinical

impact of co-infections, the possibility of long-term viral shedding and frequent nosocomial

transmission should be taken into account when designing infection control strategies.
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Introduction

Respiratory viruses such as influenza, parainfluenza (PIV), respiratory syncytial virus (RSV)

and most recently the novel coronavirus SARS-CoV-2 can cause significant morbidity and

mortality in immunocompromised patients, in particular in patients with hematologic malig-

nancies or following stem cell transplantation (SCT) [1–3]. While many efforts have been

undertaken in research on influenza, much less is known about PIV infections in immuno-

compromised patients. Several reports describe PIV as a relevant pathogen for immunocom-

promised patients with mortality rates of PIV-associated lower respiratory tract infection

(LRTI) of up to 27% [4–7]. Moreover, PIV is easily transmitted and known to be highly conta-

gious. In contrast to seasonal influenza, PIV infections occur throughout the year. In hematol-

ogy wards and transplant units, outbreaks of nosocomial PIV infections have been repeatedly

reported [6,8–11].

For patients with hematological malignancies presenting with symptoms of respiratory

tract infection, testing for respiratory viruses including influenza, PIV and RSV is highly rec-

ommended [12]. In contrast to influenza, no specific antiviral therapy has been established

against PIV infections [1] and the impact of ribavirin therapy on the outcome of PIV infec-

tions remains unclear [13–15].

PIV belongs to the Paramyxoviridae family, which comprise enveloped single-stranded

negative-sense RNA viruses and is spread by direct contact and aerosols. Based on genetic and

antigenic differences PIV types 1–4 have been described, among which PIV type 1 and 3 are

classified as members of the genus of Rubulavirus, and PIV type 2 and 4 as members of the

genus of Respirovirus [16–19]. Their major antigenic spike glycolproteins, hemagglutinin

neuraminidase and fusion protein, are encoded by HN and F genes, respectively, and are dom-

inant targets for humoral immunity found in all parainfluenza viruses [16]. Further, the HN

protein comprises neuraminidase and hemagglutinin functions, and facilitates membrane

fusion with host cells by interaction with the F protein [20,21].

Due to its high antigenic and sequence variability the hemagglutinin neuraminidase gene

was established as primary target for phylogenetic analysis and typing of PIV [21–25].

Here, we analyze clinical characteristics of PIV infections and risk factors for severe infec-

tion in hematological and SCT patients over the course of three years. We assess the extent of

nosocomial transmission by combining clinical and molecular data including phylogenetic

analysis of viral strains and report on prolonged viral shedding.

Materials and methods

Patient population and clinical data assessment

From July 2013 to June 2016, all documented cases of PIV infection in patients with hemato-

logic malignancies or following SCT treated at our institution, a university hospital and trans-

plant center, were included in this analysis. Diagnosis of PIV is established by polymerase

chain reaction (PCR) detection of viral RNA in respiratory materials. Patients with PIV infec-

tions are regularly re-screened for presence of PIV RNA to determine duration of viral shed-

ding and steer isolation measures.

In this analysis, clinical characteristics and outcome of infected patients were retrospec-

tively evaluated by review of medical charts. PIV-associated LRTI was assumed in case of clini-

cal symptoms of respiratory tract infection (fever, cough, dyspnea) plus atypical pulmonary

infiltrates present on thoracic computed tomography (CT) scan in the setting of PIV infection.

Severe LRTI was defined as requiring treatment on the intensive care unit (ICU) or fatal out-

come. Severe leukopenia was defined as leukocytes < 1000/μl, hypogammaglobulinemia as
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immunoglobulin G< 6g/l, and prior steroid therapy as prednisolone� 20mg/day or

equivalent.

Nosocomial transmission based on clinical data was assumed in patients with detection of

PIV infection� 7 days after hospital admission based on the upper limit of the typical incuba-

tion period. Assignment to a specific cluster of nosocomial transmission was based on the fol-

lowing epidemiological case definition: identical viral sequence plus overlapping in-patient

stay with at least one other cluster patient while both positive for PIV.

Duration of viral shedding was calculated from first to last positive PIV test, patients with

only one available positive test were excluded for this analysis.

PCR and phylogenetic analysis

Viral RNA was extracted from respiratory specimens using the QIAamp1 viral RNA mini kit

(Qiagen, Hilden, Germany) according to the manufacturer’s protocol. Reverse transcription,

amplification and detection of viral RNA was performed with the RealStar1 Parainfluenza

real-time RT-PCR kit (altona Diagnostics, Hamburg, Germany) on a LightCycler1 480

instrument II (Roche, Mannheim, Germany) according to the manufacturer’s instructions.

Extracted RNA was reverse transcribed using random hexamer primers. Subsequently, PIV

HN gene was amplified from cDNA using primers for PIV type 1–4 as previously described or

adapted by Villaran et al., Echevarria et al. and Abiko et al. [26–28].

Resulting PCR products with an amplicon length between 430–500 nucleotides were

sequenced completely in both directions using Big Dye terminator chemistry version 1.1 on a

Prism 3130xl instrument (Applied Biosystems, Darmstadt, Germany). Overlapping sequences

were assembled using the SEQMAN II software of the Lasergene package (DNAstar, Madison,

USA). Multiple alignments from PIV nucleotide sequences were carried out with the MEGA

software version 7 [29]. A phylogenetic tree was generated in MEGA using the maximum-like-

lihood method and the Tamura-Nei algorithm. Representative reference sequences were

obtained from GenBank (http://www.ncbi.nlm.nih.gov) and included in the tree. The statisti-

cal significance of the tree topology was assessed by bootstrapping with 1,000 replicates to eval-

uate confidence estimates. Nucleotide sequences retrieved in this study were deposited in

GenBank (accession numbers MT489396-MT489461).

Statistical analysis

The impact of possible influence factors on morbidity and mortality was analyzed by univari-

ate Chi-square tests. Multivariate logistic regression was performed on a reduced set of vari-

ables. Factors that might influence duration of PIV shedding were analyzed by Kruskal-Wallis

tests. Multivariate logistic regression was performed regarding the endpoint duration of viral

shedding > 14 days. In all analyses, p-values < 0.05 were considered as statistically significant.

This study was approved by the ethics committee of the University of Heidelberg (IRB S-

090/2018). Patient records and information were anonymized and de-identified prior to analy-

sis, therefore explicit consent was waived by the ethical committee.

Results

Clinical characteristics, morbidity and mortality

We identified 109 patients with documented PIV infection between July 2013 and June 2016

(Table 1). The majority of cases was detected during the respective winter and spring seasons

(Fig 1). Median age of patients was 60 years [range 26–79], 63% were male. In total 75 patients

(69%) had received a SCT (41 allogeneic, 39 autologous, 5 both). Information on PIV subtype
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was available in 86 cases showing a vast majority of PIV subtype 3 (n = 68; 79%) followed by

subtype 2 (n = 9; 10%), 4 (n = 5; 6%), and 1 (n = 4; 5%).

Any co-infections were detected in 28 patients (26%), co-infections in respiratory speci-

mens in 11 (10%). Most notable were bacterial co-infections detected in blood cultures (n = 9)

or respiratory materials (n = 2), fungal co-infections with aspergillus (n = 3), and co-infections

with respiratory viruses (1 FLU-B, 2 RSV, 2 coronavirus).

Regarding outcome, 62 patients (57%) had upper respiratory tract infections (URTI) only,

47 patients (43%) developed a LRTI. A severe LRTI was present in 10 patients. 9/47 patients

with LRTI died, resulting in a mortality rate of 19%; 1 patient was put on extracorporeal mem-

brane oxygenation (ECMO) and subsequently recovered. Details on fatal cases are given in

Table 2. Within 90 days after PIV infection, 4/62 patients (6%) with PIV-URTI as well as 1

patient with PIV-LRTI who since had recovered from the infection died of unrelated causes.

Table 1. Clinical characteristics.

Patients with PIV infections

N = 109 (100%)

PIV type

1

2

3

4

Data available: n = 78

4 (5)

9 (11)

68 (79)

5 (6)

Outcome

URTI only

LRTI

Severe LRTI

Fatal outcome

62 (57)

47 (43)

10 (9)

9 (8)

Age median [range] 60 years [26–79]

Male sex 69 (63)

Underlying malignancy

Multiple myeloma

Lymphoma

ALL/LBL

AML/MDS

other

40 (37)

20 (18)

12 (11)

30 (28)

7 (6)

Uncontrolled malignancy 35 (32)

Stem cell transplant recipient

Allogeneic

Autologous

PIV infection pre-engraftment

75 (69)

41 (38)

39 (36)

25 (23)

Graft-versus-host-disease 21 (19)

Steroid therapy 38 (35)

Severe leukopenia 50 (46)

Hypogammaglobulinemia

Data available: n = 85

57 (67)

Co-infections 28 (26)

Nosocomial infection 47 (43)

Abbreviations: PIV–parainfluenza virus; URTI–upper respiratory tract infection; LRTI–lower respiratory tract

infection; ALL–acute lymphoblastic leukemia; LBL–lymphoblastic lymphoma; AML–acute myeloid leukemia; MDS–

myelodysplastic syndrome.

https://doi.org/10.1371/journal.pone.0271756.t001
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Fig 1. Timeline of parainfluenza virus infections. Untyped PIV: Samples were PCR positive, but could not be sequenced for further typing due to low viral

loads.

https://doi.org/10.1371/journal.pone.0271756.g001

Table 2. Details on cases of fatal parainfluenza virus infection.

# PIV type age,

years

sex Underlying

malignancy

transplant Atypical

LRTI

Co-infections Presumed cause of death

1 2 57.1 M myeloma auto-allo yes K. pneumoniae (BAL), CMV (BAL), E. coli (U), S.

epidermidis (BC)

Septic shock, multi-organ

failure

2 1 73.1 F myeloma - yes - Respiratory failure

3 untyped 69.0 M PMF allogeneic yes - ARDS

4 untyped 53.0 M CLL allogeneic yes - Respiratory failure

5 3 65.1 F myeloma autologous yes Aspergillus (BAL) Respiratory failure

6 3 60.8 F FL autologous yes Aspergillus (BAL) Respiratory failure

7 3 50.2 F AML allogeneic yes - Cerebral bleeding

8 untyped 78.8 M DLBCL - yes - Respiratory failure

9 3 62.9 F myeloma autologous yes - Respiratory failure

Abbreviations: PIV–parainfluenza virus; LRTI–lower respiratory tract infection; M–male; F–female; PMF–primary myelofibrosis; CLL–chronic lymphocytic leukemia;

FL–follicular lymphoma; AML–acute myeloid leukemia; DLBCL–diffuse large b-cell lymphoma; CMV–cytomegalovirus; BAL–bronchoalveolar lavage; U–urine; BC–

blood culture; ARDS–acute respiratory distress syndrome.

https://doi.org/10.1371/journal.pone.0271756.t002
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Risk factor analysis regarding morbidity and mortality

Neither type of PIV or underlying hematologic disease had a significant impact on outcome.

In particular, no significant association was seen between PIV type 1–4 and development of

LRTI (p = 0.81). No increased risk of LRTI, severe LRTI or fatal outcome was seen in patients

with prior autologous or allogeneic SCT, even if restricting analysis to patients with SCT

within 100 days of PIV diagnosis. Severe leukopenia (p = 0.004), uncontrolled malignancy

(p = 0.004), prior steroid therapy (p<0.001), presence of co-infections (p<0.001), and nosoco-

mial transmission (p<0.001) were significantly associated with an increased risk of developing

PIV-related LRTI in univariate analysis. In multivariate analysis, severe leukopenia (p = 0.01),

prior steroid therapy (p = 0.001), and presence of co-infections (p = 0.01) remained significant

risk factors for development of LRTI (Table 3).

With respect to fatal outcome, presence of respiratory tract co-infections (p = 0.02) and

prior steroid therapy (p<0.001) showed a significant impact (p = 0.001) in univariate analysis,

a trend was seen for male sex (p = 0.05). No parameters reached statistical significance in mul-

tivariate analysis.

Patients with PIV infection pre-engraftment did not show a significantly prolonged time-

to-engraftment compared to patients with infection post-engraftment neither in case of alloge-

neic not autologous transplantation (p = 0.81 and p = 0.63, resp.).

Regarding antiviral therapy, ribavirin is not standard of care for PIV infection at our insti-

tution. In this cohort, only one patient with PIV LRTI received ribavirin and survived, making

any conclusions as towards its effectiveness speculative.

Viral shedding

Data on viral shedding was available in 40 patients. Median duration of viral shedding was 14

days (range 3–79 days, Fig 2). In univariate analysis, male sex (p = 0.02), severe leukopenia

(p = 0.01), prior steroid therapy (p = 0.03), nosocomial acquisition (p = 0.005), LRTI

(p = 0.001) and presence of co-infections (p = 0.04) were significantly more frequently associ-

ated with prolonged viral shedding. In multivariate analysis, a trend was seen for prolonged

viral shedding in patients with allogeneic transplantation (p = 0.07), presence of LRTI

(p = 0.09), and severe leukopenia (p = 0.09) (Table 4). Interestingly, available data from 2

patients who acquired PIV infection prior to engraftment after allogeneic SCT showed

remarkably prolonged viral shedding for 57 and 79 days, respectively.

Phylogenetic analysis and assessment of nosocomial transmission

Nosocomial transmission based on clinical data was apparent in 47 patients (43%). Of these,

genetic identification of the PIV strain was possible in 38 patients. Combining information on

Table 3. Multivariate risk factor analysis regarding development of LRTI.

Factor p-value HR 95% CI

Allogeneic SCT 0.89 0.92 0.29;2.95

Autologous SCT� 100 days 0.42 0.58 0.15;2.22

Steroid therapy 0.001 6.03 2.15;16.95

Severe leukopenia 0.01 4.96 1.46;16.90

Age� 65 years 0.39 1.67 0.52;5.37

Co-infections 0.01 4.04 1.32;12.36

Abbreviations: LRTI–lower respiratory tract infection; HR–hazard ratio; 95% CI– 95% confidence interval; SCT–

stem cell transplantation.

https://doi.org/10.1371/journal.pone.0271756.t003
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nosocomial transmission according to clinical definition with phylogenetic data on viral

strains, we could identify seven clusters of nosocomial PIV infections consisting each of

patients with clinically defined nosocomial PIV infection, overlapping stays as in-patients and

identical viral sequence. The identified clusters included up to seven patients each and were

spread over a period of 23 months (Fig 3). Two nosocomial clusters of three patients each were

located within the same phylogenetic cluster but occurred during different time periods (PIV3

C3d, 08-10/14, 04/15). Out of 38 patients with nosocomially acquired PIV infection and avail-

able sequence data, 33 patients (87%) could be assigned to one of the clusters. In addition,

seven patients with presumably community-acquired PIV infection showed viral sequences

identical to one of the clusters, three of these were hospitalized within the PIV incubation

period but shorter than the upper limit of standard incubation period and might be in fact nos-

ocomial cases. Furthermore, three patients with community-acquired PIV infection formed an

additional cluster (PIV3 C3a1, 06/2016). All three were treated during the presumed time of

Fig 2. Duration of viral shedding in patients with PIV infection. Data on viral shedding was available in 40 patients with consecutive tests for PIV.

Patients with URTI and LRTI are designated by green and red bars, resp.

https://doi.org/10.1371/journal.pone.0271756.g002

Table 4. Multivariate risk factor analysis regarding prolonged viral shedding> 14 days.

Factor p-value HR 95% CI

Allogeneic SCT 0.07 8.63 0.84;88.72

Steroid therapy 0.61 1.62 0.26;10.12

LRTI 0.09 6.29 0.76;52.21

Severe leukopenia 0.09 7.42 0.73;74.90

Abbreviations: HR–hazard ratio; 95% CI– 95% confidence interval; SCT–stem cell transplantation; LRTI–lower

respiratory tract infection.

https://doi.org/10.1371/journal.pone.0271756.t004
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infection in the allogeneic transplant outpatient clinic, thus nosocomial transmission in the

waiting area might be conceivable.

Discussion

This multi-season study of PIV infections in a diverse population of patients with hematologic

malignancies including both SCT and non-SCT patients shows significant morbidity and mor-

tality with nearly half of infected patients developing pneumonia and a subsequent LRTI-asso-

ciated mortality rate of 19%. The incidence of severe courses of PIV infection seen here is

within range of those reported by others, taking into consideration that most published studies

focused on high-risk populations such as patients with leukemia or following SCT

[5,7,14,30,31]. In our study population, SCT status was not a significant risk factor for severe

outcome. This highlights the role of PIV as an important pathogen in patients with hemato-

logic malignancies both within and outside the SCT setting.

While PIV type 3 has been associated with an increased incidence of LRTI in hematologic

patients [32] we could not detect a significant association between PIV type and development

of LRTI. However, in our cohort PIV type 3 was responsible for nearly 4 in 5 of overall PIV

infections. Of interest, among the six fatal cases with information on PIV type, two were asso-

ciated with PIV other than type 3, namely type 1 and 2, respectively.

Prior steroid therapy, severe leukopenia and presence of co-infections were identified as

significant risk factors for PIV-LRTI. We observed bacterial, fungal and viral co-infections. Of

interest, in five cases co-infections with other respiratory viruses including two cases of co-

infection with coronavirus (non-COVID-19) were detected. However, there was no noticeable

associated increase in morbidity in these cases. Presence of co-infections has been repeatedly

described as a risk factor for severe PIV infection [14,30,33]. Recently, invasive pulmonary

aspergillosis (IPA) as a complication of severe influenza has been gaining a lot of attention

with reported incidence rates of 30% of immunocompromised ICU patients and high associ-

ated mortality [34]. We observed three cases of IPA and PIV co-infection. All three required

treatment on the ICU, two subsequently died, one patient recovered following ECMO therapy.

This demonstrates the potential severity of IPA in immunocompromised patients with PIV

infection. It is therefore important to aim for thorough microbiological work-up in patients

with PIV infection, particularly in the immunocompromised host, in order to detect possible

co-infections and adapt antimicrobial therapy accordingly.

Therapeutic options targeting PIV are currently very limited. Antiviral therapy with ribavi-

rin is highly controversial with most studies failing to show a significant impact on LRTI devel-

opment or mortality [15]. Intravenous immunoglobulin administration may be considered as

supportive therapy [1]. An antiviral agent currently in phase III development for PIV infection

is the sialidase fusion protein fludase (DAS181). First data suggest fludase may be an effective

treatment strategy for PIV LRTI in immunocompromised patients [35]. However, until effec-

tive antiviral agents are broadly available, infection control measures remain the cornerstone

against PIV infections.

Fig 3. Phylogenetic analysis of PIV strains including information on clusters of nosocomial transmission.

Phylogenetic tree for nucleotide sequences of PIV-3 strains were constructed with maximum-likelihood method with

1,000 bootstrap replicates using MEGA 7 software. Heidelberg strains are named with their strain identifier followed

by the winter season of isolation in brackets. Reference strains representing known genotypes were retrieved from

GenBank and included in the tree (labels include genotype followed by accession number). The genotype assignment is

also shown on the right by brackets. Bootstrap values greater than 70% are indicated at the branch nodes. Clinically

suspected nosocomial infections matching identical sequence clusters (cl. 1–7) are highlighted in color (one cluster of

suspected nosocomial infection in the outpatient setting is highlighted in grey), time of infection is shown in black

circled box on the right. The scale bar represents the number of nucleotide substitutions per site. cl. = cluster.

https://doi.org/10.1371/journal.pone.0271756.g003

PLOS ONE Parainfluenza in hematological cancer patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0271756 July 29, 2022 9 / 13

https://doi.org/10.1371/journal.pone.0271756.g003
https://doi.org/10.1371/journal.pone.0271756


To optimize infection control measures, assessment of viral shedding can be a helpful strat-

egy. We could demonstrate prolonged viral shedding of up to 79 days, particularly in patients

with LRTI, severe leukopenia, and allogeneic SCT recipients. While too few to gain statistical

significance, PIV infection pre-engraftment of allogeneic SCT seemed a high-risk constellation

for prolonged viral shedding. Long-term viral shedding of influenza, PIV, and RSV in immu-

nocompromised patients has been previously reported by our group with especially long peri-

ods of nearly a year observed for RSV [36] and has also been described for the novel

coronavirus SARS-CoV-2 [37]. The possibility of long-term viral shedding has to be kept in

mind when devising infection control strategies as it might facilitate nosocomial transmission

and outbreaks.

Clinically suspected nosocomial transmission supported by sequence analysis was a fre-

quent finding in our study cohort despite comprehensive hygienic measures implemented at

our institution. This highlights the high contagiousness of PIV, especially in such a vulnerable

patient population. Outbreaks of PIV on hematology and oncology wards and in SCT units

have been repeatedly reported including both outbreaks of a single and multiple virus strains

[6,8,10,11,38,39]. We here describe multiple clusters of nosocomial transmission in immuno-

compromised patients outside of a traditional outbreak setting covering a long time period.

The combination of clinical and phylogenetic data allowed a detailed case-by-case analysis and

to illustrate the route and extent of nosocomial transmissions. Clusters of nosocomial trans-

mission could be observed during all four seasons reflecting the presence of PIV throughout

the year, highlighting the need to implement adequate infection control measures at any time.

Circle threshold values in real time PCR as proxy for viral load did not show any association

with LRTI nor severe LRTI in our cohort. However, it is very conceivable that a prolonged

period of viral shedding, such as here observed in allogeneic transplant patients increases the

risk of nosocomial transmission. At our institution, isolation of not only infected patients but

also their contact patients for the length of the possible incubation period is standard of care

which might have contributed to stop the development of larger outbreaks despite the obvi-

ously repeated introduction of PIV into this highly vulnerable patient population. Barrier

methods addressing the entire population at risk such as a universal mask strategy if in contact

with SCT patients have also been shown to be effective in reducing PIV infections [40].

As a retrospective analysis, this study has several limitations. Detailed documentation of

clinical symptoms as well as stringent follow-up swabs to determine duration of viral shedding

were not available in all patients, especially in the out-patient setting. Furthermore, testing for

PIV was limited to patients. Thus, no information on PIV infections among health-care work-

ers or patients’ relatives was available which would have added useful aspects with regard to

chains of transmission.

In conclusion, we could demonstrate significant morbidity and mortality of PIV infections

in a diverse population of hematologic and SCT patients. Nosocomial transmission occurred

frequently and might be facilitated by long-term viral shedding in immunocompromised

patients highlighting the need for comprehensive infection control management. Further pro-

spective studies are necessary to design optimal strategies with regard to infection prevention

and transmission control in this vulnerable patient population, and to further develop efficient

vaccination and treatment options.
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