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Ayşe Nedret Koç12, Weihua Pan13* , Macit Ilkit8* , David S. Perlin1 and
Cornelia Lass-Flörl14

1 Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States, 2 Department of Microbiology,
Faculty of Medicine, Ege University, Izmir, Turkey, 3 Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands,
4 Biotechvana SL, Valencia, Spain, 5 Department of Infectious Diseases and Tropical Medicine, Faculty of Medicine, Tehran
University of Medical Sciences, Tehran, Iran, 6 Department of Microbiology, Faculty of Medicine, Dokuz Eylul University, Izmir,
Turkey, 7 Department of Microbiology, Gulhane Training and Research Hospital, University of Health Sciences, Ankara,
Turkey, 8 Division of Mycology, Faculty of Medicine, Çukurova University, Adana, Turkey, 9 Department of Microbiology, Adana
City Hospital, University of Health Sciences, Adana, Turkey, 10 Department of Microbiology, Faculty of Medicine, Trakya
University, Edirne, Turkey, 11 Department of Microbiology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey,
12 Department of Microbiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey, 13 Shanghai Key Laboratory Molecular
Medical Mycology, Shanghai, China, 14 Division of Hygiene and Medical Microbiology, Medical University of Innsbruck,
Innsbruck, Austria

Candida tropicalis is the fourth leading cause of candidemia in Turkey. Although
C. tropicalis isolates from 1997 to 2017 were characterized as fully susceptible to
antifungals, the increasing global prevalence of azole-non-susceptible (ANS) C. tropicalis
and the association between high fluconazole tolerance (HFT) and fluconazole
therapeutic failure (FTF) prompted us to re-evaluate azole susceptibility of C. tropicalis
in Turkey. In this study, 161 C. tropicalis blood isolates from seven clinical centers were
identified by ITS rDNA sequencing, genotyped by multilocus microsatellite typing, and
tested for susceptibility to five azoles, two echinocandins, and amphotericin B (AMB);
antifungal resistance mechanisms were assessed by sequencing of ERG11 and FKS1
genes. The results indicated that C. tropicalis isolates, which belonged to 125 genotypes
grouped into 11 clusters, were fully susceptible to echinocandins and AMB; however,
18.6% of them had the ANS phenotype but only two carried the ANS-conferring
mutation (Y132F). HFT was recorded in 52 isolates, 10 of which were also ANS. Large
proportions of patients infected with ANS and HFT isolates (89 and 40.7%, respectively)
showed FTF. Patients infected with azole-susceptible or ANS isolates did not differ in
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mortality, which, however, was significantly lower for those infected with HFT isolates
(P = 0.007). There were significant differences in mortality (P = 0.02), ANS (P = 0.012),
and HFT (P = 0.007) among genotype clusters. The alarming increase in the prevalence
of C. tropicalis blood isolates with ANS and HFT in Turkey and the notable FTF rate
should be a matter of public health concern.

Keywords: Candida tropicalis, antifungal susceptibility testing, genotyping, ERG11, HS1- and HS2-FKS1,
candidemia, fluconazole tolerance

INTRODUCTION

Candida tropicalis is the leading cause of candidemia in India,
Algeria, and Tunisia (Sellami et al., 2011; Chakrabarti et al.,
2014; Megri et al., 2020) and the second to third leading cause
of candidemia in South Asian countries (Xiao et al., 2018; Liu
et al., 2019). Candida tropicalis is associated with a high mortality
rate and the poorest prognosis among non-albicans Candida
(NAC) species (Ko et al., 2019). Candida tropicalis has been
considered an azole-susceptible NAC species; however, recent
studies performed in several countries and worldwide indicate
the emergence of azole-resistant C. tropicalis isolates in clinical
settings (Arendrup et al., 2011; Chakrabarti et al., 2014; Choi
et al., 2016; Fan et al., 2018; Xiao et al., 2018; Chen et al., 2019;
Pfaller et al., 2019; Megri et al., 2020). According to a SENTRY
study, C. tropicalis, similar to C. glabrata, also demonstrates
an increased tendency to echinocandin resistance compared to
other Candida species, although its rate is lower than that to
azoles (Pfaller et al., 2019). Furthermore, a national candidemia
study conducted in India indicates the emergence of multidrug-
resistant (MDR) C. tropicalis isolates in a similar proportion as
what observed for MDR Candida auris (Chakrabarti et al., 2014).
An additional matter of concern is the development of drug
tolerance, which may allow the fungus to acquire stable genetic
alterations leading to antifungal resistance and which could
be potentially linked to azole therapeutic failure and mortality
(Rosenberg et al., 2018; Berman and Krysan, 2020). Indeed,
several studies indicate that C. tropicalis is among the most azole-
tolerant Candida species (Arthington-Skaggs et al., 2002; Rueda
et al., 2017) and that fluconazole efficacy against C. tropicalis
blood isolates with high azole tolerance is decreased, which
can cause fluconazole therapeutic failure (FTF) (Astvad et al.,
2018). Considering the limited number of antifungals available
to treat candidemia, development of resistance against a single
or multiple antifungals should pose a serious threat to patients
with candidemia due to C. tropicalis, especially in developing
countries where fluconazole is the most widely used antifungals
(Singh et al., 2018; Arastehfar et al., 2019a,b).

Although our understanding of azole resistance mechanisms
in C. tropicalis is limited, molecular studies indicate that
mutations in the ergosterol biosynthesis gene ERG11,
which result in reduced affinity of Erg11 to azoles, and/or
overexpression of Erg11 and efflux pumps Cdr1 and Mdr1
could be the major contributors to azole resistance (Arastehfar
et al., 2020g). At the same time, azole tolerance may depend
on changes in the components of stress-response pathways
(Rosenberg et al., 2018; Berman and Krysan, 2020). Resistance

to echinocandins is mainly caused by mutations in hotspots
(HSs) 1 and 2 of the FKS1 gene encoding the catalytic subunit
of β-(1,3)-glucan synthase (Arastehfar et al., 2020g). Genotyping
techniques made it possible to determine the link between the
genotype and fluconazole resistance and to reveal a propensity
of fluconazole-resistant blood isolates of C. tropicalis to expand
in clusters with a similar genetic background (Chen et al.,
2019). Given the association between the genotype and mortality
in other Candida species (Byun et al., 2018; Arastehfar et al.,
2019a), it can be hypothesized that there are similar correlations
between azole tolerance and resistance, patient mortality, and
the genotype of C. tropicalis.

A recent study explored antifungal susceptibility patterns
of Candida bloodstream isolates in Turkey (1997–2017) and
reported the lack of drug resistance for C. tropicalis (Arikan-
Akdagli et al., 2019). However, our single- and multi-center
investigations conducted later in Turkey have revealed a very
recent (from 2017 onward) emergence of azole/echinocandin-
resistant and even MDR Candida species (Arastehfar et al.,
2020b,c,e), suggesting the existence of the same trend for
C. tropicalis. Therefore, we conducted a comprehensive multi-
center study to update the rate of antifungal resistance among
C. tropicalis blood isolates recovered in 2017–2019 in Turkey;
some isolates recovered before 2017 but not analyzed in
the previous study (Arikan-Akdagli et al., 2019) were also
included. The drug resistance mechanisms were explored by
sequencing ERG11 and HS1/2 of FKS1. We also examined
the level of fluconazole tolerance and assessed its correlation
with azole exposure, FTF, and patient mortality. Multilocus
microsatellite typing (MMT) was performed to determine the
genetic relatedness among C. tropicalis bloodstream isolates
and associations between genotype clusters and fluconazole
minimum inhibitory concentrations (MICs), fluconazole
tolerance, and patient outcome.

MATERIALS AND METHODS

Isolation and Identification of
C. tropicalis and Definition of Clinical
Parameters
Candida tropicalis bloodstream isolates (n = 161) were recovered
from 127 patients hospitalized in seven centers: Dokuz Eylül
University Hospital (DEUH; n = 61), Ege University Hospital
(EUH; n = 32), Ondokuz Mayıs University Hospital (OMUH;
n = 22), Trakya University Hospital (TUH; n = 17), Erciyes
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University Hospital (ERUH; n = 12), Gülhane Training and
Research Hospital (GTRH; n = 11), and University of Health
Sciences, Adana City Hospital (UHSACH; n = 6). Isolates from
EUH were collected between 2010 and 2019 but almost 90% of
them (29/32) were obtained in 2016–2019. Isolates from DEUH,
OMUH, and GTRH were obtained in 2017–2019, those from
UHSACH – in 2019, and those from GTRH – in 2013–2015
(with the exception of one isolate obtained in 2019). Of note,
isolates collected in DEUH, TUH, and GTRH were not included
in the previous Turkish multi-center study (Arikan-Akdagli
et al., 2019). Isolates were grown on Sabouraud glucose agar
(SGA, Merck, Darmstadt, Germany) and chromogenic media
(Candiselect, Bio-Rad, Hercules, CA, United States) at 35◦C for
24–48 h. DNA was isolated by a CTAB method (Arastehfar et al.,
2018) and species identification was performed by sequencing
internal transcribed spacers ITS1 and ITS4 (Stielow et al.,
2015). Therapeutic failure was considered if fever persisted
and blood culture remained positive (Arastehfar et al., 2020e)
despite antifungal treatment and the mortality rate reported
herein was all-cause.

Multilocus Microsatellite Typing
Genotypic diversity of C. tropicalis isolates was evaluated
according to six markers and 12 loci by using a previously
published protocol (Wu et al., 2014). Microsatellite data were
organized as categorical values; data analysis was performed by
using Bionumerics software v7.6 (Applied Math, Sint-Martens-
Latem, Belgium) and dendrograms were constructed according
to the unweighted-pair group method using average linkages.
Distinct genotypes were considered if two strains differed in
more than one locus.

Antifungal Susceptibility Testing and
Tolerance Determination
Antifungal susceptibility testing was performed by using a
broth microdilution method recommended by CLSI M27-A3
(Clinical and Laboratory Standards Institute [CLSI], 2008)
for the following antifungal drugs: fluconazole, voriconazole,
itraconazole, isavuconazole, posaconazole, amphotericin
B (AMB) (Sigma-Aldrich, St. Louis, MO, United States),
anidulafungin (Pfizer, New York, NY, United States), and
micafungin (Astellas, Munich, Germany). MICs were interpreted
visually after 24 h incubation at 35◦C; C. parapsilosis (ATCC
22019) and C. krusei (ATCC 6258) strains were used for quality
control. Resistance to fluconazole was scored at MICs ≥ 8 µg/ml
and that to voriconazole, anidulafungin, and micafungin was
considered at MICs ≥ 1 µg/ml (Pfaller and Diekema, 2012).
Resistance to posaconazole, itraconazole, and AMB was defined
based on epidemiological cut-off values; isolates responding to
MICs over 0.12, 0.5, and 2 µg/ml, respectively, were considered
non-WT (Pfaller and Diekema, 2012). Since no epidemiological
cut-off values and clinical breakpoints were reported for
isavuconazole, its MICs were categorized as low (≤0.25 µg/ml)
and high (>0.25 µg/ml).

Among the azole antifungals used to treat patients, fluconazole
was the main drug applied for both prophylaxis and targeted

therapy; therefore, tolerance assessment was performed only for
fluconazole. To explore the level of fluconazole tolerance, the
mean growth rate above the MIC (4–64 µg/ml) was recorded
after 48-h incubation as described previously (Rosenberg et al.,
2018; Berman and Krysan, 2020). The level of tolerance was
categorized as low-moderate or high when the growth at
concentrations above the MIC was <50 and ≥50% compared to
the drug-free control, respectively.

ERG11 and HS1- and HS2-FKS1
Sequencing
ERG11 and HS1 and HS2 sequencing was performed for all
isolates using primers and conditions described previously
(Arastehfar et al., 2020a). Contigs were assembled by SeqMan
Pro (DNASTAR, Madison, WI, United States) and the
resulting sequences were aligned by using MEGA software
v7.0 (Kumar et al., 2016) with C. tropicalis MYA-3404 genome
(AAFN00000000.2) as a WT reference (Butler et al., 2009).

Data Availability
ERG11 and HS1- and HS2-FKS1 sequencing data
were deposited in GenBank1 under accession numbers
MT650724–MT650884, MT650885–MT651045, and
MT651046–MT651206, respectively.

Statistical Analysis
Statistical analysis was performed with SPSS v24 (SPSS Inc.,
Chicago, IL, United States). Given the high number of genotypes
(n = 125), we increased the statistical power by grouping isolates
into 11 clusters according to genotype similarity. The association
between clusters and fluconazole MICs was determined by using
chi-square and Kruskal Wallis tests (since the fluconazole MIC
data were non-parametric) and the magnitude of association
was calculated according to the Eta correlation coefficient.
Chi-square test was also used to assess statistical association
between the outcome (mortality/survival) and the genotype
cluster, and logistic regression analysis was further used at R
square values over 0.07. Patients infected with multiple isolates
of various genotypes were not considered for the association
between the genotype cluster and mortality. Correlation between
azole tolerance and outcome was assessed by chi-square test. P
values ≤ 0.05 were considered statistically significant.

RESULTS

Clinical Characteristics
A total of 127 patients with the median age of 54 years (range,
2–93 years) were included in the current study; among them,
63% (80/127) were men and 37% (47/127) – women. Most
patients were hospitalized in intensive care units (40/127; 31.5%),
followed by medical (38/127; 30%), oncology (28/127; 22%), and
surgical (21/127; 16.5%) wards. The underlying conditions (some
patients had more than one) included solid tumors (36/127;

1https://www.ncbi.nlm.nih.gov/genbank/
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28.3%), lung diseases (26/127; 20.5%), diabetes mellitus (22/127;
17.3%), hypertension (19/127; 15%), chronic kidney diseases
and neurological disorders (18/127; 14.2% each), hematological
malignancies and hematopoietic stem cell transplantation (9/127;
7%), and bacterial co-infections (6/127; 4.7%). Given that the
final outcome was not available for three patients, the mortality
and survival rates were calculated as 54.8% (68/124) and 45.2%
(56/124), respectively.

Multilocus Microsatellite Typing
The 161 isolates recovered from the 127 patients belonged to
125 genotypes, which were grouped into 11 clusters (Cs); among
them, C5 (18/161; 11.2%), C6 (16/121; 10%), C10 (21/161;
13%), and C11 (21/161; 13%) contained the greatest number
of isolates (Figure 1, Supplementary Table S1). Analysis of
genotype distribution among hospitals revealed that C10 and C11
isolates were the most prevalent in EUH (46.8%; 15/32), C5–
7 and C10 isolates – in DEUH (48.3%; 30/62), and C8, C10,
and C11 – in OMUH (7/22; 31.8%), TUH (5/17; 29.4%), and
ERUH (4/12; 33.3%) (Supplementary Tables S1, S2). Among
repetitive isolates obtained from the same patient, most had the
same genotype, with few exceptions (Figure 1, Supplementary
Table S1). Logistic regression analysis of correlation between the
cluster and patient outcome revealed significant association of C7
with mortality (P = 0.02) (Supplementary Material, statistical
analysis section, tolerance, and outcome).

Antifungal Susceptibility Testing
All isolates were susceptible to anidulafungin (≤0.25 µg/ml)
and micafungin (≤0.25 µg/ml), and had wild-type (WT)
susceptibility to AMB (<2 µg/ml); the azole-non-susceptible
(ANS) phenotype was noted for 30 isolates (30/161; 18.6%)
obtained from 20 patients (20/127; 15.7%) (Tables 1, 2,
Supplementary Table S1). Fluconazole resistance (≥8 µg/ml)
and susceptible dose-dependent (4 µg/ml) phenotypes were
noted for 15 and 1 isolates (16/161; 10%), respectively, and
voriconazole resistance (≥1 µg/ml) and intermediate (0.25–
0.5 µg/ml) phenotypes were observed for 16 and 2 isolates
(18/161; 11.2%), respectively (Tables 1, 2, Supplementary
Table S1). Non-WT susceptibility for itraconazole (>0.5 µg/ml)
and posaconazole (>0.12 µg/ml) was revealed for 12.4% (20/161)
and 15.5% (25/161) of the isolates, respectively, and elevated MIC
of isavuconazole (>0.25 µg/ml) was observed for 13.6% isolates
(22/161). The ANS rate varied according to the hospitals and
year of isolation. Thus, the ANS phenotype was most frequently
observed in TUH (8/17; 47%), followed by DUH (15/61; 24.5%),
EUH (5/32; 15.6%), and GTRH (1/11; 9.1%), but was not detected
in ERUH, OMUH, and UHSACH. Moreover, 50 and 40%
isolates from 2019 recovered in EUH (5/10) and DEUH (12/30),
respectively, were ANS. Among the 20 patients infected with
ANS isolates, 80% (16/20) were diagnosed in 2018 or later (two-
tailed chi-square test, P = 0.23). Correlation analysis revealed
significant association between genotype clusters and fluconazole
MICs (two-tailed chi-square test, P = 0.007; Kruskal Wallis test,
P = 0.012); among the clusters, C1 and C9 were associated
with the highest fluconazole MIC (two-tailed chi-square test,
P = 0.046 and P = 0.000, respectively) (Supplementary Material,

FIGURE 1 | Microsatellite typing of C. tropicalis blood isolates collected from
seven clinical centers in Turkey. Multiple isolates obtained from the same
patient have the same color.
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TABLE 1 | Antifungal susceptibility data for C. tropicalis blood isolates collected from Turkish hospitals.

AFD Phenotype n Minimum inhibitory concentration values (µg/ml) Range GM MIC 50 MIC 90

≤0.016 0.03 0.06 0.125 0.25 0.5 1 2 4 8 16 32 ≥64

FLC ≤ECV (≤2 µg/ml) 145 3 11 69 50 9 3 1 1 1 13 0.03–≥64 0.54 0.25 2

>ECV (>2 µg/ml) 16

S (≤2 µg/ml) 145

SDD (4 µg/ml) 1

R (≥8 µg/ml) 15

VORI ≤ECV (≤0.06 µg/ml) 138 128 10 5 2 2 1 1 12 0.03–>16 0.06 0.03 0.25

>ECV (>0.06 µg/ml) 23

S (≤0.12 µg/ml) 143

I (0.25–0.5 µg/ml) 2

R (≥1 µg/ml) 16

ITRA ≤ECV (≤0.5 µg/ml) 141 38 40 53 6 4 1 2 6 11 0.03–>16 0.14 0.125 1

>ECV (>0.5 µg/ml) 20

POSA ≤ECV (≤0.12 µg/ml) 136 103 25 8 3 3 2 17 0.03–>16 0.09 0.03 1

>ECV (>0.12 µg/ml) 25

ISA Low (≤0.25 µg/ml) 139 131 4 3 1 1 8 2 3 2 6 0.03–>16 0.06 0.03 0.5

High (>0.25 µg/ml) 22

ANI ≤ECV (≤0.12 µg/ml) 161 60 48 44 9 0.016–0.125 0.03 0.03 0.06

>ECV (>0.12 µg/ml) 0

S (≤0.25 µg/ml) 161

I (0.5 µg/ml) 0

R (≥1 µg/ml) 0

MICA ≤ECV (≤0.12 µg/ml) 161 152 9 0.016–0.03 0.02 0.016 0.016

>ECV (>0.12 µg/ml) 0

S (≤0.25 µg/ml) 161

I (0.5 µg/ml) 0

R (≥1 µg/ml) 0

AMB ≤ECV (≤2 µg/ml) 161 7 5 22 85 42 0.016–1 0.45 0.5 1

>ECV (>2 µg/ml) 0

AFD, antifungal drug; FLC, fluconazole; VORI, voriconazole; ITRA, itraconazole; POSA, posaconazole; ISA, isavuconazole; ANI, anidulafungin; MICA, micafungin; AMB, amphotericin B; GM, geometric mean; MIC,
minimum inhibitory concentration; ECV, epidemiological cut-off value; R, resistant; S, susceptible; NA, not applicable; MIC ≤ ECV, wild-type; MIC > ECV, non-wild-type.
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TABLE 2 | Association of azole/fluconazole exposure with the emergence of fluconazole-tolerant and/or azole non-susceptible C. tropicalis blood isolates. Patients infected with isolates showing fluconazole tolerance
<50% were not included as their clinical data were not available.

Minimum inhibitory concentration (µg/ml)

Patient # Isolate # FLC VORI ITRA POSA ISA Azole prophylaxis Azole as main treatment Azole therapeutic failure Outcome

Azole non-susceptible isolates (n = 20)
P1 28 0.25 0.032 0.125 ≥16 0.5 None Yes FLC failure* Died

P2 29 ≥ 64 8 ≥16 16 2 FLC No (changed to AMB and CASP) FLC failure Died

P3 30 64 2 0.5 0.064 0.25 FLC Yes (VORI changed to CASP) FLC + VORI failure Died

P4 82 ≥64 ≥16 ≥16 ≥16 4 None Yes (FLC changed to CASP) FLC failure Alive

83 ≥64 ≥16 ≥16 ≥16 4

P5 172 ≥64 0.125 0.064 2 0.125 None Yes No Alive

P6 27 2 0.032 4 ≥16 2 None NO (ANI) Azole-naïve Alive

P7 31 32 1 0.5 0.125 0.032 None NO (MICA) Azole-naïve Alive

P8 57 8 ≥16 ≥16 1 1 None No (ANI) Azole-naïve Alive

58 ≥64 16 ≥16 ≥16 8

P9 69 1 0.032 0.5 4 ≥16 None No (MICA) Azole-naïve Died

P10 70 ≥64 ≥16 ≥16 2 4 None No (CASP, MICA, ANI, AMB) Azole-naïve Died

P11 77 ≥64 ≥16 4 ≥16 1 None No (CASP) Azole-naïve Died

78 ≥64 ≥16 4 ≥16 1

79 ≥64 ≥16 4 ≥16 1

80 ≥64 ≥16 4 ≥16 1

81 ≥64 ≥16 4 ≥16 1

P12 84 ≥64 ≥16 1 2 0.125 None No (ANI, AMB) Azole-naïve Died

P13 100 1 0.25 0.5 1 1 None No (CASP) Azole-naïve Alive

P14 54 4 ≥ 16 ≥16 ≥16 1 No data No data Died

Azole non-susceptible isolates + fluconazole tolerant isolates (n = 10)
P15 94 0.5 0.032 2 4 8 None Yes (FLC changed to MICA) FLC failure Died

95 1 0.032 2 ≥ 16 16

96 0.25 0.032 0.125 0.064 0.032

97 0.25 0.032 0.032 0.064 0.032

P16 156 0.25 0.032 ≥ 16 ≥16 ≥16 None Yes (FLC changed to ANI) FLC failure Alive

157 0.25 0.032 ≥ 16 ≥ 16 ≥16

P17 158 0.25 0.032 ≥ 16 ≥16 ≥16 None Yes (FLC changed to ANI) FLC failure Died

P18 165 0.25 0.125 0.125 1 0.032 None Yes (FLC changed to ANI) FLC failure Alive

P19 159 0.5 0.032 ≥ 16 ≥16 16 None None Azole-naïve Died

P20 162 0.25 1 0.125 0.064 0.125 None No (ANI) Azole-naïve Alive

Fluconazole-tolerant isolates exposed to azoles (n = 23)
23 patients 23 isolates 0.25–1 0.032 0.032–125 0.032–0.125 0.32 Yes (n = 2) Yes (n = 23) Yes (n = 7)** Died (n = 7)

No (n = 21) No (n = 16) Alive (n = 16)

Fluconazole-tolerant isolates not exposed to azoles (n = 18)
18 patients 19 isolates 0.25–0.5 0.32–0.064 0.032–0.125 0.032–0.064 None No (n = 14) NA Died (n = 9)

No treatment (n = 4) Alive (n = 9)

*This patient had persisting fever and died while being treated with fluconazole. **Treatment changed to CASP (n = 1), AMB + ANI (n = 1), ANI (n = 1), VORI (n = 1), AMB (n = 1), or MICA (n = 1); among whom
only three died. FLC, fluconazole; VORI, voriconazole; ITRA, itraconazole; POSA, posaconazole; ISA, isavuconazole; AMB, amphotericin B; ANI, anidulafungin; MICA, micafungin; CASP, caspofungin.
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statistical analysis section, tolerance and outcome). There was no
significant difference in mortality between patients infected with
ANS and azole-susceptible isolates (two-tailed chi-square test,
P = 0.987) (Supplementary Material, statistical analysis section,
azole resistance and outcome).

ERG11 and HS1- and HS2-FKS1
Sequencing
Among the C. tropicalis isolates, 12% (19/161) harbored non-
synonymous mutations in ERG11; V362I (n = 12), R245K
(n = 10), and Y221F (n = 7) were the most frequently observed
amino acid substitutions, followed by K344N (n = 6), K344T and
V326M (n = 4 each), and S154F and Y132F (n = 2 each). Among
the ANS isolates, only two (# 30 and #31) had ERG11 mutations
(Y132F+ S154F) (Supplementary Table S1). None of the isolates
had mutations in HS1 and HS2 of FKS1, which is consistent with
the echinocandin susceptibility results.

Fluconazole Tolerance
Tolerance to fluconazole was identified in 33.5% isolates (54/161),
among which 96.2% (52/54) showed high fluconazole tolerance
(HFT) (≥50% growth at concentrations over the MIC) (Table 2,
Supplementary Table S1). These 54 isolates were recovered from
49 patients and clinical outcome was not available for patients
infected with isolates showing low to moderate fluconazole
tolerance (<50% growth at concentrations over the MIC)
(Table 2). Among the hospitals, ERUH (12/12; 100%), TUH
(15/17; 88.2%), and UHSACH (5/6; 83.3%) had the highest
rates of isolates with HFT, followed by OMUH (7/22; 31.8%),
EUH (7/32; 21.8%), and DEUH (6/61, 9.8%; 2 isolates had
<50% tolerance: 2/61; 3.2%), whereas none of the isolates from
GTRH showed fluconazole tolerance. The mortality rate was
significantly higher in patients infected with C. tropicalis isolates
without fluconazole tolerance compared to those infected with
HFT isolates [49/77 vs 19/47 (no outcome information for three
patients); two-tailed chi-square test, P = 0.007] (Supplementary
Material, statistical analysis section, tolerance and outcome). We
also observed a significant difference in HFT distribution among
the clusters (two-tailed chi-square test, P = 0.003); thus, C5
and C8 had the greatest numbers of fluconazole-tolerant isolates
(two-tailed chi-square test, P = 0.045 and P = 0.006, respectively),
whereas C3 had the smallest number of HFT isolates (two-tailed
chi-square test, P = 0.014).

Azole Exposure and FTF Among Patients
Infected With Fluconazole-Tolerant and
ANS Isolates
Patients were divided into three categories depending on isolate
tolerance and azole non-susceptibility profiles: ANS (n = 14),
ANS-HFT (n = 6) (note that these isolates were fluconazole
susceptible), and HFT (n = 41) (Table 2); two patients with low
to moderate fluconazole tolerance were not included because
of unavailable clinical data. Among the 14 patients infected
with ANS isolates, eight were azole-naïve, one did not have
treatment data, and five received fluconazole, of which 80%
(4/5) showed FTF (4/5) (Table 2). Among the patients infected

with ANS-HFT isolates, four were treated with fluconazole and
showed FTF (4/6; 66.6%) and two were azole-naïve (2/6; 33.4%).
Among the 41 patients infected with HFT isolates, 18 (44%)
were azole-naïve and the rest received azoles (56%), of which
30.4% (7/23; 30.4%) showed FTF (Table 2). Statistical analysis
indicated that patients infected with ANS and ANS-HFT isolates
had higher FTF (P = 0.046 and P = 0.023, respectively) than
those infected with HFT isolates (P = 0.103) and that the ANS
and ANS-HFT phenotypes were associated with FTF (logistic
regression coefficients 2.213 vs 22.030) (see Supplementary
Material, statistical analysis section, therapeutic failure).

DISCUSSION

In this study, we revealed a considerable rate of infection with
ANS C. tropicalis in Turkey (15.7%), which is in contrast with
a previous multi-center study, which did not detect any such
isolates (0%) (Arikan-Akdagli et al., 2019). We also observed that
HFT and ANS isolates could be encountered in azole-naïve as
well as in fluconazole-treated patients and that ANS and HFT
phenotypes, although with varying degrees, were associated with
FTF. Analysis of microsatellite cluster distribution revealed its
significant association with fluconazole MICs and tolerance, and
patient mortality, which highlights the clinical importance of
genotyping data.

Consistent with previous study in Turkey (Arikan-Akdagli
et al., 2019), the antifungal susceptibility profile of C. tropicalis
updated in this study indicated the absence of isolates
with echinocandin resistance and/or non-WT susceptibility
to AMB. In contrast to a previous study reporting the
absence of azole-resistant C. tropicalis (Arikan-Akdagli et al.,
2019), however, we identified 18.6% ANS C. tropicalis isolates,
among which 93 and 58% were cross-resistant to three azoles
or fluconazole + voriconazole, respectively. Importantly, we
observed an alarming rate (40–50%) of ANS isolates in some
hospitals in 2019, which is also documented in other studies
(Arendrup et al., 2011; Chen et al., 2019; Pfaller et al., 2019);
these statistics require particular attention, especially in the
countries where azoles are the main antifungals used for
candidemia therapy (Sellami et al., 2011; Singh et al., 2018;
Arastehfar et al., 2019a, 2020e). Notable variations in the rate of
azole-resistant isolates (0–100%) observed among the analyzed
hospitals could be attributed to differences in intervention
strategies, including the use of azoles and infection control
practices. To address the resistance mechanism, we sequenced
the ERG11 gene and unexpectedly found a very low rate of the
Y132F mutation considered responsible for azole resistance (Fan
et al., 2018), which was identified in only two azole-resistant
isolates. However, many other factors can contribute to azole
resistance (Fan et al., 2018; Arastehfar et al., 2020g); thus, a
recent study did not identify accountable ERG11 mutations in
fluconazole-resistant C. tropicalis blood isolates but instead found
specific polymorphisms in transcription factors regulating the
expression of ERG11 and efflux pump-related genes, i.e., UPC2,
MRR1, and TAC1 (Arastehfar et al., 2020a). Although we detected
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other ERG11 mutations, they were found exclusively in azole-
susceptible isolates, which is consistent with a previous report
(Oliveira et al., 2013).

To understand the association between azole use and the
emergence of ANS C. tropicalis isolates, we analyzed the clinical
history of respective patients (20/127; 15.7%) and found that 50%
of them were azole-naïve, which is similar to the results obtained
for patients infected with Candida parapsilosis (Tóth et al., 2019)
and C. auris (Jeffery-Smith et al., 2018). Recent studies from
Iran (Arastehfar et al., 2020a), Taiwan (Chen et al., 2019), and
Japan (Chong et al., 2012) have reported the same phenomenon,
which could be the driving force behind the replacement
of C. albicans as the first leading cause of candidemia with
C. tropicalis documented in Taiwan (Tulyaprawat et al., 2020).
We also found an association between fluconazole resistance
and genotypes, which may account for the dramatic increase in
the number and persistence of ANS isolates in clinical settings
since the previous candidemia study in Turkey (Arikan-Akdagli
et al., 2019), hypothetically because azole-resistant isolates may
possess a higher mutagenesis potential allowing them to thrive
in conditions when fluconazole is heavily used (Healey et al.,
2016). The remaining ANS isolates were recovered from nine
patients, almost 89% of them (8/9) showed FTF. Regarding the
two patients infected with the C. tropicalis isolates harboring
Y132F, one was azole-naïve (#30) and the other one in keeping
with the other Candida species carrying Y132F (Arastehfar et al.,
2020g) showed failure to both fluconazole and voriconazole for
which the isolate was resistant against both agents (#30).

Although we did not detect echinocandin resistance and all
C. tropicalis isolates studied had WT for FKS1, considering the
global increase in echinocandin-resistant C. tropicalis (Pfaller
et al., 2019), the emergence of such isolates in Turkey could be
only a matter of time, especially in view of a significant increase
in ANS isolates over the past few years observed in this study.

Analysis of fluconazole tolerance, which is known to
be considerable among C. tropicalis isolates, revealed a
lower tolerance rate (34%) compared to a previous study
(73.5%) (Rueda et al., 2017); however, 96.2% of our isolates
were HFT. Similar to patients infected with ANS isolates,
a notable proportion (44%) of the patients infected with
fluconazole-tolerant isolates were azole-naïve. Among the
patients infected with fluconazole-tolerant C. tropicalis and
treated with fluconazole/azoles, approximately 31% showed FTF;
furthermore, all patients (100%) infected with HFT-ANS isolates
had FTF. Although pharmacodynamics and other host-related
factors affecting therapeutic success should be considered,
our findings, which are consistent with earlier studies (Astvad
et al., 2018; Rosenberg et al., 2018), highlight the importance of
fluconazole tolerance assessment in clinical settings. We propose
that C. tropicalis isolates exhibiting HFT (≥50– >75% growth at
concentrations over MIC) may predict azole therapeutic failure.
Indeed, the clinical implication of tolerance in the bacteriology
field is more appreciated, where it has been associated with
prolonged antibiotic treatment, therapeutic failure, and rapid
development of resistance (Levin-Reisman et al., 2017; Windels
et al., 2019; Berti and Hirsch, 2020; Liu et al., 2020). More
importantly, antibiotic tolerance can threaten the clinical
efficacy of combination antibiotic therapy used to minimize the

emergence of resistant bacteria and to enhance the efficacy of
treatment (Liu et al., 2020). Similarly, emerging recent studies
in medical mycology documented FTF among isolates showing
high level of tolerance to this drug (Astvad et al., 2018; Rosenberg
et al., 2018). Altogether, these studies point to the importance of
measurement of tolerance among clinically obtained bacterial
and fungal isolates to guide clinicians in choosing an appropriate
antifungal regimen. Of note, collecting multiple azole susceptible
C. tropicalis isolates with undetected azole tolerance from the
same patients might be attributable to host-related factors
rendering them susceptible to acquire persistent candidemia
(Arastehfar et al., 2020g,f).

In agreement with a previous study (Rueda et al., 2017), we
found that patients carrying HFT isolates had a significantly
lower mortality rate than those carrying isolates without
detectable tolerance, which could be associated with unknown
genomic mutations affecting the fitness cost (Rueda et al., 2017;
Rosenberg et al., 2018). In contrast, we did not find significant
difference in mortality between patients infected with azole-
resistant and azole-susceptible isolates, which could be due to a
negligible or no fitness cost for acquiring drug resistance. In vivo
testing is needed to verify this hypothesis.

Although a previous study has not revealed correlation
between the genotype and fluconazole tolerance, it could be
attributed to a limited number of genotyped C. tropicalis isolates:
each of 46 identified genotypes was represented with only a
single isolate (Marcos-Zambrano et al., 2016), which could have
prevented establishing a statistically significant link. In this study,
we genotyped 161 C. tropicalis isolates and, to increase the
statistical power of correlation analysis, grouped them to clusters
containing related genotypes, which resulted in finding an
association between genotype clusters and fluconazole tolerance.
Interestingly, the clusters significantly differed in the number of
HFT isolates, which could be explained by genetic, physiological,
and metabolic variations among the strains (Rosenberg et al.,
2018; Berman and Krysan, 2020). We also revealed correlation
between the genotype cluster and patient mortality, which has
been previously shown for C. glabrata (Byun et al., 2018;
Arastehfar et al., 2019a). The mortality rate observed in this study
is similar to those reported for C. tropicalis in Iran (Arastehfar
et al., 2020a), Italy (Montagna et al., 2013), and the United States
(Andes et al., 2016), and to that observed for C. glabrata in
Turkey (Arastehfar et al., 2020e). Collectively, these findings
emphasize the importance of using genotyping techniques in
clinical settings, which may provide insightful observations with
predictive prognostic values.

This study had some limitations, the main of which was
the lack of detailed treatment data (dosage and duration) and
clinical information due to the retrospective nature of the study.
Also, we did not examine the expression of efflux pumps and
ERG11 or sequence their master regulator genes MRR1, TAC1,
and UPC2, which will be the scope of future research. Lastly,
the mutation prevention concentration experiments, which
quantitatively explores the azole tolerance is lacking in this study.

In summary, the current study revealed notable and rapid
emergence of ANS isolates in Turkey, which necessitates
continuous monitoring of the antifungal resistance rate on
a multi-center scale. Furthermore, our results point on the
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clinical utility of azole susceptibility/tolerance profiling and
genotyping, which can provide clues regarding azole therapeutic
failure or success.
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CONCLUSION

Candida tropicalis is the fourth leading cause of candidemia
in Turkey and the blood isolates recovered during 1997–2017
were entirely susceptible to all antifungals tested. The studies
conducted in other countries, however, have shown a dramatic
increase in the number of ANS C. tropicalis blood isolates.
Moreover, C. tropicalis proved to be the most tolerant Candida
species to fluconazole and those with HFT showed FTF when
tested in vivo. Therefore, the scope of our study was to reevaluate
the burden of antifungal resistance of C. tropicalis blood isolates
on a multicenter scale in Turkey and to evaluate the influence
of ANS and HFT on fluconazole exposure, FTF, and mortality.
Moreover, we sequenced the HS and HS2 of FKS1 and ERG11
to evaluate the echinocandins and azole resistance mechanisms.
Indeed, as expected we observed a significant increase in the
number of ANS isolates from 2017 onward when compared to
the previous study conducted in Turkey. Interestingly, patients

infected with both ANS and HFT C. tropicalis blood isolates
showed FTF and some microsatellite clusters significantly had a
higher number of ANS and HFT isolates. Similarly, we observed
that some clusters were associated with a higher mortality rate.
Collectively, our study implicated the growing concern of ANS
C. tropicalis blood isolates in Turkey and showed that HFT
isolates, similar to ANS isolates, can cause FTF. Moreover,
we showed that the application of genotyping techniques may
have prognostic values with regards to mortality and FTF in
candidemia settings.
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(2020c). Genetically -related micafungin-resistant C. parapsilosis blood isolates
harboring a novel mutation R658G in hotspot1-Fks1p: A new challenge?.
J. Antimicrob. Chemother. (in press).

Arastehfar, A., Daneshnia, F., Najafzadeh, M. J., Hagen, F., Mahmoudi, S., Salehi,
M., et al. (2020d). Evaluation of molecular epidemiology, clinical characteristics,
antifungal susceptibility profiles, and molecular mechanisms of antifungal
resistance of Iranian Candida parapsilosis species complex blood isolates. Front.
Cell. Infect. Microbiol. 10:206. doi: 10.3389/fcimb.2020.00206

Arastehfar, A., Daneshnia, F., Salehi, M., Yaşar, M., Hoşbul, T., Ilkit, M., et al.
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