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Annotation-efficient deep learning for automatic
medical image segmentation
Shanshan Wang 1,2,3,11✉, Cheng Li 1,11✉, Rongpin Wang4,11, Zaiyi Liu 5, Meiyun Wang 6, Hongna Tan6,

Yaping Wu6, Xinfeng Liu4, Hui Sun1, Rui Yang7, Xin Liu1, Jie Chen2,8, Huihui Zhou9, Ismail Ben Ayed10 &

Hairong Zheng 1✉

Automatic medical image segmentation plays a critical role in scientific research and medical

care. Existing high-performance deep learning methods typically rely on large training

datasets with high-quality manual annotations, which are difficult to obtain in many clinical

applications. Here, we introduce Annotation-effIcient Deep lEarning (AIDE), an open-source

framework to handle imperfect training datasets. Methodological analyses and empirical

evaluations are conducted, and we demonstrate that AIDE surpasses conventional fully-

supervised models by presenting better performance on open datasets possessing scarce or

noisy annotations. We further test AIDE in a real-life case study for breast tumor segmen-

tation. Three datasets containing 11,852 breast images from three medical centers are

employed, and AIDE, utilizing 10% training annotations, consistently produces segmentation

maps comparable to those generated by fully-supervised counterparts or provided by inde-

pendent radiologists. The 10-fold enhanced efficiency in utilizing expert labels has the

potential to promote a wide range of biomedical applications.
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Medical imaging contributes significantly to progress in
scientific discoveries and medicine1. Semantic seg-
mentation partitions raw image data into structured

and meaningful regions and thus enables further image analysis
and quantification, which are critical for various applications,
including anatomy research, disease diagnosis, treatment plan-
ning, and prognosis monitoring2–5. With the global expansion of
medical imaging and the advancement of imaging techniques, the
volume of acquired medical image data is increasing at a pace
much faster than available human experts can interpret. Thus,
automated segmentation algorithms are needed to assist physi-
cians in realizing accurate and timely imaging-based diagnosis6,7.

In the past decade, deep learning has made considerable pro-
gress in automatic medical image segmentation by demonstrating
promising performance in various breakthrough studies8–13.
Nevertheless, the applicability of deep-learning methods to clin-
ical practice is limited because of the heavy reliance on training
data, especially training annotations14,15. Large curated datasets
are necessary, but annotating medical images is a time-consum-
ing, labor-intensive, and expensive process. Depending on the
complexity of the regions of interest to segment and the local
anatomical structures, minutes to hours may be required to
annotate a single image. Furthermore, label noise is inevitable in
real-world applications of deep-learning models16. Such noise can
result from systematic errors of the annotator, as well as inter-
annotator variation. More than three domain experts are typically
needed to generate trustworthy annotations17. Any biases in the
data can be transferred to the outcomes of the learned models18.
Consequently, the lack of large and high-quality labeled datasets
has been identified as the primary limitation of the application of
supervised deep learning for medical imaging tasks19–21. Learning
with imperfect datasets having limited annotations (semi-super-
vised learning, SSL), lacking target domain annotations (unsu-
pervised domain adaptation, UDA), or containing noisy
annotations (noisy label learning, NLL) are three of the most
frequently encountered challenges in clinical applications22.

Co-training is one of the most prevalent methods for SSL23,24

that works by training two classifiers for two complementary
views using the labeled data, generating pseudo-labels for unla-
beled data by enforcing agreement between the classifier predic-
tions, and combining the labeled and pseudo-labeled data for
further training. Co-training has been employed mainly to semi-
supervised classification tasks. Only recently has co-training been
extended to semi-supervised image segmentation25 and UDA of
segmentation models26. Despite the achieved inspiring perfor-
mance, the direct employment of co-training methods to NLL is
problematic, as they do not possess the ability to distinguish
between accurate and noisy labels26,27. Co-teaching was devel-
oped based on co-training to specifically address the challenge of
NLL by dropping suspected highly noisy samples during network
optimization27,28. Nevertheless, data filtering by dropping sam-
ples is an inefficient approach that might lead to model learning
from a pseudo-realistic data distribution; thus, co-teaching
methods are more applicable to natural image classification
tasks when sufficient large datasets are available to cover the full
range of different situations, even after data dropping.

In this study, we develop an annotation-efficient deep-learning
framework for medical image segmentation, which we call AIDE,
to handle different types of imperfect datasets. AIDE is designed
to address all three challenges of SSL, UDA, and NLL. With
AIDE, SSL and UDA are transformed into NLL by generating
low-quality noisy labels for the unlabeled training data utilizing
models trained either on the limited annotated data (SSL) or on
the annotated source domain data (UDA). A cross-model self-
correction method is proposed to achieve annotation-efficient
network learning. Specifically, cross-model co-optimization

learning is realized by training two networks in parallel and
conducting cross-model information exchange. With the
exchanged information, self-label filtering and correction of
inexpensive noisy labels proceed with cascaded local and global
steps progressively in an elaborately designed schedule according
to an observed small loss criterion. The framework is flexible
regarding the deep neural network (DNN) models to be utilized.

Methodological analyses are performed to evaluate the effective-
ness of AIDE for handling imperfect training datasets. In order to
fairly evaluate the method without severe ground-truth label biases,
we conduct extensive experiments on a variety of public datasets
which have widely accepted data and labels. Specifically, extensive
experiments on open datasets with limited, no target domain, and
noisy annotations are performed. Better results are achieved with
AIDE compared to the respective fully supervised baselines opti-
mized with the available noisy annotations or model-generated low-
quality labels. Furthermore, to test the applicability of our method in
real-world applications, three datasets for breast tumor segmentation
(11,852 image samples of 872 patients) collected from three medical
centers are experimented with. The annotations of these data are
carefully curated by three experienced radiologists with more than
10 years of experience in breast MR image interpretation. Com-
parable segmentation results to those obtained by fully supervised
models with access to 100% training data annotations and those
provided by independent radiologists are achieved with AIDE by
utilizing only 10% of the annotations. Our results indicate that
DNNs are capable of exploring the image contents of large datasets
under proper guidance without the necessity of high-quality anno-
tations. We believe that our proposed framework has the potential to
improve the medical image diagnosis workflow in an efficient
manner and at a low cost.

Results
AIDE: a deep-learning framework to handle imperfect training
datasets. AIDE is a deep-learning framework that achieves accurate
image segmentation with imperfect training datasets. A cross-model
self-label correction mechanism is proposed to efficiently exploit
inexpensive noisy training data labels, which are either generated by
pretrained low-performance deep-learning models or provided by
individual annotators without quality controls.

An overview of AIDE and example images of the datasets we
utilized are depicted in Fig. 1. AIDE is proposed to address three
challenging tasks caused by imperfect training datasets (Fig. 1a).
The first is SSL with limited annotated training data. Proper
utilization of the relatively abundant unlabeled data is very
important in this case. The second is UDA, where large
discrepancies may exist between the target and source domains.
The third is NLL that considers the variations of annotations
provided by different observers. By means of task standardization
by generating low-quality noisy labels for SSL and UDA (for SSL,
models are pretrained with the available limited annotated
training data, and low-quality labels are generated for the
remaining unlabeled training data; for UDA, models are
pretrained with the source domain labeled training data, and
low-quality labels are generated for the target domain unlabeled
training data), all three challenging tasks are addressed in one
framework that targets model optimization by datasets containing
problematic labels (Fig. 1a).

For AIDE, two networks are trained in parallel to conduct
cross-model co-optimization (Fig. 1b). In each iteration, those
samples in an input batch that are suspected to have noisy labels
are filtered out and are subjected to data augmentation (random
rotation and flipping), and corresponding pseudo-labels are
generated by distilling the predictions of the augmented inputs
(local label filtering in Fig. 1b). These pseudo-labels, together with
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the high-quality labels, are utilized to train the network. After
each epoch, the labels of the whole training set are analyzed, and
those that have low similarities (smaller Dice scores) with the
network’s predictions are updated if an elaborately designed
updating criterion is met (global label correction in Fig. 1b). With
AIDE, the networks are forced to concentrate on the image
contents instead of extracting image features guided by only the
annotations. The exact segmentation network we employ has a
classical encoder−decoder structure with multiple streams to
extract image features from different modalities29,30, should
multimodal inputs be available.

Multiple evaluation metrics are reported to characterize
the segmentation performance, namely, the Dice score (Dice
similarity coefficient, DSC), relative area/volume difference
(RAVD), average symmetric surface distance (ASSD), and
maximum symmetric surface distance (MSSD). Higher DSC
values and lower RAVD, ASSD, and MSSD indicate more
accurate segmentation results.

Enhancement of AIDE compared to conventional fully super-
vised learning. The effectiveness of AIDE in handling low-quality
annotated data can be attributed to the following advantages.

Limited Annotated Data

Cross-Domain Discrepancies

Inter-Annotator Variations

SSL or UDA or NLL?

NLL

NLL

NLL

SSL

UDA

Pretrain_Net1

Pretrain_Net2

Net1
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Net2

S

i
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R
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Task Standardization
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Task Standardization

UDA NLL

Filtered low-quality labels
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b

c d

Fig. 1 Overview of AIDE. a The three challenges (semi-supervised learning (SSL), unsupervised domain adaptation (UDA), and noisy label learning (NLL)) that
AIDE addresses and the proposed task standardization method. b The overall framework of AIDE, which comprises three major elements: local label filtering,
global label correction, and cross-model co-optimization. c Example images of the open datasets. The top left two images are from the CHAOS dataset. The top
right three images are from the three domains of prostate datasets. The bottom images are from the QUBIQ datasets, where the first four correspond to the four
subtasks and the last one is an enlarged view of the fourth image. Color lines indicate the target regions. d Example images of the breast datasets. From left to
right, the three columns correspond to the images collected from the three medical centers. Red color regions show the breast tumors.
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First, the local label-filtering step in each iteration enforces a
constraint on suspected low-quality annotated samples to gen-
erate predictions that are consistent with those of the augmented
inputs, which is a form of data distillation that enforces a
transformation-consistent constraint on the model predictions31.
This design can prevent the negative effects of low-quality
annotations and exploit as much useful information as possible
from these inputs instead of dropping them. Compared to con-
ventional fully supervised learning, which trains the network only
by minimizing the discrepancies between the predictions and the
ground-truth labels, the consistency constraint of AIDE can force
the network to learn latent features from inputs that are trans-
formation invariant; in this way, the network concentrates more
on the image contents instead of focusing on only the regression
of ground-truth labels. Second, the global label-correction step
after each epoch progressively shifts the networks towards pre-
dicting consistent results at different time points. In other words,
the networks are expected to have small variations, and those
samples that lead to large variations are considered low-quality
annotated samples since low-quality labels, to a certain extent,
contradict the information provided in the images. These sus-
pected low-quality annotated samples should be corrected. Direct
label correction to replace the old labels, which are predicted by
the framework in previous steps, aims to find useful information
from the framework’s own outputs; thus, it offers the framework
a self-evolving capability. Since in most cases, medical images of
the same region appear roughly similar among different patients,
we believe that this evolving capability of updating a portion of
suspected low-quality annotations is reasonable and applicable.
The remaining non-updated samples can guarantee the stable
training of the network. Third, the proposed cross-model co-
optimization learning can prevent error propagation and accu-
mulation in one network. By building two networks and letting
them exchange information, we reduce the risk of network over-
fitting to its own predicted pseudo-labels.

Semi-supervised learning with severely limited training sam-
ples. The CHAOS dataset, which is built for liver segmentation, is
introduced to investigate the effectiveness of AIDE for SSL
(Fig. 1c). Different sizes of high-quality annotated image samples
are utilized to train the networks. As expected, a greater number
of training samples results in improved segmentation results
(Supplementary Fig. 1 and Supplementary Table 1). Compared to
that of networks trained with all ten labeled cases (331 image
samples, DSC: 87.9%, RAVD: 10.4%, ASSD: 4.65 mm, and MSSD:

65.1 mm), the segmentation performance of networks trained
with only one labeled case (30 image samples) is significantly
worse (DSC: 70.1%, RAVD: 16.1%, ASSD: 16.1 mm, and MSSD:
176.3 mm). Thus, when training deep-learning models utilizing
only the labeled samples in a fully supervised optimization
manner, large datasets are required to obtain satisfactory results.

To enlarge the training dataset, low-quality noisy labels are
generated by models trained with the minimal annotated training
data (1 case with 30 image samples). Then, networks are trained
with the enlarged dataset. In this work, low-quality labels or noisy
labels are counted in an image-based manner. Different levels of
noisy labels are experimented with (Supplementary Table 1). For
the fully supervised learning baseline, noisy labels already affect
their performance when the noise level is over 20% (P= 0.0133
from a two-sided paired t test between the DSCs of Exp. 6 and
Exp. 7 in Supplementary Table 1). Under the experimental
settings of over 90% noisy labels (S05_30_301_F_NP and
S09_30_954_F_NP in Table 1), the segmentation performance
of the baseline method deteriorates dramatically. Our proposed
AIDE is effective when limited annotations are available and low-
quality noisy labels are utilized (Table 1). It achieves much better
results (S12_30_954_A_YP in Table 1) compared to those
achieved by the baseline method (S10_30_954_F_YP in Table 1)
and those obtained by existing methods (pseudo-label32 and co-
teaching27 in Table 1) when the same quantity of labeled training
data is utilized (the pseudo-label method is different from our
setting of S10_30_954_F_YP in that the low-quality labels are
updated during model optimization for the pseudo-label method,
whereas for S10_30_954_F_YP, the low-quality labels remain
unchanged once generated). Promising performance is achieved
by our method with high noise levels such as the 97% noise level
experimented with (S12_30_954_A_YP in Table 1). Particularly,
with 30 labeled and 954 unlabeled training image samples (noise
level of 97%), our method generates comparable results (DSC:
86.9%, RAVD: 10.0%, ASSD: 4.17 mm, and MSSD: 44.6 mm) to
those of models trained with 331 high-quality annotated samples
(DSC: 88.5%, RAVD: 10.8%, ASSD: 3.64 mm, and MSSD:
43.8 mm) (no significant difference between the DSCs, with
P= 0.0791 from a two-sided paired t test).

Different numbers of labeled training image samples have been
experimented with, and the results confirm that our method is
always effective (Exp. 14 to Exp. 19 in Supplementary Table 1). In
addition, as the number of unlabeled training samples increases, the
performance of our method (compared that of S12_30_954_A_YP
with S08_30_301_A_YP in Table 1) continues to improve. This

Table 1 Segmentation results of networks under different SSL settings.

Settings Train HQA Train LQA AIDE PP DSC (%) RAVD (%) ASSD (mm) MSSD (mm)

S01_30_0_F_NP 30 0 No No 70.1 42.0 16.1 176.3
S02_30_0_F_YP 30 0 No Yes 75.6 22.0 7.68 54.8
S03_331_0_F_NP 331 0 No No 87.9 10.4 4.65 65.1
S04_331_0_F_YP 331 0 No Yes 88.5 10.8 3.64 43.8
S05_30_301_F_NP 30 301 No No 78.4 19.0 7.92 95.3
S06_30_301_F_YP 30 301 No Yes 79.7 21.1 6.10 53.4
S07_30_301_A_NP 30 301 Yes No 79.8 18.5 10.8 116.3
S08_30_301_A_YP 30 301 Yes Yes 82.9 16.9 5.43 49.8
S09_30_954_F_NP 30 954 No No 79.5 19.7 8.43 104.2
S10_30_954_F_YP 30 954 No Yes 80.2 19.1 6.47 53.8
S11_30_954_A_NP 30 954 Yes No 86.1 10.2 5.49 75.8
S12_30_954_A_YP 30 954 Yes Yes 86.9 10.0 4.17 44.6
Pseudo-label32 30 954 No Yes 81.4 19.7 5.99 52.9
Co-teaching27 30 954 No Yes 82.4 15.8 5.50 49.2

HQA and LQA indicate high-quality and low-quality annotations. LQAs are generated by the model trained using the data provided with HQAs. PP refers to post-processing, which is the process of
keeping the largest connected components. Context is included in the notation of the experimental setting. For the setting S05_30_301_F_NP, 30 refers to 30 training samples with HQAs, 301 means 301
training samples with LQAs, F indicates training with the conventional fully supervised learning approach, and NP means no post-processing.
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property is especially important for clinical applications, as unlabeled
data are much easier to collect. Visualizations of the self-corrected
labels and model outputs are shown in Fig. 2 (more results can be
found in Supplementary Fig. 2). Overall, the labels after correction
are closer to the high-quality annotations (Fig. 2a, b), and our AIDE
generates more accurate segmentations than do the corresponding
baseline networks (Fig. 2c, d).

Results generated by AIDE, which is trained with ten training
cases (one labeled case and nine unlabeled cases), are submitted
for evaluation online, and an average DSC of 83.1% is achieved on
the test data. This DSC value is within the range of the values
achieved by fully supervised methods trained on 20 labeled cases
([63%, 95%] as reported in the summary paper of the CHAOS
challenge33). Considering the small labeled image data utilized,
our method achieves a reasonably good performance compared to
these fully supervised ones.

Unsupervised domain adaptation with large domain dis-
crepancies. Three domains (domains 1, 2, and 3) of prostate

datasets with different image acquisition protocols are utilized to
inspect the framework performance when no target domain
annotations are provided during model training. Domain 3 is a
combined dataset with different image acquisition parameters.
When training with a single domain dataset, the networks
become biased to the domain properties, and the performance on
data from other domains is compromised. Table 2 presents the
results of networks tested on the same domain or different
domains from the training set. Obvious reductions in segmen-
tation accuracy are observed when cross-domain testing (espe-
cially for models optimized in domain 1 or domain 2) is
performed. Meanwhile, when labeled training data from a dif-
ferent domain are included during model training, the model
performance improves slightly (Supplementary Table 3).

Similar to the strategies adopted for SSL, low-quality noisy
labels for the target domain training data are generated by the
models trained with the source domain labeled data, and model
training from the scratch with the combined dataset is conducted
to facilitate the model adaptation to new domains. Figure 3
presents the prostate segmentation results of models optimized

a b

c

d

100.0 59.3 82.0 82.3 100.0 43.2 86.4 85.9

100.0 78.5 81.0 68.1 80.8 72.6 85.0

100.0 47.9 81.2 62.6 71.2 54.7 82.9

Fig. 2 Visualizations of label correction and segmentation results for SSL. a, b Example results of training data label correction. The red regions in the four
images from left to right correspond to the high-quality label, the low-quality label utilized to train the model, and the self-corrected labels of the two networks,
respectively. c, d Example segmentation results. The first columns are the corresponding high-quality labels. The second to the last columns are the results
achieved under settings S02, S04, S06, S08, S10, and S12 in Table 1. The numbers are the DSC values (%). In each subfigure, the first row (white background)
shows the segmentation results in 3D rendering, and the second row (black background) gives the results of a single selected slice in 2D.

Table 2 Segmentation results of networks trained and tested with prostate datasets of different domains.

Training dataset Testing dataset DSC (%) RAVD (%) ASSD (mm) MSSD (mm)

Domain 1 Domain 1 88.9 11.1 1.49 8.27
Domain 1 Domain 2 45.8 65.6 5.42 17.8
Domain 1 Domain 3 40.0 67.8 9.24 24.3
Domain 2 Domain 1 69.8 35.5 3.43 12.9
Domain 2 Domain 2 87.3 16.1 1.36 7.89
Domain 2 Domain 3 55.1 53.0 8.32 21.3
Domain 3 Domain 1 80.9 8.61 2.43 14.9
Domain 3 Domain 2 86.1 12.3 1.58 8.27
Domain 3 Domain 3 86.7 8.77 1.55 9.20
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without target domain high-quality training annotations, with or
without the proposed AIDE framework (more results can be
found in Supplementary Figs. 3–5 and Supplementary Table 3).
AIDE successfully improves the segmentation performance, as
indicated by the large increase in DSC (Fig. 3a) and the notable
decrease in RAVD (Fig. 3b). As a special case, when transferring
models from domain 1 to domain 2, direct model training with
the combined dataset utilizing high-quality annotations for
domain 1 and model-generated low-quality labels for domain 2
produces worse results (DSC: 33.7%, RAVD: 71.5%, ASSD:
5.94 mm, and MSSD: 20.7 mm) than those achieved by direct
testing of domain 1 optimized models on domain 2 data (DSC:
45.8%, RAVD: 65.6%, ASSD: 5.42 mm, and MSSD: 17.8 mm). On
the other hand, AIDE increases DSC by more than 30% (from
45.8 to 80.0%). However, the distance metrics (ASSD in Fig. 3c
and MSSD in Fig. 3d) are not largely improved. In addition, even
with AIDE, the performance on domain 3 is worse than that on
domain 1 and domain 2. Since domain 3 is a combination of data

from different sources, we speculate that adapting models to a
combined diverse dataset is more difficult. Nevertheless, the
performance is acceptable, and the DSC values fall in the range of
reported results (from 0.71 to 0.90)34. Besides, better performance
is achieved by AIDE than that of the two existing methods,
pseudo-label32 and co-teaching27 (Supplementary Table 4). Over-
all, our experiments validate that the proposed framework
achieves promising results for UDA.

Noisy label learning with annotations provided by different
annotators. Four subtasks, including prostate segmentation,
brain growth segmentation, brain tumor segmentation, and kid-
ney segmentation, are investigated using the QUBIQ datasets
when multiple annotations are provided. Variations exist between
annotations provided by different experts, especially for small
target objects (Fig. 1c). We treat each set of annotations provided
by respective annotators as noisy labels. Overall, testing with

a bDSC w/o AIDE DSC w/ AIDE RAVD w/o AIDE RAVD w/ AIDE

ASSD w/o AIDE ASSD w/ AIDE MSSD w/o AIDE MSSD w/ AIDEc d

e f

0

Transverse Sagittal Coronal

GT

D1 to D2
Conven

D1 to D2
AIDE

Transverse Sagittal Coronal

GT

D2 to D3
Conven

D2 to D3
AIDE

Fig. 3 Results of prostate segmentation for UDA. a–d, The four evaluation metrics, DSC (%), RAVD (%), ASSD (mm), and MSSD (mm). In each
subfigure, the left and right mappings indicate that the networks are trained without and with the proposed AIDE. D1, D2, and D3 refer to domains 1, 2, and
3. In each mapping, the vertical axis indicates the dataset utilized to train the models and the horizontal axis indicates the dataset utilized to test the
models. e–f Example segmentation results when transferring models between domains. GT stands for ground truth, referring to the high-quality
annotations. Conven is conventional, indicating that the results are generated by a fully supervised optimization method utilizing the combined dataset
(high-quality labels for the source domain training data and model-generated low-quality labels for the target domain training data).
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different thresholds shows that AIDE can generate segmentation
result distributions that are consistent with the annotators
(Tables 3–5 and Supplementary Figs. 6 and 7). Although the
improvements on relatively large region segmentation tasks
(Task1_Prostate Segmentation in Table 3 and Task2_Brain
Growth Segmentation in Table 4) are minor, AIDE achieves
better performance on the more challenging small object seg-
mentation tasks (Task3_Brain Tumor Segmentation and
Task4_Kidney Segmentation in Table 5). Online server evaluation
gives average DSCs of 93.2%, 86.6%, 93.7%, and 89.8% on the
four tasks for our method optimized with only a single set of
annotations from one annotator for each task. These results are
comparable to those achieved by methods utilizing the annota-
tions provided by multiple annotators.

DNNs possess a high capacity to fit training data, even in the
presence of noise. Two or even three annotators may not
be sufficient to cover the full range of observer variability17. To
force the model to learn from the real data distributions instead of
learning possible biases introduced by annotators, for conven-
tional fully supervised deep-learning models, trustworthy labels
obtained by effectively combining the annotations provided by
different observers are needed. With our proposed method, only
noisy labels are utilized during the whole training process, and the
model can self-adjust and update the training labels via the
proposed local label-filtering and global label-correction steps to
correct possible observer biases. More satisfactory segmentation
results can then be generated. Therefore, compared to the fully
supervised learning approach, AIDE may relax the demand for
multiple annotators.

Real-life case study for breast tumor segmentation. Further
evaluations on three breast tumor segmentation datasets (GGH
dataset from Guangdong General Hospital, GPPH dataset from
Guizhou Provincial People’s Hospital, and HPPH dataset from
Henan Provincial People’s Hospital) are conducted to investigate
the feasibility of the proposed framework for processing raw
clinical data. Dynamic contrast-enhanced MR (DCE-MR) images
are acquired. The experimental results validate the effectiveness of
AIDE in analyzing clinical samples with decreased manual efforts
(Fig. 4). Under the same experimental settings, AIDE generates
much better results than the respective baselines, increasing the
DSC values by more than 7% (7.7% absolute increase for GGH
dataset between LQA200 and LQA200_Ours in Fig. 4a, 18.2%
absolute increase for GPPH dataset between LQA100 and
LQA100_Ours in Fig. 4b, and 10.0% absolute increase for HPPH
dataset between LAQ272 and LQA272_Ours in Fig. 4c). In
addition, despite the small number of training annotations being

utilized (10% of those utilized by fully supervised method for
GGH and GPPH, and 9.2% for HPPH), AIDE can always achieve
segmentation performance similar to that of the corresponding
fully supervised models. Specifically, for the GGH dataset, AIDE
achieves an average DSC of 0:690 ± 0:251, whereas the fully
supervised model achieves 0:722 ± 0:208 (P ¼ 0:0608) (Fig. 4a).
For GPPH, AIDE obtains 0:654 ± 0:221, and the fully supervised
model obtains 0:678 ± 0:260 (P ¼ 0:2927) (Fig. 4b). For HPPH,
AIDE obtains 0:731 ± 0:196, and the fully supervised model
obtains 0:738 ± 0:227 (P ¼ 0:6545) (Fig. 4c). The visual results
confirm the effectiveness of AIDE in generating segmentation
contours that are similar to the ground-truth labels (Fig. 4d–f).
We further observe that AIDE performs better with larger data-
sets (comparing Fig. 4c to Fig. 4b), which can be very useful in
real clinical applications considering the large quantities of
unannotated images accumulated every day.

Additional radiologists were employed to segment the breast
tumors in the central slices of the three test sets (Fig. 4d–f and
Supplementary Figs. 8–10). For the GGH dataset, the manual
annotations achieve an average DSC of 0:621 ± 0:155, which is
worse than that of AIDE (0:690 ± 0:251), with P ¼ 0:0098. For
GPPH, the manual annotations obtain 0:861 ± 0:086 and AIDE
obtains 0:846 ± 0:118. No significant difference is found
(P ¼ 0:3317). For HPPH, the manual annotations obtain
0:735 ± 0:225 and AIDE obtains 0:761 ± 0:234 with no significant
difference observed (P ¼ 0:3079). Overall, our proposed AIDE
can generate comparable or even better segmentation results
when compared with those of radiologists.

Breast tumor segmentation in DCE-MR images is a challenging
task due to the severe class imbalance issue (very small tumor
regions compared to the whole breast images) and the high
confounding background signals (organs in the chest and dense
glandular tissues). As a result, the DSC values obtained for breast
tumor segmentation are not as high as those for other tasks (such
as prostate segmentation). Nevertheless, our method is not
intended to replace radiologists in the disease diagnosis or
treatment planning workflow but serves as an automated
computer-aided system. Recently, Zhang et al.35 achieved a mean
DSC of 72% for breast tumor segmentation in DCE-MR images
with a hierarchical convolutional neural network framework, and
Qiao et al.36 obtained a value of 78% utilizing 3D U-Net and
single-phase DCE-MR images. Our results (73.1% on the HPPH
dataset) are comparable to these literature-reported values
achieved by fully supervised learning with hundreds of patient
cases. Considering the small number of training annotations
utilized (25 cases for the HPPH dataset), our proposed method
can be a valuable tool in clinical practice to assist radiologists in
achieving fast and reliable breast tumor segmentation.

Discussion
Image segmentation plays an important role in medical imaging
applications. In recent studies, DNNs have been widely employed
to automate and accelerate the segmentation process37–40.
Despite the reported successful applications, the performance of
DNNs depends heavily on the quality of the utilized training
datasets. Frameworks that can optimize DNNs without strict
reliance on large and high-quality annotated training datasets can
significantly narrow the gap between research and clinical

Table 3 Segmentation performance (DSC: %) of
Task1_Prostate Segmentation on the QUBIQ datasets.

Method Anno1 Anno2 Anno3 Anno4 Anno5 Anno6

Conventional 89.2 87.9 84.3 89.3 86.4 90.0
AIDE 91.4 89.2 85.2 90.4 88.1 90.3

Conventional method refers to the fully supervised method utilizing labels of the respective
annotations (e.g., Anno1). Anno1 to Anno7 indicate the annotations utilized to train the model
(e.g., Anno1 means annotations from annotator 1 are used).

Table 4 Segmentation performance (DSC: %) of Task2_Brain Growth Segmentation on the QUBIQ datasets.

Method Anno1 Anno2 Anno3 Anno4 Anno5 Anno6 Anno7

Conventional 70.7 73.2 73.8 73.2 71.6 72.1 71.8
AIDE 71.1 75.0 74.8 73.5 71.6 72.7 72.0
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applications. In this study, we propose an annotation-efficient
deep-learning framework, AIDE, for medical image segmentation
network learning with imperfect datasets to address three chal-
lenges: SSL, UDA, and NLL. Our target is not to build a more
sophisticated model for fully supervised learning, but to build a
framework that can work properly without sufficient labeled data,
so as to alleviate the reliance on the time-consuming and
expensive manual annotations when applying AI to medical
imaging. Extensive experiments have been conducted with open
datasets. The results show that AIDE performs better than con-
ventional fully supervised models under the same training con-
ditions and even comparable to models trained with
corresponding perfect datasets, thereby validating the effective-
ness of AIDE. Additional experiments on clinical breast tumor
segmentation datasets from three medical centers further prove
the robustness and generalization ability of AIDE when proces-
sing real clinical data. On all three independent datasets, AIDE
generates satisfactory segmentation results by utilizing only 10%
of the training annotations, which indicates that AIDE can alle-
viate radiologists’ manual efforts compared to conventional fully
supervised DNNs.

Recent deep-learning works have presented encouraging per-
formance in handling certain types of imperfect datasets in
isolation41–45 but have not yet shown general applicability by
addressing all three types. Methods such as data augmentation41,46,
transfer learning42,43, semi-supervised learning44,47, and self-
supervised learning48,49 have been extensively investigated to
handle cases with limited training annotations or no target domain
annotations. By contrast, much less attention has been given to
noisy label learning in medical imaging16,50. Most existing studies
concentrate on designing new loss weighting strategies51,52 or new
loss functions53. Since various issues with the datasets may exist in
reality, the effectiveness of these methods is compromised22,26. The
available methods most closely related to ours are pseudo-labels32

and co-teaching27. Compared to existing pseudo-label studies that
update the pseudo-labels of all unlabeled data simultaneously
during network learning44,54,55, label updating in AIDE is con-
ducted in an orderly (label updating is conducted according to the
calculated similarities between the temporal network predictions
and noisy labels in defined training epochs) and selective (only a
defined percentage of noisy labels are updated) manner according
to an observed small loss criterion, which has also been noted and
confirmed for natural images56. Moreover, AIDE trains the model
with the segmentation loss on filtered labels to avoid the negative
effects of highly noisy labels, and an additional consistency loss is
introduced to enforce consistent predictions with augmented
inputs for the remaining suspected highly noisy data. AIDE also
differs from the two-model co-teaching method27,28: AIDE gen-
erates pseudo-labels for suspected low-quality annotated data in an
effective and progressive manner. During network training, a
hyper-parameter that increases from 0 to 1 within defined initial
training epochs is introduced. This hyper-parameter controls the

contribution of the consistency loss; thus, the consistency loss
becomes increasingly important for network optimization in the
training process. Additionally, the local label-filtering and global
label-correction design progressively places more emphasis on
pseudo-labels. These properties of AIDE contribute to the full
utilization of valuable medical image data and improve the model
performance.

Constructing large datasets with high-quality annotations is
particularly challenging in medical imaging. The process of
medical image annotation, especially dense annotation for image
segmentation, is highly resource intensive. Different from natural
images, only domain experts have the knowledge to annotate
medical images. In some cases, such as our brain tumor seg-
mentation task, large variations exist between experts (Fig. 1c),
which raises the necessity of multiple annotators to achieve
consensus annotations17. Employing a large number of domain
experts to annotate large medical image datasets requires massive
financial and logistical resources that are difficult to obtain in
many applications. Our proposed AIDE has the potential to solve
these issues effectively. It achieves promising performance by
utilizing only 10% of the training annotations used by its fully
supervised counterparts. Nevertheless, label-free or unsupervised
learning that can eliminate manual annotation entirely is more
appealing20,57. We are still working on improving the metho-
dology to further reduce the reliance on annotations. In our
following study, we will seek to address the challenge of unsu-
pervised deep learning for large-scale and automatic medical
image segmentation. Furthermore, although only medical image
segmentation is considered in this work, AIDE might be applic-
able to other medical image analysis tasks, for example, image
classification. The flexibility of AIDE in this perspective will also
be evaluated in the future work.

In summary, we have analyzed and empirically demonstrated
that our proposed framework, AIDE, can achieve accurate med-
ical image segmentation to address the three challenges of semi-
supervised learning, unsupervised domain adaptation, and noisy
label learning. Therefore, AIDE provides another perspective for
DNNs to handle imperfect training datasets. In the real-life case
study, compared to conventional DNN training, AIDE can save
almost 90% of the manual effort required to annotate the training
data. With further development and clinical trials, such a ten-fold
improvement in efficiency in utilizing expert labels is expected to
promote a wide range of biomedical applications. Our proposed
framework has the potential to improve the medical image
diagnosis workflow in an efficient manner and at a low cost.

Methods
Public datasets. Abdomen MR images from the CHAOS challenge are
adopted33,58,59 (Fig. 1c). These images were acquired with a 1.5 T Philips MRI
system. The image matrix size is 256 × 256, with an inplane resolution from 1.36 to
1.89 mm. The slice thickness is between 5.5 and 9 mm. One 3D image contains
26−50 slices. Although multi-parametric MR images are provided, they are not
registered and are thus difficult to utilize as multimodal inputs for the segmenta-
tion task. We utilize the T1-DUAL images. For each patient, there is one inphase
image and one outphase image, which can be treated as multimodal inputs. In total,
the challenge provides data from 40 patients, 20 cases (647 T1-DUAL images,
647 samples) with high-quality annotations and 20 cases (653 T1-DUAL images,
653 samples) without annotations. According to the challenge, image annotation
was performed by two teams. Each team included a radiology expert and an
experienced medical image processing scientist. Then, a third radiology expert and
another medical imaging scientist inspected the labels, which were further fine-
tuned according to discussions between annotators and controllers. For our setting
of SSL, only the label of one randomly selected case (30 labeled image samples) is
utilized, and pseudo-labels for the remaining data (29 cases including 9 randomly
selected cases from the provided labeled cases and 20 unlabeled cases) are gener-
ated by a network trained with the labeled samples. Model testing is performed on
the remaining ten labeled cases.

T2-weighted MR images of the prostate from two challenges (Fig. 1c), NCI-ISBI
2013 60 and PROMISE12 34, are utilized. NCI-ISBI 2013 consists of three groups of

Table 5 Segmentation performance (DSC: %) of
Task3_Brain Tumor Segmentation and Task4_Kidney
Segmentation on the QUBIQ datasets.

Method Anno1 Anno2 Anno3

Task3_Brain Tumor Segmentation
Conventional 83.9 83.1 84.2
AIDE 92.6 91.8 92.7

Task4_Kidney Segmentation
Conventional 69.8 68.9 70.7
AIDE 85.4 83.8 89.9
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Fig. 4 Results of breast tumor segmentation. a−c Results on GGH, GPPH, and HPPH datasets, respectively. LQA and HQA indicate low- and high-quality
annotations. The numbers after HQA refer to the annotations utilized to train the models. For LQA, the numbers indicate that we utilize the respective fewest
HQA data with the remaining annotations generated by the pretrained models. For example, LQA200 in (a) means 20 high-quality labeled and 180 low-quality
labeled data are utilized. Data are represented as box plots. The central red lines indicate median DSC values, green triangles the average DSC values, boxes the
interquartile range, whiskers the smallest and largest values, and data points (þ) outliers. * indicates a significant difference between the corresponding
experiments, with ***P � 0:001, **P � 0:005, and *P � 0:05 (two-sided paired t test, n ¼ 100 independent patient cases). a Between HQA20 and
LQA200_Ours, P ¼ 0:0002; between HQA50 and LQA200_Ours, P ¼ 0:0139; between HQA100 and LQA200_Ours, P ¼ 0:3119; between HQA200 and
LQA200_Ours, P ¼ 0:0608; between LQA200 and LQA200_Ours, P ¼ 0:0017. b Between HQA10 and LQA100_Ours, P<0:0001; between HQA25 and
LQA100_Ours, P ¼ 0:0002; between HQA50 and LQA100_Ours, P ¼ 0:7602; between HQA100 and LQA100_Ours, P ¼ 0:2927; between LQA100 and
LQA100_Ours, P<0:0001. c Between HQA25 and LQA272_Ours, P<0:0001; between HQA50 and LQA272_Ours, P<0:0001; between HQA100 and
LQA272_Ours, P ¼ 0:0075; between HQA200 and LQA272_Ours, P ¼ 0:2925; between HQA272 and LQA272_Ours, P ¼ 0:6545; between LQA272 and
LQA272_Ours, P<0:0001. d−f Visualizations of segmentation maps on the three datasets. The three columns correspond to the results of LQA, LQA_Ours, and
independent radiologists. Red contours indicate the high-quality annotations. Magenta, green, and yellow contours are the results of LQA, LQA_Ours, and the
independent radiologists.
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data: the training set (60 cases), the test set (10 cases), and the leaderboard set (10
cases). All are provided with high-quality annotations. Annotation was performed
by two groups separately, one with two experts and the other with three experts.
We combine the test set and leaderboard set to form our enlarged test set (20 cases)
and divide the dataset into two datasets according to the data acquisition sites to
form two domain samples. The domain 1 dataset contains training and testing data
collected with 1.5 T MRI systems from Boston Medical Center (30 training cases
and 10 test cases), and the domain 2 dataset contains data collected with 3.0 T MRI
systems from Radboud University Nijmegen Medical Centre (30 training cases and
10 test cases). PROMISE12 provides data from 50 patients with high-quality
annotations. Annotation was conducted by an experienced reader and then
checked by a second expert. These samples were collected from different centers
using different MRI machines with different acquisition protocols. Deleting 13
cases that are the same as those in domain 2, 37 cases collected from Haukeland
University Hospital (12 cases), Beth Israel Deaconess Medical Center (12 cases),
and University College London (13 cases) are obtained. Therefore, PROMISE12
can be treated as a combined dataset from different domains and is referred to as
the domain 3 dataset in our experiments. Of the 37 cases, 27 are randomly selected
as the training set, and the remaining 10 form the test set. UDA is constructed via
model learning with labeled training data from the source domain and unlabeled
training data from the target domain. Pseudo-labels are generated for the target
domain training data, and the high-quality labeled source domain training data and
low-quality noisily labeled target domain training data form the combined dataset
to facilitate the domain transfer of the models. Performance is evaluated on the
target domain testing data.

The QUBIQ challenge provides four datasets with annotations from multiple
experts, including a prostate image dataset with 55 cases (6 sets of annotations), a
brain growth image dataset with 39 cases (7 sets of annotations), a brain tumor
image dataset with 32 cases (3 sets of annotations), and a kidney image dataset with
24 cases (3 sets of annotations). In total, there are seven binary segmentation tasks:
two for prostate segmentation, one for brain growth segmentation, three for brain
tumor segmentation, and one for kidney segmentation. In this study, we conduct
four tasks (Fig. 1c), one for each dataset, to investigate the effects of our proposed
AIDE framework. Following the challenge, 48 cases of prostate data, 34 cases of
brain growth data, 28 cases of brain tumor data, and 20 cases of kidney data are
utilized as the training data. The remaining are used as testing data. Each set of
annotations is considered a noisy label set for model training. As defined by the
challenge, performance characterization of models is conducted by comparing the
predictions (continuous values in [0, 1]) to the continuous ground-truth labels
(obtained by averaging multiple experts’ annotations) by thresholding the
continuous labels at different probability levels (0.1, 0.2, … 0.8, 0.9). Then, the
DSCs for all thresholds are averaged to obtain the final metrics.

Clinical datasets. This retrospective study was approved by the institutional
review board of each participating hospital with the written informed consent
requirement waived. All patient records were de-identified before analysis and were
reviewed by the institutional review boards to guarantee no potential risk to
patients. The researchers who conducted the segmentation tasks have no link to the
patients to prevent any possible breach of confidentiality.

Dynamic contrast-enhanced breast MR data from three medical centers,
Guangdong General Hospital (GGH), Guizhou Provincial People’s Hospital (GPPH),
and Henan Provincial People’s Hospital (HPPH), were investigated (Fig. 1d). FDA-
approved fully features PACS viewer was used to collect the breast image data. GGH
provided data for 300 patients, GPPH provided data for 200 patients, and HPPH
provided data for 372 patients. For each dataset, three experienced radiologists with
more than 10 years of experience provided the image annotations. Two radiologists
delineated the breast tumor regions independently, and a third radiologist (the most
experienced radiologist) checked the two sets of annotations and made the final
decision. For the GGH dataset, breast tumor regions in central slices are annotated,
leading to 300 image samples. For the GPPH dataset and HPPH dataset, 3D breast
tumor annotations are provided. The GPPH dataset has 4902 annotated image
samples, and the HPPH dataset contains 6650 image samples, resulting in a total of
872 MR data points (11,852 image samples) for our experiments. For each dataset, we
randomly select 100 annotated patient cases as the respective hold-out test set and use
the remaining cases as the training set.

AIDE framework. Figure 1 illustrates the overall AIDE framework. Task stan-
dardization is performed to transform SSL and UDA into NLL. For SSL, models are
pretrained with the available limited annotated training data, and low-quality labels
are generated for the remaining unlabeled training data. For UDA, models are
pretrained with the source domain labeled training data, and low-quality labels are
generated for the target domain unlabeled training data. Thus, the remaining issue
becomes learning with possibly noisy annotations (NLL).

Details of the proposed self-correcting algorithm are presented in Algorithm 1
(Fig. 5). Two networks are learned in parallel to achieve cross-model self-correction
of low-quality labels of imperfect datasets (Fig. 1b). The whole process can be
divided into two major steps. The first is local label filtering. In each iteration, a
defined percentage of training samples with relatively large segmentation losses is
selected by the counterpart model as suspicious samples that have low-quality
labels. For these samples, the final loss function is calculated as a weighted

summation of the segmentation loss and consistency loss. We choose the
commonly utilized combination of Dice loss and cross-entropy loss as our
segmentation loss in this work (Eq. (1)). The consistency loss is introduced to the
network as a consistency regularization. Specifically, the means of the outputs of K
augmented inputs are calculated and are regarded as pseudo-labels after
temperature sharpening61,62. Consistency loss, which is implemented as the mean
square error (MSE) loss (Eq. (2)), is calculated between the network outputs of
suspected noisy samples and the corresponding pseudo-labels. The samples with
smaller segmentation losses are expected to be accurately labeled samples, and only
the segmentation loss is calculated. The network parameters are updated according
to the respective losses.

Lseg ðy; y0Þ ¼ LDiceðy; y0Þ þ α � LCEðy; y0Þ ¼ 1� 2 �∑N
i¼1y

0
i � yi þ ε

∑N
i¼1y

0
i þ∑N

i¼1yi þ ε

 !

� α

N
∑
N

i¼1
yi logðy0iÞ þ ð1� yiÞ logð1� y0iÞ

� � ð1Þ

Lcorðŷ; y0Þ ¼
1
2N

∑
N

i¼1
kŷi � y0ik2 ð2Þ

where y′ is the prediction of the network, y is the reference, ŷ is the temperature-
sharpened local pseudo-labels generated from the augmented inputs, N refers to
the total number of pixels in the image, α is a constant to balance the different
losses (we set α ¼ 1 in all experiments unless otherwise specified), and ε is a
constant to ensure numerical stability (we set ε ¼ 1:0).

The second step is global label correction. After each epoch, the DSCs of the
whole training set are calculated and ranked. A defined percentage of samples (25%
in our experiments) with the smallest DSCs are selected, and their labels are
updated when certain criteria are met. In this work, we update the labels if the
training epoch number is smaller than the defined warm-up epoch number and
every ten epochs thereafter.

The rationale for our designed filtering and correction steps is related to the
frequently observed network memorization pattern for natural image analysis: deep
neural networks tend to learn simple patterns before memorizing all samples and
real data examples are easier to fit than examples with noisy labels56,63,64. Here, we
find a similar network memorization pattern for medical image segmentation. By
training a neural network utilizing the conventional fully supervised learning
method with noisy labels, an overall positive correlation between the DSCs
calculated by comparing network outputs to the noisy labels and the DSCs
calculated by comparing the noisy labels to the high-quality labels exists for the
training data during the initial training epochs (Supplementary Fig. 11a). In other
words, within the considered training period, the network cannot successfully
memorize those samples that contain large label noise but can learn the patterns of
the samples that contain low label noise. On the other hand, all samples are well
memorized when the network converges (Supplementary Fig. 11b). The noisy label
updating schedule is designed accordingly—the suspected noisy labels are updated
if the training epoch number is smaller than the defined warm-up epoch number
and every ten epochs thereafter. The first criterion is based on the abovementioned
observed network memorization behavior, and ablation studies indicate that the
model performance is insensitive to the value of the warm-up epoch number in a
large range (Supplementary Table 2). The second criterion is implemented because
after the initial training epochs, the performances of the networks become relatively
stable, and there is no need to update the labels frequently. Therefore, in our
experiments, we update the labels every ten training epochs.

Segmentation network architecture. A simple, general, and robust network
architecture (U-Net) is adopted to process the different image inputs29. The
architecture employs a classical encoder−decoder structure with an encoder stream
to downsample the image resolution and extract image features and a decoder
stream to recover the image resolution and generate segmentation outputs29. Skip
connections are included to improve the localization accuracy. Since the depth
resolution is much lower than the inplane resolution for the liver and prostate
segmentation datasets and the noisy datasets contain only 2D samples, all our
experiments proceed in a 2D fashion. The 3D extension is straightforward but
requires considerably more effort to construct suitable implementation datasets,
which is out of the scope of this study.

Similar encoder−decoder network architectures are utilized to handle single-
and multimodal image datasets. During encoding, input images pass through five
downsampling blocks sequentially with four max-pooling operations in between to
extract multilayer image features. For multimodal inputs, multiple downsampling
streams are utilized to extract features from the different modalities30,65. The
extracted features are combined in a multilayer fusion manner. The features from
all downsampling blocks are correspondingly concatenated to fuse information
from different modalities. During decoding, the extracted image features pass
through four upsampling blocks, each followed by a bilinear upsampling operation,
to generate segmentation outputs with the same size as the inputs. Downsampling
and upsampling blocks have similar components: two convolutional layers with a
3 × 3 convolution, batch normalization, and ReLU activation. The low-level
features of the encoder are introduced to the decoder through skip connections and
feature concatenation. Finally, a 1 × 1 convolution is appended to generate two
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features corresponding to the background and target segmentation maps, and a
softmax activation is included to generate the segmentation probability maps.

Evaluation metrics. Different metrics can be used to characterize the segmentation
results. For our experiments, we choose the commonly utilized Dice score (Dice

similarity coefficient, DSC), relative area/volume difference (RAVD), average
symmetric surface distance (ASSD), and maximum symmetric surface distance
(MSSD).

DSC ¼ 2TP
2TP þ FP þ FN

ð3Þ

Algorithm 1 | Cross-Model Self-Correcting Mechanism of AIDE.

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

30:

Input Net1 (N1 with parameter w1) and Net2 (N2 with parameter w2), learning rate lr, training 

set D, batch size B, number of augmentations K, Sharpening temperature T, Segmentation 

loss function Lseg, Consistency loss function Lcon, Loss weight , Label update ratio R, Label 

update criterion U, Warm-up epoch qw, and total epoch Q

for do
Shuffle training set D into |D|/B min batches;

for n = 1 to |D|/B do
Fetch batch inputs d = ((xb, yb1, yb2); b (

(yb1, yb2: references for N1 and N2, initialized to be the low-quality annotations);

for k = 1 to K do
Obtain = Augment( )

end for

= Sharpen( , T)  

( with and referring to the categories)

= Sharpen( , T)

Obtain ds1 = argmin d:|d 0.5B Lseg 1) //select 50% small loss samples in the batch

Obtain ds2 = argmin d:|d 0.5B Lseg 2) //select 50% small loss samples in the batch

Obtain L1 = Lseg( , ) + (1.0 - q) Lseg( , ) + 

q Lcon( , ), dl1 = d / ds1

Obtain L2 = Lseg( , ) + (1.0 - q) Lseg( , ) + 

q Lcon( , ), dl2 = d / ds2

Update w1 = w1 lr L1

Update w2 = w2 lr L2

end for
Update q = min{ * (q / qw)2, }, =1.0

Obtain Dl1 = argmin R|D| 1) //select R% small loss cases in the whole 

training set

Obtain Dl2 = argmin R|D| 2) //select R% small loss cases in the whole 

training set

if U do
Update yb2 = N1(y | Dl1; w1) if Dl1 is not high-quality labeled

Update yb1 = N2(y | Dl2; w2) if Dl2 is not high-quality labeled

Obtain DSCtrain = mean(Dice(D; w1), Dice(D; w2))

end if
end for
Output w1 and w2 with the highest DSCtrain

Fig. 5 Pseudo-code of AIDE. The inputs required for the model training, the overall training process with the proposed cross-model self-correcting
mechanism, and the optimized model to be saved are included.
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RAVD ¼ FP � FN
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where TP, FP, and FN refer to true positive predictions, false positive predictions,
and false negative predictions, respectively. S(yʹ) and S(y) indicate the boundary
points on the predicted segmentations and reference segmentations.

Significant differences between the different experiments and between the
model results and human annotations are determined using two-sided paired t
tests, with P ≤ 0:05.

Statistics and reproducibility. The code used for training the deep-learning models
are made publicly available for the reproducibility purpose. Statistical analysis has been
given as well. Specifically, we run the code three times with different random initi-
alizations for the CHAOS dataset. For the domain adaptation task on prostate seg-
mentation, six independent experiments were performed. On the QUBIQ datasets, we
repeated 6, 7, 3, and 3 times respectively for the four different subtasks according to
their dataset properties. For our breast datasets, data from three hospitals were utilized.
So the experiments were performed independently for three times.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw image data and relevant information of the utilized open datasets are accessible from
the respective official websites of the challenges (CHAOS: https://chaos.grand-challenge.org/,
NCI-ISBI 2013: https://wiki.cancerimagingarchive.net/display/Public/NCI-ISBI
+2013+Challenge+-+Automated+Segmentation+of+Prostate+Structures, PROMISE12:
https://promise12.grand-challenge.org/, and QUBIQ: https://qubiq.grand-challenge.org/)
through standard procedures. The clinical breast data were collected by the hospitals in de-
identified format. Owing to patient-privacy considerations, they are not publicly available. All
requests for academic use of in-house raw and analyzed data can be addressed to the
corresponding authors. All requests will be promptly reviewed within 10 working days to
determine whether the request is subject to any intellectual property or patient-
confidentiality obligations, will be processed in concordance with institutional and
departmental guidelines, and will require a material transfer agreement (available at https://
github.com/lich0031/AIDE). Source data are provided with this paper.

Code availability
The code used for training the deep-learning models and models used in this study are
made publicly available66. Implementation of our work is based on PyTorch with necessary
publicly available packages, including numpy, pandas, PIL, skimage, and SimpleITK.
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