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ABSTRACT Protists play key roles in aquatic food webs as primary producers, pred-
ators, nutrient recyclers, and symbionts. However, a comprehensive view of protist
diversity in freshwaters has been challenged by the immense environmental hetero-
geneity among lakes worldwide. We assessed protist diversity in the surface waters
of 366 freshwater lakes across a north temperate to subarctic range covering nearly
8.4 million km? of Canada. Sampled lakes represented broad gradients in size,
trophic state, and watershed land use. Hypereutrophic lakes contained the least
diverse and most distinct protist communities relative to nutrient-poor lakes. Greater
taxonomic variation among eutrophic lakes was mainly a product of heterotroph
and mixotroph diversity, whereas phototroph assemblages were more similar under
high-nutrient conditions. Overall, local physicochemical factors, particularly ion and
nutrient concentrations, elicited the strongest responses in community structure, far
outweighing the effects of geographic gradients. Despite their contrasting distribu-
tion patterns, obligate phototroph and heterotroph turnover was predicted by an
overlapping set of environmental factors, while the metabolic plasticity of mixo-
trophs may have made them less predictable. Notably, protist diversity was associ-
ated with variation in watershed soil pH and agricultural crop coverage, pointing to
human impact on the land-water interface that has not been previously identified in
studies on smaller scales. Our study exposes the importance of both within-lake and
external watershed characteristics in explaining protist diversity and biogeography,
critical information for further developing an understanding of how freshwater lakes
and their watersheds are impacted by anthropogenic stressors.

IMPORTANCE Freshwater lakes are experiencing rapid changes under accelerated anthro-
pogenic stress and a warming climate. Microorganisms underpin aquatic food webs, yet
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rotists have evolved a vast morphological and ecological diversity (1). In aquatic

ecosystems, protists play key roles in the transfer of energy and nutrients by con-
verting sunlight into chemical energy, remineralizing organic matter, controlling micro-
bial biomass, feeding higher trophic levels, and maintaining symbioses, some of which
recruit prokaryotic metabolisms (2-4).

Elucidating protist diversity in lakes is relevant for clarifying microbial distributions
across a wide array of environmental conditions and for tracking the health of critical
freshwaters. Covering <1% of Earth’s surface (5), lakes contribute disproportionately to
the global carbon cycle (6-8) and hold essential water resources (9). Lakes display a rich
environmental heterogeneity, generated by integrating fluxes of materials and energy
from their catchments and airsheds (10, 11). Freshwater lakes are hotspots of biodiversity,
collectively containing higher levels of eukaryote richness and endemism (12) and protist
community turnover (13) than the marine and terrestrial realms. In the Anthropocene,
lakes are increasingly altered by eutrophication (14), warming temperatures (15), deoxy-
genation (16), salinization (17), and myriad other persistent and emergent stressors (18).
There is accumulating evidence that anthropogenic modifications to lake habitats affect
protist assemblages (19-21), in turn influencing ecosystem dynamics.

Efforts to study protists from a variety of biomes have unearthed a vast diversity and
begun to map their distributions on a global scale (22-24). Such investigations have pro-
vided insights into protist environmental preferences and community assembly proc-
esses (25-28), food web dynamics (29-33), symbioses (34-36), viruses (37), functional
traits (38), and bioindicator values (39, 40). Large-scale lake surveys have shown that pro-
tist assemblages are shaped by broad biogeographic patterns (41-43) but are also influ-
enced by local environmental factors and interactions with bacteria (44). Phytoplankton
surveys recapitulate these observations while exclusively investigating photosynthetic
taxa including Cyanobacteria (45-47). However, there is no clear understanding yet of
the distributions of different trophic life history strategies and the environmental drivers
underlying their diversity. This knowledge gap is particularly glaring, since heterotrophy
is likely the most abundant trophic mode (48). Meanwhile, mixotrophs have dramatically
altered our view of plankton food webs by combining primary production and prey con-
sumption (49), sometimes surpassing obligate heterotrophs as the leading grazers of
bacteria in lakes (50, 51).

In this study, 18S rRNA gene amplicon sequencing was used to investigate the dis-
tributions of protists in the surface waters of 366 freshwater lakes across a north tem-
perate to subarctic continental range. We hypothesized that (i) protist diversity at the
local scale and community turnover decrease under high-nutrient conditions; (ii)
trophic groups respond to different environmental factors, and specifically, photo-
trophs are more sensitive than heterotrophs to bottom-up resource availability; and
(iii) because lakes integrate their catchments, protist diversity in lakes should reflect
watershed conditions. This project was conducted within the LakePulse survey, which
sampled hundreds of lakes of different sizes in watersheds across a gradient of human
impact with the primary aim to assess lake health through a multidisciplinary lens (52).
The current study fills a gap in the mapping of microbial biogeography through this
first standardized assessment of protist diversity across Canada, which stewards the
greatest abundance of lakes worldwide (53). Our study draws attention to the diversity
of protists and the ecological patterns that emerge in a broad collection of newly
explored habitats being reshaped by increasing human impact.

RESULTS

Sampled lakes and watersheds display high environmental heterogeneity.
Protist assemblages were surveyed in the euphotic zones of 366 freshwater to oligosa-
line lakes in 12 ecozones across Canada (43 to 68°N, 53 to 141°W) (Fig. 1). Watersheds
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FIG 1 Diversity and distributions of protists across 366 Canadian lakes. Lake trophic states and ecozones are shown on the map of sampling sites as
coloured circles and polygons, respectively. The relative sequence abundance of protist taxonomic divisions in each lake is represented in the inner

(Continued on next page)
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ranged widely in area (0.3 to 9,332.3 km?) and were characterized by a variety of
human population densities (0 to 3,785 people/km?) and land use, including different
proportions of crop agriculture (0 to 81%) and built development (0 to 93%). Lakes
had a wide range of surface areas (0.05 to 99.66 km?2) and maximum depths (1 to >150
m) and were either vertically mixed (~40% of lakes) or thermally stratified (~60%) at
the time of sampling. Physicochemical conditions differed substantially across lakes, as
represented by a broad pH gradient (5.6 to 10.2) and ultraoligotrophic to hypereutro-
phic states evaluated by total phosphorus (TP) concentrations (2 to 2,484 ug/L) (Fig. 1).

Sampled lakes and watersheds reflected regional variation in environmental condi-
tions, including anthropogenic gradients (see Fig. S1 in the supplemental material).
Lakes in northern Canada (Taiga Cordillera, Boreal Cordillera, and Taiga Plains ecozones)
were subject to the coldest climates and lowest intensities and proportions of land use
within their watersheds. Lakes in western Canada (Montane Cordillera, Pacific Maritime,
and Semi-Arid Plateaux) were the deepest on average and located in watersheds with
the largest proportions of harvested forests. In central Canada (Boreal Plains and
Prairies), a region dominated by plains and prairies with extensive agriculture, lakes were
generally shallow, exposed to winds, productive, and high in pH, carbon, ions, and
nutrients. Lakes in eastern Canada (Mixedwood Plains, Boreal Shield, Atlantic Highlands,
and Atlantic Maritime) had the warmest surface waters and generally the most built-up
landscapes, a feature shared with watersheds in the Pacific Maritime. Overall, nutrient-,
ion-, and carbon-rich waters, and high-pH lake conditions were most often observed in
agricultural watersheds with alkaline soils (Fig. S2).

Lakes support taxonomically and functionally diverse protist assemblages.
Eukaryotic diversity was assessed through the sequencing of 185 rRNA gene fragments
amplified from DNA collected in 0.22- to 100-um surface water particles. A total of
15,848 amplicon sequence variants (ASVs) were inferred in 17,749,930 sequences
across 366 lake samples. A final data set of 13,046 putative protist ASVs encompassing
14,622,273 sequences was retained after ASVs assigned to animals, fungi, and plants
were removed (Table S1). The rarefaction of pooled samples showed that the sampling
of new ASVs plateaued toward 2,000,000 sequences, signaling that the global sequenc-
ing effort had exhaustively captured the protist diversity targeted by the primer pair
(Fig. S3). The most abundant taxonomic groups were Ochrophyta (24% of all sequen-
ces), Cryptophyta (18%), Ciliophora (15%), and Dinoflagellata (11%) (Fig. 1). Lineages
with the highest ASV richness were Ochrophyta (22% of all ASVs), Dinoflagellata (12%),
and Chlorophyta (11%).

We analyzed ASV incidence to assess the contribution of individual assemblages to
total landscape diversity. New genotypes accumulated at a high rate in the first ~100
randomly ordered assemblages, followed by a gradual deceleration (Fig. 2A). The ma-
jority of ASVs were restricted to one or a few lakes (Fig. 2B). A smaller number of ASVs
were distributed widely, including one ASV assigned to Cryptomonas curvata
(Cryptophyta) that was ubiquitous yet highly variable in relative abundance (0.0031 to
64%) across all the lakes sampled.

Trophic functions were assigned to ASVs representing 85% of the total sequence
space by leveraging natural history descriptions summarized from the literature (Fig. 1;
Table S1). Of the functionally annotated ASVs, most were classified as obligate photo-
trophs (32% of all sequences). The most abundant phototrophs were classified as
Chrysophyceae (Ochrophyta; 16% of all sequences), Bacillariophyta (Ochrophyta; 3%),
and Chlorophyceae (Chlorophyta; 5%). Bacterivory (20% of all sequences) and mixotrophy
(20%) were the next most abundant trophic modes. The most abundant mixotrophs were
classified as Cryptophyceae (Cryptophyta; 17% of all sequences) and Dinophyceae
(Dinoflagellata; 2%). Cytotrophy (i.e., feeding on other protists), parasitism, commensalism,

FIG 1 Legend (Continued)

tract of bar plots. The middle tract of bar plots shows the relative sequence abundance of trophic modes. The heat map on the outer edge illustrates
the proportions of land use and land cover associated with the watershed of each lake, whose trophic state is represented in an adjacent coloured
circle. Watershed land use proportions are hierarchically clustered to highlight the relationship between agriculture and trophic state.
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FIG 2 Accumulation and incidence of genotypes across lakes. (A) Accumulation curve of genotypes in a random ordering of lakes. Vertical bars are
standard deviations. The accumulation of new genotypes was rapid in the first ~100 lakes, followed by a gradual deceleration. (B) Incidence of genotypes
across lakes. Most taxa are distributed across one or a few lakes, whereas a few taxa (magnified in the inset) are widely distributed. ASV taxonomic

classifications are coloured according to the taxonomic divisions in Fig. 1.

saprotrophy, and osmotrophy were detected to a lesser extent. Parasites (3% of all sequen-
ces) were most abundant in the Coccidiomorphea (Apicomplexa; 2%) and Oomycota
(Pseudofungi; 1%). Heterotrophs—which broadly encompassed bacterivores, cytotrophs,
saprotrophs, and osmotrophs—accounted for 27% of all sequences. Heterotrophy was
most abundant in the ciliates Spirotrichea (9% of all sequences), Oligohymenophorea
(2%), and Litostomatea (2%) and in other lineages, including Bicoecea (Opalozoa; 3%) and
Katablepharidaceae (Katablepharidophyta; 2%).

Genotypic similarity to known protist 18S rRNA gene diversity was assessed through
the global alignment of ASVs to V7 region fragments in the Protist Ribosomal Reference
database (PR?) (Fig. S4). Of the 12,511 ASVs that met the threshold global alignment
length, the majority showed high sequence similarity with references in the database.
Most ASVs (58%) were =96% identical to references. ASVs with 100% similarity to refer-
ence sequences occupied 56% of the total sequence space, while ASVs with =96% simi-
larity occupied 91% of sequences. The most novel genotypes included the 738 ASVs
with <90% sequence similarity to PR? references and were either not assigned to a
supergroup (415 ASVs) or primarily classified as Opisthokonta (141 ASVs), Alveolata (88
ASVs), or Stramenopiles (30 ASVs).

Local diversity at each lake was estimated by richness (67 to 1,275 ASVs) (Fig. S5), the
Shannon index (0.17 to 5.67) (Fig. 3A), Pielou’s evenness index (0.04 to 0.83), and Faith’s
phylogenetic diversity index (8.15 to 76.04). The Shannon index was negatively correlated
with magnesium (r = —0.33), total nitrogen (TN; r = —0.32), dissolved inorganic carbon
(DIC; r = —0.31), and potassium (r = —0.30) concentrations (all correlations had P values of
<0.001). Analyses of variance (ANOVAs) followed by post hoc Tukey's tests comparing the
association of trophic state with local diversity showed that mean richness, Shannon diver-

sity, and evenness were significantly lower in hypereutrophic lakes than in eutrophic, mes-

oeutrophic, mesotrophic, or oligotrophic lakes (all P = 0.002) (Fig. 3B).
Protist assemblages vary regionally and across lake trophic states. Next, we

looked at how communities varied in taxonomic and phylogenetic composition among
lakes. A principal component analysis (PCA) of ASV assemblages showed a clear pattern of
taxonomic variation by lake trophic state and ecozone along the first dimension (Fig. 4A).
Assemblages in the typically nutrient- and ion-rich lakes of the Prairies and Boreal Plains
were distinguished from assemblages in the lower-nutrient lakes of the Boreal Shield and
other eastern regions. Cryptophyte diversity (Cryptomonas, Geminigera, Plagioselmis, and
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Komma species) contributed the most strongly to the variation among assemblages
(Fig. 4A). A principal coordinate analysis (PCoA) of generalized UniFrac distances between
assemblages showed patterns of phylogenetic variation that were highly congruent with
the taxonomic variation observed in the PCA, as evaluated by an RV coefficient correlating
the first two dimensions of each ordination (RV = 67%, P = 1.3 x 10~°9) (Fig. 4B).
Taxonomically distinct assemblages as quantified by local contributions to B-diversity
(LCBD) were mostly localized in the Prairies and Boreal Plains, with a few high-LCBD
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assemblages scattered across other regions (Fig. 5). Beta-diversity partitioning showed
that the taxonomic dissimilarities between assemblages were primarily generated
through ASV turnover (75% of total variance) and to a lesser extent through differences
in richness (25%). Highly significant (P < 0.001) positive correlations were detected
between LCBD and a complement of physicochemical variables, including potassium

Local contribution
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FIG 5 Local contribution to B-diversity (LCBD) of protist assemblages across the Canadian landscape. LCBD describes the taxonomic
uniqueness of a given assemblage, i.e, how much the taxonomic composition differs from the rest of the communities in the
landscape. Ecozones are identified in the map legend of Fig. 1.
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TABLE 1 Percent deviance explained by generalized dissimilarity models (GDMs) fitting the
responses of protist assemblages to environmental gradients®

Deviance explained (%)

All protists Trophic mode®
Explanatory variables Taxonomy Phylogeny Phototrophs Heterotrophs Mixotrophs
Physicochemistry 38 33 35 42 18
Watershed 15 16 20 19 NS
Morphometry 6 8 5 NS NS
Weather NS NS NS 3 NS
Geography NS NS NS 2 NS

9GDMs were constructed using various community response data and categories of environmental explanatory
variables. NS, model was not statistically significant (P = 0.05).
bAnalysis was performed only on taxonomic composition response data.

(r = 0.53), TN (r = 0.50), DIC (r = 0.45), TP (r = 0.44), dissolved organic carbon (DOC;
r = 042), magnesium (r = 0.40), sodium (r = 0.38), sulfate (r = 0.37), chlorophyll a
(r = 0.33), lake colour (r = 0.22), and pH (r = 0.22). LCBD further correlated (P < 0.001)
with watershed crop cover (r = 0.35) and soil pH (r = 0.27) and correlated negatively with
soil nitrogen (r = —0.25). LCBD was negatively correlated with local diversity, estimated
as ASV richness (r = —0.44) and the Shannon (r = —0.54) and Faith’s phylogenetic diver-
sity (r = —0.34) indices (all P < 0.001).

Physicochemical and watershed conditions predict community turnover. Following
the previous observations of high community variability across an environmentally
heterogeneous set of lakes, we evaluated the drivers of taxonomic and phylogenetic
turnover based on five categories of environmental variables: (i) geography (i.e., lati-
tude, longitude, and altitude), (ii) weather, (iii) lake morphometry, (iv) physicochemis-
try, and (v) watershed characteristics, including land use and edaphic properties.

We employed generalized dissimilarity models (GDMs) to detect nonlinear trends
between community turnover and environmental gradients. Physicochemical factors
explained the highest deviance in GDMs modeling taxonomic or phylogenetic turn-
over. In order of decreasing strength, DIC, TP, chlorophyll a, magnesium, pH, potas-
sium, lake colour, surface temperature, and DOC were statistically significant predictors
of taxonomic turnover, whereas chlorophyll a, magnesium, TN, pH, calcium, and colour
were significant predictors of phylogenetic turnover. After physicochemistry, water-
shed characteristics were the most important predictors of community turnover, with
both taxonomic and phylogenetic diversity responding most strongly to soil pH and
then proportion of cropland cover. The volumetric fraction of soil coarse fragments
and natural landscape coverage were additional predictors of taxonomic and phyloge-
netic turnover, respectively. Lake morphometry, comprising maximum depth, water-
shed slope, and shoreline circularity, had relatively weak effects on turnover. Weather
and geography did not generate statistically significant GDMs. Model deviances are
summarized in Table 1, and the partial effects of individual variables are summarized in
Fig. S6 and Table S2.

Trophic strategies exhibit contrasting distributions. To examine the distributions
of different trophic strategies, we investigated the taxonomic variation of phototroph,
heterotroph, and mixotroph communities in separate PCAs (Fig. 6). Reflecting the taxo-
nomic variation emerging at the whole-community level, assemblages of each trophic
mode were distinguished by lake trophic state and ecozone along the first dimension.
However, phototrophs displayed taxonomic variation patterns contrasting those of
heterotrophs and mixotrophs. To compare the taxonomic turnover of phototrophs,
heterotrophs, or mixotrophs among lakes of the same trophic state, we measured the
distances of assemblages to the trophic state median within the two-dimensional prin-
cipal coordinate space. The mean distance of phototroph assemblages to the trophic
state median (i.e., turnover) was significantly lower in hypereutrophic lakes than in
eutrophic, mesoeutrophic, mesotrophic, or oligotrophic lakes (all P < 0.001) (Fig. S7).
In contrast, the mean distance of heterotroph assemblages was significantly higher in
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eutrophic lakes than in mesotrophic or oligotrophic lakes (all P = 0.007) (Fig. S7).
Compared with either phototroph or heterotroph assemblages, mixotroph assemb-
lages were highly dispersed within trophic state groups (Fig. S7).

Partitioning protist assemblages by trophic function further allowed us to examine the
responses of different groups to environmental conditions. GDMs showed that photo-
trophs, heterotrophs, and mixotrophs each responded most strongly to physicochemical
gradients. Chlorophyll a, DIC, potassium, and pH were predictors common to the three
trophic modes, while calcium, colour, and chloride were additional predictors of photo-
troph turnover, and TP, surface temperature, sulfate, TN, colour, and chloride were addi-
tional predictors of heterotroph turnover. Chlorophyll a followed by potassium were the
top predictors of phototroph turnover, while DIC followed by chlorophyll a were the top
predictors of heterotroph and mixotroph turnover. Watershed characteristics explained
an important amount of deviance in phototroph and heterotroph turnover: phototroph
turnover was explained by soil pH, crop coverage, soil organic carbon density, and built
development, whereas heterotroph turnover was additionally explained by soil coarse
fragments. Only phototroph turnover was predicted by lake morphometry variables
(watershed slope, lake maximum depth, and circularity). Heterotroph turnover was weakly
explained by weather, specifically air temperature and wind speed, and geography, spe-
cifically, altitude and distances between lakes. Mixotroph turnover was the least predict-
able from environmental conditions, as physicochemical factors explained less deviance
than for obligate phototroph or heterotroph turnover and GDMs modeled on geography,
weather, lake morphometry, and watershed characteristics were not statistically signifi-
cant. Model deviances are summarized in Table 1, and the partial effects of individual vari-
ables are summarized in Fig. S8 and Table S2.

DISCUSSION

Protist diversity unveiled at a continental scale. Establishing a comprehensive
perspective of freshwater protist diversity is challenging given the substantial environ-
mental heterogeneity of the millions of lakes distributed globally. Our study fills a sizable
gap by mapping protist distributions across hundreds of lakes spanning an area covering
nearly 8.4 million km? in the largest study of its kind to employ a standardized sampling
scheme (52). Protist diversity was determined in the sunlit surface waters of 366 fresh-
water lakes varying in size and degree of human impact on the watershed. The sampled
biomass bridged cell diameters across 4 orders of magnitude (0.22 to 100 wm), allowing
us to recover pico- to microscale organisms, many of which are not resolved under
standard light microscopy and which constitute an expansive microbial diversity encom-
passing the major eukaryotic lineages and trophic strategies. Our global rarefaction anal-
ysis showed that the sequencing effort provided a reasonable estimate of the genotypic
variation captured by the primer pair. The rapid accumulation of genotypes across sites
indicated that sampling hundreds of lakes was required to assess landscape diversity.
The integration of our work with the collection of recent large-scale surveys is leading to
a synoptic view of protist ecology (23, 24, 28, 42, 43, 54-57).

Surface water assemblages contain high proportions of phototrophs and het-
erotrophs. Lacustrine protist diversity was dominated by ochrophytes, which accounted
for both the highest sequence abundance and ASV richness. Cryptophytes, ciliates, dino-
flagellates, and chlorophytes were also highly represented, reflecting taxonomic profiles
typical of freshwater biomes on other continents and identified with primer pairs target-
ing other gene regions (58). The main taxa contributing to the dissimilarity between
assemblages were mixotrophic cryptophytes, whose distributions as major bacterivores
may be dependent on the occurrence of specific prey (59).

Phototrophic taxa accounted for the greatest richness and relative abundance of ASVs,

FIG 6 Legend (Continued)

are shown for the top 7 ASVs contributing to the variation explained by the first two PC dimensions.
Ecozone affiliations and trophic state classifications of lakes are represented by letter symbols and
colour, respectively.
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perhaps not unexpectedly given that assemblages were sampled from the euphotic zone.
Notably, the dominance of phototrophs within the protist fraction appears to be a distinct
feature of freshwater photic zones in contrast with the prevalence of heterotrophs in the
sunlit ocean and surface soils (13). We showed that heterotrophs and mixotrophs were
numerically important groups after phototrophs, which, along with a smaller collection of
parasites, illustrates that lake surface waters harbour a broad array of microbial functions
linking multiple trophic levels.

Protist communities respond to local environmental conditions. The key envi-
ronmental drivers of protist diversity in Canadian lakes differed from those observed in
previous large-scale surveys. Assemblages showed the strongest responses to physico-
chemical factors, including nutrient, major ion, and chlorophyll a concentrations, pH,
and lake colour. The environmental drivers in lakes differed from those in marine and
soil ecosystems, where protist diversity on a large scale is generally predicted by tem-
perature (60) and annual precipitation (28), respectively. The differences in environ-
mental filtering between biomes likely represent fundamental differences in the types
of habitats and degrees of ecosystem connectivity. Compared with the more spatially
continuous and expansive ocean and soil macroenvironments, lakes are fragmented
across the landscape, and neighbouring lakes can exhibit widely contrasting physico-
chemical attributes (10, 61). Lake heterogeneity is amplified by temporal variability and
punctuated perturbations. Higher community turnover has previously been measured
among lakes than within marine or soil ecosystems (12, 13), which we reassert is linked
to physicochemical heterogeneity.

We found that the influence of local environmental conditions far outweighed the
effects of geographic variation across the continental extent. Among LakePulse sites,
systems with the highest trophic states (typically, Prairies and Boreal Plains lakes) were
located at intermediate longitudes, latitudes, and altitudes. A study of Scandinavian
boreal lakes spanning a longitudinally aligned and narrower trophic state gradient (oli-
gotrophic to mesoeutrophic) reported that geography explained more protist commu-
nity variation than water chemistry (42), complementing our assessment that regional
physicochemical heterogeneity is a major determinant of protist diversity. Other sur-
veys identified biogeographic patterns of protist diversity structured by the isolation
and dispersal limitation of mountain lake communities (41, 43). Geographic barriers
(e.g., the Rocky Mountains) did not appear to generate strong compositional divisions
in our set of protist assemblages but were identified as having an important influence
on the distributions across LakePulse sites of crustacean zooplankton (62), a group
with greater dispersal limitation due to their larger body sizes. Instead, we found the
greatest taxonomic and phylogenetic divisions between regions distinguished by dif-
ferences in lake trophic state and other local environmental conditions.

Partitioning protist trophic diversity allowed us to examine how different compo-
nents of freshwater food webs respond to the environment. We observed contrasting
distribution patterns for each trophic mode. Phototroph assemblages among hypereu-
trophic lakes exhibited significantly lower taxonomic turnover (as evaluated by mean
distance to the trophic state median) than lakes at lower nutrient states, whereas hetero-
troph assemblages did not follow this trend but turned over significantly more rapidly
among eutrophic lakes than mesotrophic or oligotrophic lakes. However, the turnover
within each trophic mode was predicted by a mostly overlapping suite of physicochemical
factors, including chlorophyll g, DIC, ions, pH, and colour, although rank order of impor-
tance varied among groups. Nutrient (TP and TN) concentrations and surface temperature
were exclusive predictors of heterotroph turnover. All of the environmental predictors of
mixotroph turnover were common to both phototrophs and heterotrophs, with no predic-
tors unique to mixotrophs. Changes in low levels of chlorophyll a were associated with the
most rapid turnover in phototroph composition, which is to be expected given that chlo-
rophyll a is linked to phytoplankton biomass and phototroph diversity shifts along a lake
productivity gradient. The next strongest predictor of phototroph turnover was potassium,
which is not a limiting resource (63) but displayed extreme regional variation, peaking in
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the Prairies, followed by the Boreal Plains. Heterotroph and mixotroph turnover was pri-
marily predicted by DIC concentrations. Overall, the environmental drivers of heterotroph
diversity mostly reflect the bottom-up controls on primary producers traversing multiple
trophic levels but are rendered more complex by the added effects of nutrient and tem-
perature factors. Bacterial prey and top-down controls, encompassing predation and para-
sitism (not measured in this study), likely also determine trophic functional diversity.

Mixotroph distributions were the least aligned with trophic state and the least pre-
dictable from environmental conditions, which should be expected for organisms with
the metabolic versatility to occupy variable niche spaces. The balance between primary
production and prey consumption is dependent on a mixotroph’s phenotypic plasticity
(64). While mixotrophy is competitively advantageous over obligate phototrophy or
heterotrophy under low-nutrient conditions (65), primarily phototrophic mixotrophs
prevail in oligotrophic lakes and are replaced by primarily heterotrophic mixotrophs as
trophic state increases (66). Another variable driving mixotroph diversity in aquatic
ecosystems is light availability (67, 68), which is modulated by lake colour, a predictor
identified in this study. Here, too, bacterial prey and zooplankton predators with a pref-
erence for nutritious mixotrophs likely also exert controls (69).

Hypereutrophic lakes are taxonomically distinct. Hypereutrophic lakes, located
mostly in agricultural watersheds, contained protist assemblages with the lowest diversity and
highest taxonomic distinctness (i.e,, LCBD) relative to other lakes in the landscape. Specifically,
Shannon diversity was inversely related to ion and nutrient concentrations, while taxonomic
distinctness tracked with ion- and nutrient-rich conditions. Hypereutrophic conditions poten-
tially filter protist communities by creating relatively extreme conditions (e.g. light attenua-
tion), tolerated by a small number of taxa assembling into uneven communities distinct from
those in lakes at lower-nutrient states. Phosphorus is often the limiting nutrient of phytoplank-
ton in numerous freshwater systems (70, 71), yet TP was a predictor of turnover exclusive to
heterotrophs. Phosphorus was found to be an important predictor of littoral protist diversity
in European lakes (44) and of long-term microeukaryote community turnover evidenced from
paleolimnological trends (19). Interactions between protists and Cyanobacteria likely also play
a role in determining protist assemblages in hypereutrophic lakes, especially as Cyanobacteria
of the genus Microcystis were found to be associated with high-nutrient conditions across
LakePulse sites (72).

Ordinations of separate trophic modes showed that the high community variation
among eutrophic lakes was generated by heterotroph diversity, whereas obligate pho-
totroph assemblages were the least varied under hypereutrophic conditions. A positive
relationship between compositional heterogeneity and trophic state runs counter to
the expectation of reduced community variability (e.g., for phytoplankton [73]) that is
predicted to follow the leveling of abiotic conditions among lakes induced by land use
and eutrophication. Biotic homogenization appears to have trended with long-term cli-
mate warming and eutrophication in Cyanobacteria (74) and protist (20) assemblages
reconstructed from sediment core chronologies. Following our observation of increased
compositional heterogeneity among lakes as a function of trophic state, we posit that
protist communities in productive lakes are less stable over time, including over the
same season, as observed in bacterial time series (75). The temporal fluxes in abiotic con-
ditions prompting succession may be induced by allochthonous inputs or nutrient resus-
pension from sediments accrued at higher rates in regions of extensive lake use and
high populations densities (76). Furthermore, given that many Prairies and Boreal Plains
lakes are shallow and exposed to winds, temporary stratification followed by destratifica-
tion is not uncommon (77). We speculate that taxon replacement linked to land use and
eutrophication may force a re-evaluation of human impact on biodiversity. In particular,
anthropogenic pressures may not inherently decrease diversity but instead increase
turnover, possibly at the expense of rare or specialist taxa disappearing from the land-
scape pool (78).

Watersheds influence lacustrine protist diversity. While the importance of physi-
cochemical factors for lacustrine protist diversity has been described (42, 44) and ela-
borated upon in this study, the influence of the watershed, in particular soil properties
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and land use, which are often but not entirely correlated with lake physicochemical
attributes, until now has not been documented on a continental scale. We found that
the taxonomic distinctness of local assemblages (i.e., LCBD) corresponded strongly
with the proportion of crop agriculture in the watershed, while surface soil pH was an
important predictor of community turnover. Because of their concave topographies
and position in the landscape, lakes are recipients of major allochthonous subsidies,
with global effects (e.g., carbon storage) that are disproportionate to the spatial extent
of lakes (6). The influence of terrestrial catchments on within-lake community dynamics
is compelling evidence for why lakes cannot be studied apart from their watersheds.

The filtering of lacustrine protist diversity by watershed soil chemistry points to the
influence of external factors on lake conditions. Soil buffering capacity, determined by
soil texture, organic matter content, and mineral composition, is a main abiotic control
on lake water pH (79). Furthermore, soil properties control the mobility of nutrients
and their eventual input into lakes. Specifically, soil pH determines the availability and
chemical forms of nutrients, and particle size governs the movement of groundwater
carrying released nutrients (80). Soil properties also determine the composition and ac-
tivity of soil microbiomes, which perform biogeochemical transformations modulating
the availability of nutrients (81) and seed potential colonists from soils to lakes. Altered
precipitation regimes and warming temperatures associated with climate change are
expected to increase soil erosion (82) as well as terrestrial nutrient exports (83).

Given the continual increase in land surface transformed by agricultural production
and urbanization (84), accelerated watershed land use conversions are widespread.
Changes in soils associated with human activities range from increased nutrient load-
ing and acidification by nitrogenous fertilizers in agriculture (85) to shifts in carbon
storage precipitated by changes in land management practices or climate (86).
Moreover, land use and climate change interact to increase the frequency and magni-
tude of nutrient and carbon pulses to water bodies (87). In the interest of securing a
healthy future for critical freshwaters, we suggest that current soil chemistry heteroge-
neity across the landscape can inform predictions about the potential consequences of
anthropogenic watershed alterations for lakes. In particular, work can be done to
understand the microbial diversity and food web dynamics driven by various soil states
in future land use scenarios. Overall, the ability to predict lacustrine protist diversity
from watershed conditions, as demonstrated in this study, highlights an expanded
potential for monitoring lake ecosystems using remote sensing products (88).

Conclusion. This is the first study to examine the taxonomic and trophic functional
variation in protist diversity across the expansive and lake-rich Canadian landscape. We
showed that on this continental scale, lakes displayed broad environmental heteroge-
neity, including substantial variation in local physicochemical conditions driving taxo-
nomic and phylogenetic community turnover. Watershed soil pH and crop agriculture
additionally predicted community turnover and exceptional local-scale diversity.
Hypereutrophic lakes were found to contain less diverse and more distinct assemb-
lages than lower-nutrient lakes, primarily as a product of their variable heterotroph
and mixotroph compositions. In contrast, phototroph assemblages were more similar
among hypereutrophic lakes. While phototrophy was the prevailing nutritional strat-
egy in lake euphotic zones, heterotrophy was nearly as numerically important; each of
these trophic modes was highly predictable from physicochemical and other environmental
factors. Our survey and findings serve as a valuable resource for mapping species distribu-
tions and provide a basis for future research into the increasing anthropogenic impact on
lake microbiomes.

MATERIALS AND METHODS

Lake selection and sampling. Hundreds of lakes were sampled between July and early September
in 2017 to 2019 by the Natural Sciences and Engineering Research Council of Canada (NSERC) Canadian
Lake Pulse Network (52). Sampling was timed to coincide with the summertime period of water column
thermal stratification, where relevant. Lakes were sampled across 12 terrestrial ecozones, regions defined
by landform, geology, and vegetation (89). Lake selection was stratified across lake surface area and
watershed land use impact categories to capture natural and human-mediated lake heterogeneity. Only
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natural lakes with a maximum depth of at least 1 m and within 1 km from a road were considered.
Freshwater to oligosaline lakes (identified as having conductivity of <8 mS/cm and total major ion con-
centrations of <4,000 mg/L) were selected for this analysis.

Water was collected using an integrated tube sampler from the euphotic zone over a depth of up to 2
m below the surface at the deepest point in the lake (90). The site of maximum lake depth was located by
depth sounding with the aid of bathymetric maps where available. The depth of the euphotic zone was
estimated as twice the Secchi disk depth. All water sampling equipment was acid washed and rinsed three
times with lake water before use. Carboys were stored in icepack-chilled coolers until water filtration later
in the day. Water was prefiltered through 100-um nylon mesh and vacuum filtered on 47-mm-diameter
0.22-um Durapore membranes through a glass funnel at a maximum pressure of 8 inHg. Up to 500 mL of
water was filtered until the filter was nearly clogged. Filters were stored in sterile cryovials at —80°C.

18S rRNA gene amplification and sequencing. DNA was extracted using the DNeasy PowerWater
kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions with the addition of two
optional steps: after bead beating and centrifugation, 1 uL RNase A was added to samples, followed by
30 min incubation at 37°C. DNA was quantified using the Qubit dsDNA BR assay (Invitrogen, Carlsbad,
CA, USA). A ~265-bp fragment of the 18S rRNA gene V7 region was amplified with the primers 960F (5'-
GGCTTAATTTGACTCAACRCG-3') (91) and NSR1438 (5'-GGGCATCACAGACCTGTTAT-3") (92) to broadly
target microeukaryotes (93). Each PCR contained a total 25-uL mixture of 14.25 uL Milli-Q water, 5 uL
5x High-Fidelity buffer, 1.25 uL of each 10 uM primer, 0.5 uL 10 mM deoxynucleoside triphosphates
(dNTPs), 0.25 uL dimethyl sulfoxide (DMSO), 0.5 uL Phusion DNA polymerase (Thermo Fisher Scientific,
Waltham, MA, USA), and 2 ng DNA template. PCR conditions consisted of an initial denaturation at 98°C
for 1 min, 30 cycles of 98°C for 10 s, 60°C melting for 30 s, and 72°C for 20 s, and a final extension at 72°C
for 5 min. PCR products were loaded with Orange G dye on an ethidium bromide-stained 2% agarose
gel and electrophoresed at 40 V for 100 min. DNA bands aligned at the target fragment length against a
100-bp DNA ladder were excised with razor blades and gel extracted with the QIAquick gel extraction
kit (Qiagen, Hilden, Germany), modified by final elution into Milli-Q water. PCR products were submitted
to Genome Quebec for library barcoding and sequencing of 250-bp paired-end reads in three sequenc-
ing runs on an Illlumina MiSeq platform.

ASV inference and annotation. Primer sequences were removed in Cutadapt v. 3.1 (94). Trimmed
reads were processed into ASVs through DADA2 v. 1.16 (95). Samples were pooled for ASV inference
using otherwise default parameters. Taxonomy was assigned with naive Bayesian classification trained
on PR? v. 4.12.0 (96). Potentially spurious ASVs were removed by visually inspecting a de novo alignment
performed in MAFFT (97). To retain only putative protist ASVs, ASVs assigned to Metazoa, Fungi, and
Embryophyceae were removed. Taxa were assigned to trophic functional groups as either photoauto-
trophs, heterotrophs (bacterivores, cytotrophs, saprotrophs, or osmotrophs), mixotrophs, or parasites
according to lineage-specific feeding habits summarized by Adl et al. (98).

Sequence similarities with known diversity. A database of 185 rRNA gene references restricted to
the V7 region was constructed by applying the 960F/NSR1438 primer pair to PR? v. 4.13.0 in Cutadapt.
ASV top hits were queried against the PR? database in BLAST v. 2.6.0+ (99). Sequence identities were
reported for ASVs that were globally aligned to references over a length =220 nucleotides.

Environmental data collection. Lake trophic states were assigned based on TP concentration
thresholds estimated for Canadian freshwater systems: ultraoligotrophic (TP concentration, <4 wg/L),
oligotrophic (4 to 10 ug/L), mesotrophic (10 to 20 ng/L), mesoeutrophic (20 to 35 wg/L), eutrophic (35
to 100 ug/L), and hypereutrophic (>100 ug/L) (100). Meteorological conditions recorded over 7 days
leading up to sampling and ice disappearance day data were accessed from ERA5-Land hourly reanalysis
(101). Data on watershed slope and lake volume, discharge, and hydraulic residence time were accessed
from HydroLAKES v. 1.0 (5). Watershed surface soil properties were accessed from SoilGrids250m (102).
Land cover information was compiled as described by Huot et al. (52). Maps were constructed in R with
the NAD 83 coordinate reference system and using the coordinates of Canada from the package maps
(103) and ecozone shapefiles sourced from the Canada Council of Ecological Areas (89).

Environmental data were categorized into thematic groups of variables. Latitude, longitude, and alti-
tude were categorized as geography variables. Ice disappearance day and meteorological variables (air
temperature, precipitations, and net solar radiation) were categorized as weather variables. Lake surface
area, circularity, volume, maximum depth, discharge, residence time, watershed slope within 100 m of
the shoreline, watershed area, and lake-to-watershed area ratio were categorized as lake morphometry
variables. Watershed land use (crop agriculture, pasture, built development, and clear-cut forestry) and
natural land cover fractions, human population density, and mean surface soil properties (bulk density
of the fine earth fraction, cation exchange capacity, nitrogen, pH, organic carbon density, organic carbon
content in the fine earth fraction, volumetric fraction of coarse fragments, clay, sand, and silt) were cate-
gorized as watershed variables. Surface water temperature, calcium, magnesium, potassium, sodium,
chloride, sulfate, TP, TN, DIC, DOC, and chlorophyll a concentrations, pH, and lake colour were catego-
rized as lake physicochemical variables. Missing physicochemical data were replaced with ecozone me-
dian values. Highly colinear variables, evaluated by a Pearson’s correlation r value of =0.7, within all cat-
egories except physicochemistry were removed.

Diversity analyses. ASVs were aligned in the SILVA Incremental Aligner v. 1.7.2 (104) against the SILVA
138.1 SSU Ref NR 99 database (August 27, 2020 release) (105). A maximum-likelihood phylogeny was con-
structed in FastTree v. 2.1.11 using the Generalized Time-Reversible model of nucleotide evolution (106).
Phylogenetic dissimilarities between ASV assemblages were calculated as generalized UniFrac distances,
which are sensitive to compositional changes in lineages of intermediate abundance (107). Generalized
UniFrac distances (« = 0.5) were computed using the GUniFrac package.
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To deal with uneven total sequence abundance across samples, sequence count composition was
scaled to relative abundance. Rarefaction analysis was conducted on the total data set by measuring
ASV richness in assemblages randomly subsampled at each 1,000-sequence step. Taxon accumulation
was estimated in a random ordering of lakes using 100 permutations in the package vegan (108). Local
diversity indices (richness, Pielou’s evenness, Shannon diversity, and Faith’s phylogenetic diversity) were
calculated from rarefied community data (i.e., randomly subsampled to the lowest sample abundance
equaling 10,069 sequences) in the R packages vegan (108) and picante (109). PCAs were computed on
Hellinger-transformed community data in vegan.

LCBD and B-diversity partitioning analyses were performed on B-diversity estimated using 100 permu-
tations from Hellinger-transformed community data in the package adespatial (110). RV coefficients were
computed from the first two principal components or coordinates in the package FactoMineR (111).
Nonlinear relationships between p-diversity and untransformed environmental gradients were modeled
in GDMs (112, 113) in the package gdm (114). To create GDM site-pair tables, pairwise dissimilarities
between sites were weighted proportionally to the total number of sequences associated with each sam-
ple. Variable selection for GDMs was performed using backward elimination with 100 permutations per
step. To assess the dispersion in taxonomic composition among lakes of the same trophic state, the mean
Bray-Curtis distances of assemblages to trophic-state medians (i.e., centroids) calculated across the first
two principal coordinates were compared using ANOVAs, followed by post hoc Tukey's tests.

Data wrangling and statistical analysis were performed in Rv. 4.0.2 (115).

Data availability. Sequence data have been deposited in the European Nucleotide Archive under
study accession number PRJEB42538 (www.ebi.ac.uk). Scripts are accessible from https://github.com/
rebeccagarner/lakepulse_protists.
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