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Purpose: To develop a radiogenomics classifier to assess anaplastic lymphoma kinase

(ALK) gene rearrangement status in pretreated solid lung adenocarcinoma noninvasively.

Materials and Methods: This study consisted of 140 consecutive pretreated solid lung

adenocarcinoma patients with complete enhanced CT scans who were tested for both EGFR

mutations and ALK status. Pre-contrast CT and standard post-contrast CT radiogenomics

machine learning classifiers were designed as two separate classifiers. In each classifier,

dataset was randomly split into training and independent testing group on a 7:3 ratio,

accordingly subjected to a 5-fold cross-validation. After normalization, best feature subsets

were selected by Pearson correlation coefficient (PCC) and analysis of variance (ANOVA) or

recursive feature elimination (RFE), whereupon a radiomics classifier was built with support

vector machine (SVM). The discriminating performance was assessed with the area under

receiver-operating characteristic curve (AUC), accuracy, sensitivity, specificity, positive

predictive value (PPV), and negative predictive value (NPV).

Results: In classifier one, 98 cases were selected as training data set, 42 cases as independent

testing data set. In classifier two, 87 cases were selected as training data set, 37 cases as

independent testing data set. Both classifiers extracted 851 radiomics features. The top 25 pre-

contrast features and top 19 post-contrast features were selected to build optimal ALK+ radio-

genomics classifiers accordingly. The accuracies, AUCs, sensitivity, specificity, PPV, and NPVof

pre-contrast CTclassifier were 78.57%, 80.10% (CI: 0.6538–0.9222), 71.43%, 82.14%, 66.67%,

and 85.19%, respectively. Those results of standard post-contrast CT classifier were 81.08%,

82.85% (CI: 0.6630–0.9567), 76.92%, 83.33%, 71.43%, and 86.96%.

Conclusion: Solid lung adenocarcinoma ALK+ radiogenomics classifier of standard post-

contrast CT radiomics biomarkers produced superior performance compared with that of pre-

contrast one, suggesting that post-contrast CT radiomics should be recommended in the

context of solid lung adenocarcinoma radiogenomics AI. Standard post-contrast CT machine

learning radiogenomics classifier could help precisely identify solid adenocarcinoma ALK

rearrangement status, which may act as a pragmatic and cost-efficient substitute for tradi-

tional invasive ALK status test.

Keywords: radiogenomics, SVM, non-small cell lung cancer, anaplastic lymphoma kinase,
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Introduction
Lung cancer is one of the leading causes of cancer-related death worldwide, among

which approximately 85–90%1 of cases are non-small cell lung cancer (NSCLC).

Lung adenocarcinomas are marked with distinct genomic changes that are correlated
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with clinically relevant molecular subtypes.2 Nowadays, the

treatment of advanced NSCLC including adenocarcinoma

has shifted into determining oncogenic driver mutation

subtypes.3 Epidermal growth factor receptor (EGFR) muta-

tions and anaplastic lymphoma kinase (ALK) rearrange-

ment are the two most targeting “druggable” oncogenic

driver mutation subtypes in NSCLC.4 ALK+ NSCLC,

though it accounts for only 2–7% of NSCLC,5,6 expresses

a sensitive responsiveness to ALK inhibitors such as cer-

itinib, crizotinib, lorlatinib,7 and brigatinib.8 ALK targeted

therapies have been developed and subsequently continu-

ously evolved for more than ten years since the discovery of

ALK rearrangement in NSCLC, boosting achievement in

median progression free survival (PFS),9 overall response

rate (ORR),10 overall survival (OS),11 and individual preci-

sion medicine.7

To determine eligible pretreated adenocarcinoma

patients for ALK targeted therapy, it is crucial to address

both pragmatic and cost-efficient assessment of ALK sta-

tus. Fluorescence in situ hybridization (FISH) and next-

generation sequencing (NGS) are recognized as the “gold

standard” for ALK gene test.12 Immunohistochemistry

(IHC) serves as a widely-used surrogate to FISH or mole-

cular method. Other methods include quantitative reverse

transcription-PCR, RNA scope, etc. Traditional invasive

gene testing was recognized as the one and only effective

method to identify those ALK positive patients. The incap-

ability to obtain overall information about highly hetero-

geneous lung cancer preoperatively remains a major

limitation of traditional gene testing based on invasive

local puncture sample. Besides, the broad employment of

NGS in routine clinical setting is hampered by its rela-

tively time consuming, invasive nature, as well as compli-

cated processes.12 All these limitations may enormously

restrict the practicability of individual precision medicine.

In clinical practice, computed tomography (CT) scanning

is the most easy-to-handle approach to diagnose and evaluate

pretreated lung cancer. Radiomics is an emerging field that

involves the use of high-throughput computing to extract

a large number of quantitative features frommedical imaging

data.13 Recently, radiomics research interest in NSCLC

including adenocarcinoma has been growing, involving sur-

vival prediction,14,15 distant metastasis prediction,16 local

control and radiation pneumonitis,17 histologic subtypes

classification,18 targeted therapy response phenotype,19 etc.

The attempts to define the association between imaging

textures (CT, for example) and cancer genomic phenotypes

have accelerated the development of “radiogenomics”. By

extracting high throughout of CT series, radiogenomics

allows the noninvasive diagnosis of tumor gene mutations

in NSCLC EGFR mutation prediction,20 prediction of patho-

logical stage in NSCLC using machine learning21 or deep

learning22 and NSCLC multi-subtype classifications.23

Whilst several previous studies have demonstrated cer-

tain radiological characteristics associated with NSCLC

ALK+ and built a diagnostic model24 based on radiologi-

cal characteristics and clinical factors, the role of CT based

radiogenomics machine learning in ALK+ solid lung ade-

nocarcinoma remains to be explored. Therefore, we

hypothesized that lung adenocarcinoma ALK status differ-

ences and relevant phenotype discriminations are mirrored

in radiomics features. Thus, radiogenomics machine learn-

ing of standard enhanced CT scans, which combines 3D

radiomics features, blood supply distinction, and entire

tumor burden information, can help to identify solid lung

adenocarcinoma anaplastic lymphoma kinase gene rear-

rangement status.

Materials and Methods
Figure 1 demonstrates the flowchart of this study.

Ethical Approval
This study was conducted in accordance with the Declaration

of Helsinki. This retrospective single center analysis was

approved by the local ethics committee of Zhejiang Cancer

Hospital (IRB-2019-142). Written informed consent for pre-

and post-contrast enhanced CT series were obtained from all

patients.

Patients
We retrospectively reviewed all pretreated solid lung ade-

nocarcinoma patients whose ALK and EGFR status were

analyzed and who underwent pre- and post-contrast CT

from September 2015 to September 2018. Accordingly,

forty-seven ALK+ patients were identified as the study

group. Meanwhile, pretreated solid adenocarcinoma

patients with positive EGFR mutations (n=44) and none

mutation (n=49) were randomly selected from local data-

base on a 1:1:1 ratio as contrast group. In total, 140 cases

were initially gathered (53 men and 87 women; mean age,

54.19 years; range, 23–80 years) according to the follow-

ing criteria: 1) pathologically confirmed adenocarcinoma;

2) presence of solid lesion on pretreatment CT; 3) ALK

rearrangement was diagnosed by IHC or NGS technolo-

gies; EGFR mutation was tested by amplification refrac-

tory mutation system (ARMs). 4) Less than one-month
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interval between CT exams and gene alternation analysis.

5) No compound cancer history. In classifier two, cases

with inconsistency between pre- and post-contrast slice

thickness were further excluded. Clinical characteristics

including sex, age, histopathology, staging, and smoking

history were recorded. Clinical features between ALK+

group and ALK- group were analyzed using SPSS 18.0

for windows (SPSS Inc); the Pearson χ2 test or Fisher’s

exact test was used to compare qualitative variables; and

quantitative variables were analyzed by the t-test or

Pearson’s correlation test.

Image Acquisition
All patients underwent both pre- and standard iodine enhanced

CT scans when they were initially admitted to our institution

before any treatment. CT exams were performed either

on a 16-detector CT scanner or on a 64-detector CT scanner

(Sensation 16; SOMATOM Definition Flash 64; Siemens

Medical Solutions, Forchheim, Germany). For the 16-detector

scanner, the parameters were 120 kV and 100 effective mA.

For the 64-detector scanner, the parameters were 120 kV and

110 effectivemA.Dosemodulationwas used in both scanners.

Images were reconstructed with a section thickness of 5 mm

and a gap of 1 mm. Post-contrast scanning started 38–48

s after intravenous administration 100mL of loversol injection

(Optiray, Guerbet, Villepinte, France) at a rate of 2.8 mL/sec

by using a power injector.

Image Pre-Processing and Segmentation
Every lesion was segmented manually slice by slice by

two radiologists (reader 1: X.Y.G. with 5 years experience;

reader 2: A.N.Z. with 5 years experience) using ITK-

SNAP (http://www.itksnap.org), and then scrutinized by

a radiology professor (H.Z.Z, with 26 years work experi-

ence). We further tested intra- and inter-observer reprodu-

cibility according to Wu et al.25 Accordingly, we initially

chose 25 lesions and lay an ICC greater than 0.75 as

satisfying reproducibility agreement.

Machine Learning Process
In order to be potentially clinically effective, we designed

classifiers on pre-contrast CT features (classifier 1) and

standard post-contrast enhanced CT features (classifier 2).

In each classifier, radiomics features were extracted from

each ROI with Pyradiomics (http://pyradiomics.readthedocs.

io/en/latest/index.html). Classes of features included Shape,

First Order, Gray Level Co-occurrence Matrix, Gray Level

Size Zone Matrix, Gray Level Run Length Matrix,

Neighboring Gray Tone Difference Matrix and Gray Level

Dependence Matrix. We then applied normalization and stan-

dardization on the feature matrix. For each feature vector, we

calculated the L2 norm and divided by it. Then the feature

vector was mapped to a unit vector. Since the dimension of

feature space was high, we compared the similarity of each

feature pair. According to a previous study,26 if the Pearson

correlation coefficient (PCC) value of the feature pair was

larger than 0.86, we randomly removed one of them. After

this process, the dimension of the feature space was reduced

and each feature was independent to each other. Before build-

ing the model, we tried analysis of variance (ANOVA) and

recursive feature elimination (RFE) separately to select fea-

tures. Finally, we picked the best-behaved feature selection

Figure 1 Flowchart of this study. (A) Patients. (B) Image Acquisition. (C) ROI Segmentation. (D) Feature Extraction and Selection. (E) SVM Construction and Validation.
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method by comparing the results between the two methods.

ANOVA is a common method to explore the significant fea-

tures corresponding to the labels. F-value was calculated to

evaluate the relationship between features and the labels. We

sorted features according to the corresponding F-value and

selected a specific number of features to build the model. The

goal of RFE is to select features based on a classifier by

recursively considering smaller set of the features. We used

support vector machine (SVM) as the machine learning clas-

sifier and applied synthetic minority oversampling technique

(SMOTE) algorithm to balance between data groups. The

kernel function has the ability to map the features into

a higher dimension to search the hyper-plane for separating

the cases with different labels. Here we used the linear kernel

function because it was easier to explain the coefficients of the

features for the final model. To prove the performance of the

model, we applied cross-validation with 5-folder on the data

set. The performance of the model was evaluated using recei-

ver operating characteristic (ROC) curve analysis. The area

under the ROC curve (AUC) was calculated for quantification.

The accuracy, sensitivity, specificity, positive predictive value

(PPV), and negative predictive value (NPV) were also calcu-

lated at a cutoff value that maximized the value of the Yorden

index. We also boosted estimation 1000 times and applied

paired t-test to give the 95% confidence interval. All these

processes were implemented with FeAture Explorer (FAE,

v0.2.5, https://github.com/salan668/FAE) on Python (3.6.8,

https://www.python.org/).

Results
Clinical and Imaging Data
Table 1 demonstrates the clinical characteristics of ALK+

adenocarcinoma group and ALK- adenocarcinoma group.

In classifier two, 3 ALK+ patients and 13 ALK- patients

(6 EGFR+, 7 negative) were excluded due to inconsistency

between pre- and post-contrast slice thickness. All the

inter- and intra-observer reproducibility of lesions’ seg-

mentation reached a satisfying standard. Hence, the rest

of the ROIs were drawn by the first radiologist. Figure 2

demonstrates an example of ALK+ patients with pre- and

standard post-contrast CT scans.

Classifier 1: Pre-Contrast CT

Radiogenomics Classifier
During this process, only features extracted from pre-

contrast CT were analyzed. One hundred and forty cases

were randomly split into training data set (n=98), and

independent testing data set (n=42) on a 7:3 ratio. The top

25 features were chosen by ANOVA across a total of

851 features. Figure 3B demonstrates the OSE feature selec-

tion method. In this classifier, the pre-contrast CT radio-

genomics classifier provided a diagnostic accuracy of

78.57%. The AUC was 85.90% in the training cohort,

80.10% in the validation cohort, and 80.10% (95% CI:

0.6538–0.9222) in the test cohort with 71.43% sensibility,

82.14% specificity, 66.67% PPV, and 85.19% NPV

(Table 2). Figure 3A demonstrates the ROC curve of classi-

fier 1. Figure 3C demonstrates the contribution of selected

features in classifier 1.

Classifier 2: Post-Contrast CT

Radiogenomics Classifier
During this process, only features extracted from post-

contrast CT were analyzed. One hundred and twenty-four

cases were randomly split into training data set (n=87),

and independent t-testing data set (n=37) on a 7:3 ratio.

The top 19 features were chosen by RFE across a total of

851 features. Figure 4B demonstrates the OSE feature

selection method. In this classifier, the pre-contrast CT

radiogenomics classifier provided a diagnostic accuracy

of 81.08%. The AUC was 91.10% in the training cohort,

82.85% in the validation cohort, and 82.90% (95% CI:

0.6630–0.9567) in the test cohort with 76.92% sensibility,

83.33% specificity, 71.43% PPV, and 86.96% NPV

(Table 3). Figure 4A demonstrates the ROC curve of

classifier 2. Figure 4C demonstrates the contribution of

selected features in classifier 2.

Discussion
Highlighted by therapeutic advances in ALK inhibitors,

assessing personalized ALK status effectively and accu-

rately is of significant importance. However, in clinical

practice, the availability of attainable and sufficient ALK

status test is sometimes challenging. In this study,

a radiogenomics machine learning classifier built with

19 selected standard post-contrast CT radiomics feature

to assess ALK+ status in pretreated solid lung adenocarci-

noma showed the best diagnostic performance, compared

with that of pre-contrast CT classifier. Therefore, the stan-

dard post-contrast CT machine learning radiogenomics

classifier could help precisely and non-invasively identify

solid lung adenocarcinoma ALK rearrangement status,

which may act as a pragmatic and cost-efficient substitute

for traditional invasive ALK status test.
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Generally, there are three major oncogenic driver muta-

tion subtypes of lung adenocarcinoma, namely the most

common and widely assessed epidermal growth factor

receptor (EGFR), ALK and Kirsten rat sarcoma viral onco-

gene homolog (KRAS). ALK+ cases represent a small but

significant adenocarcinoma subgroup, because it makes up

to 30% in the nonsmoking EGFR- NSCLC population.24

Notably, among all oncogenic driver mutation subtypes,

only ALK+ and EGFR+ cases reacted to specific targeted

drugs approved by both FDA27,28 and CFDA strikingly. The

latest guideline29 suggested that EGFR and ALK gene

status must be tested in lung cancer. ALK fusions typically

occur independently from EGFR mutations,30 making it

important to distinguish ALK+ cases from EGFR+ cases.

Hence, in this study, we enrolled both EGFR+ cases and

ALK- EGFR- oncogenic driver mutation cases in the con-

trast cohort.2 It is widely recognized that ALK+

adenocarcinomas are usually solid nodules or masses,2

pure ground glass nodules are scarce31 and have distinct

radiological characteristics. Besides, conventional percuta-

neous transthoracic needle biopsy for pure ground glass

nodules has certain limitations32 and was not highly recom-

mended in our institution. Thus, we focused on solid lung

adenocarcinoma lesions in this study.

In contrast to overall cases, ALK+ patients are typically

younger, and present a non-smoking (defined as those who

smoked less than 100 cigarettes in their lifetime33) or rela-

tively light smoking history.34 Consistent with previous stu-

dies, ALK+ patients were significantly younger compared

with ALK- patients in our study. However, smoking history

and female gender were not significantly distinguishable.

Most patients in our ALK+ study group had distant metas-

tasis. Common metastatic sites in our ALK+ study group

were brain, pleura, contralateral lung, liver, and bone.

In clinical practice, IHC serves as a practical method to

detect ALK status. Generally, only samples with equivocal

IHC patterns were further handled with the “gold standard”

FISH or NGS methods. In our research, all the patients

underwent IHC to test ALK status, only four patients with

not high positive ALK expression were further diagnosed

with ALK+ by NGS test. In addition to obtaining traditional

tissue, recently, several minimally invasive cytological-

based approaches have been adopted35 including

samples from fine-needle aspiration,36 pleural effusion,

bronchial brushing, etc. However, multiple obstacles such

as relatively high cost, invasive risks, limited evaluation of

whole lesion area as well as limited sensitivity cytological

samples37 hamper the widespread identification of ALK+

adenocarcinoma patients. Radiogenomics addresses the need

for a noninvasive measurement to distinguish patients with

ALK+ adenocarcinoma who should undergo ALK targeted

therapy. In addition, this radiogenomics analysis adequately

involved 3D radiomics features, blood supply distinction

and entire tumor burden information. Besides, clinical CT

series are more accessible since most patients tend to be

clinically diagnosed by CT scanning firstly.

Recent ALK+ NSCLC radiology studies mainly

focused on subjective traditional radiological characteris-

tics analysis38 based on naked eyes or on quantitative

parameters drained from dual-energy spectral computed

tomography (DESCT).39 Kim et al24 built an ALK+ pre-

dictive model yielding an AUC value of 0.832, combining

multi-modality radiological characteristics and clinical

factors. Recently, Ruan et al reported a best AUC value

of 0.873, combining several 18F-FDG PET/CT

parameters.37 Only a limited, small amount of readable

Table 1 Clinical Characteristics of the ALK (+) and ALK (-)

Patients

Features ALK (+) ALK (-) P value

No. of

Patients

(n=47)

% No. of

Patients

(n=93)

%

Age (years) 51.38 ±

10.830

55.60 ±

9.339

0.018

Gender 1.000

Male 18 35

Female 29 58

Smoking status 1.000

Non-smoking 32 63

Smoking 15 30

TNM stage* 0.594

I–II 3 4

III–IV 44 89

Pathology

Adenocarcinoma 47 93

Distant metastasis 0.513

No 12 18

Yes 35 75

One site 17 48

Multiple sites 18 27

Brain 14 29.79% 22 23.66%

Pleura 13 27.66% 14 15.05%

Contralateral lung 11 23.40% 20 21.51%

Liver 6 12.77% 7 7.53%

Bone 7 14.89% 39 41.94%

Note: *Fisher’s exact test.
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imaging features were evaluated and utilized in recent

conventional studies, leaving a huge amount of precious

image information which could be potentially helpful to

diagnose ALK+ status, untouched. By combining both

various radiomics features of CT and novel machine learn-

ing, this study mined the conventional but practical CT

image data to the utmost extent. This preliminary study

outperformed previous studies by reaching comparatively

precise adenocarcinoma ALK+ status diagnosis automati-

cally, meanwhile objectively.

Lately, a handful of radiogenomics studies on lung

cancer involved contrast CT images: Tu et al20 built

an integrated EGFR+ NSCLC model (training cohort

AUC/validation cohort AUC = 0.798/0.818) with pre-

contrast CT radiomics, clinical and morphological data,

which outperformed a clinical model. Zhao et al developed

Figure 2 CT images obtained in a 49-year old woman with ALK rearrangement solid lung adenocarcinoma. Transverse mediastinal window, 5 mm slice thickness. (A and B)
Pre-contrast scans. (C and D) Standard post-contrast scans.

Figure 3 Results of classifier 1. (A) The receiver-operating characteristic curve of classifier 1. (B) Selection of optimal features using ANOVA. (C) Contribution of selected

radiomics features of classifier 1.
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a deep learning system based on 3D convolutional neural

network (CNN) to predict EGFR+ in pulmonary adeno-

carcinoma and achieved an AUC of 75%.22 He et al40

suggested that early contrast enhancement within 25

s affected the ability to diagnose lung nodules, lung can-

cer, and that non-contrast CT images showed better diag-

nostic performance. However, in clinical practice,

a 25 second delay, which could be too early for lung lesion

enhancement to show up, is not the standard timing for

lung contrast enhancement. Kakino et al41 claimed that

contrast enhancement in the delayed phase (120 s) of CT

image for NSCLC patients affected some of the radiomics

features and the variability of radiomics features, com-

pared with non-contrast CT images. Of note, the perfor-

mance of this radiogenomics classier was improved by

replacing pre-contrast CT images with clinical standard

post 38–48 s contrast CT images. One possible reason

for this could be that the contrast enhancement during

a proper time window may bring forward additional infor-

mation that could be utilized by AI, suggesting that proper

post-contrast CT radiomics should be recommended in the

context of future NSCLC radiogenomics AI approaches.

In this study, two different scanners from the same

manufacturer were adopted. A previous study42 evaluated

NSCLC images from 100 CT scanners (including different

manufacturers) at 35 clinics and found the radiomics vari-

eties, which can be significantly reduced by image

normalization and standardization,43 were relatively

small. Hence, before analysis, we applied standardization

and normalization to all the matrices. According to

a recent NSCLC EGFR radiomics study, compared with

thick CT slice (5 mm), thin slice (1 mm) achieved the best

prediction value, independently of convolution kernels.44

In this retrospective study, nevertheless, in view of image

standardization among each scan and avoiding interpola-

tion, all CT images carried equal slice thickness of 5 mm.

In conclusion, this preliminary radiogenomics machine

learning suggested: 1) solid lung adenocarcinoma ALK+

radiogenomics classifier of standard post-contrast CT

radiomics biomarkers produced superior performance

compared with that of pre-contrast one, suggesting that

post-contrast CT radiomics should be recommended in

the context of lung adenocarcinoma radiogenomics AI. 2)

Standard post-contrast CT machine learning radioge-

nomics classifier could help to precisely identify solid

lung adenocarcinoma ALK rearrangement status, which

may act as a pragmatic and cost-efficient substitute for

traditional invasive ALK status testing.

This study is limited by relatively small sample size,

which cannot reflect the overall ALK+ adenocarcinoma

population. Additionally, selection bias is inevitable due

to its retrospective nature. Also, only three leading cate-

gories of adenocarcinoma were involved in this study;

some rare genomic categories with low prevalence rate

Table 2 Diagnostic Efficiency of Classifier 1

Statistics Value

Accuracy 0.7857

AUC 0.8010

AUC 95% CIs [0.6538–0.9222]

NPV 0.8519

PPV 0.6667

Sensitivity 0.7143

Specificity 0.8214

Figure 4 Results of classifier 2. (A) The receiver-operating characteristic curve of classifier 2. (B) Selection of optimal features using RFE. (C) Contribution of selected

radiomics features of classifier 2.

Table 3 Diagnostic Efficiency of Classifier 2

Statistics Value

Accuracy 0.8108

AUC 0.8285

AUC 95% CIs [0.6630–0.9567]

NPV 0.8696

PPV 0.7143

Sensitivity 0.7692

Specificity 0.8333
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were not included. Therefore, a further prospective multi-

center whole-genome adenocarcinoma radiogenomics

study is called for to validate our current results.

Abbreviations
ALK, anaplastic lymphoma kinase; PCC, Pearson correla-

tion coefficient; ANOVA, analysis of variance; RFE, recur-

sive feature elimination; SVM, support vector machine;

AUC, area under receiver-operating characteristic curve;

PPV, positive predictive value; NPV, negative predictive

value; NSCLC, non-small cell lung cancer; EGFR, epidermal

growth factor receptor; PFS, progression free survival; ORR,

overall response rate; OS, overall survival; NGS, next-

generation sequencing; IHC, immunohistochemistry;

SMOTE, synthetic minority oversampling technique;

KRAS, Kirsten rat sarcoma viral oncogene homolog;

DESCT, dual-energy spectral computed tomography; CNN,

convolutional neural network.

Funding
This work was supported by the National Natural Science

Foundation of China (Grant number: 81702371) and

Natural Science Foundation of Zhejiang Province (Grant

number: LY20H160004).

Disclosure
The authors declared no conflicts of interest.

References
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A.

Global cancer statistics 2018: GLOBOCAN estimates of incidence and
mortality worldwide for 36 cancers in 185 countries. CA Cancer
J Clin. 2018;68(6):394–424.

2. Choi CM, Kim MY, Hwang HJ, Lee JB, Kim WS. Advanced adeno-
carcinoma of the lung: comparison of CT characteristics of patients
with anaplastic lymphoma kinase gene rearrangement and those with
epidermal growth factor receptor mutation. Radiology. 2015;275
(1):272–279. doi:10.1148/radiol.14140848

3. Hoang T, Myung SK, Pham TT, Park B. Efficacy of crizotinib, cer-
itinib, and alectinib in ALK-positive non-small cell lung cancer treat-
ment: a meta-analysis of clinical trials. Cancers. 2020;12(3):526.
doi:10.3390/cancers12030526

4. Minguet J, Smith KH, Bramlage P. Targeted therapies for treatment of
non-small cell lung cancer–recent advances and future perspectives.
Int J Cancer. 2016;138(11):2549–2561. doi:10.1002/ijc.29915

5. Tian HX, Zhang XC, Yang JJ, et al. Clinical characteristics and
sequence complexity of anaplastic lymphoma kinase gene fusions in
Chinese lung cancer patients. Lung Cancer. 2017;114:90–95.
doi:10.1016/j.lungcan.2017.11.001

6. Bendaly E, Dalal AA, Culver K, et al. Treatment patterns and early
outcomes of ALK-positive non-small cell lung cancer patients receiv-
ing ceritinib: a chart review study. Adv Ther. 2017;34(5):1145–1156.
doi:10.1007/s12325-017-0527-6

7. Thai AA, Solomon BJ. Treatment of ALK-positive nonsmall cell
lung cancer: recent advances. Curr Opin Oncol. 2018;30(2):84–91.
doi:10.1097/CCO.0000000000000431

8. Ng TL, Narasimhan N, Gupta N, Venkatakrishnan K, Kerstein D,
Camidge DR. Early-onset pulmonary events associated with brigati-
nib use in advanced non-small cell lung cancer. J Thorac Oncol.
2020. doi:10.1016/j.jtho.2020.02.011

9. Fan J, Fong T, Xia Z, Zhang J, Luo P. The efficacy and safety of ALK
inhibitors in the treatment of ALK-positive non-small cell lung can-
cer: a network meta-analysis. Cancer Med. 2018;7(10):4993–5005.
doi:10.1002/cam4.1768

10. Solomon BJ, Mok T. First-line crizotinib in ALK-positive lung
cancer. N Engl J Med. 2015;372(8):782.

11. Li G, Dai WR, Shao FC. Effect of ALK-inhibitors in the treatment of
non-small cell lung cancer: a systematic review and meta-analysis.
Eur Rev Med Pharmacol Sci. 2017;21(15):3496–3503.

12. Liu Y, Wu S, Shi X, Liang Z, Zeng X. ALK detection in lung cancer:
identification of atypical and cryptic ALK rearrangements using an
optimal algorithm. J Cancer Res Clin Oncol. 2020;146
(5):1307–1320. doi:10.1007/s00432-020-03166-1

13. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than
pictures, they are data. Radiology. 2016;278(2):563–577. doi:10.
1148/radiol.2015151169

14. Yang L, Yang J, Zhou X, et al. Development of a radiomics nomo-
gram based on the 2D and 3D CT features to predict the survival of
non-small cell lung cancer patients. Eur Radiol. 2019;29
(5):2196–2206. doi:10.1007/s00330-018-5770-y

15. Li H, Galperin-Aizenberg M, Pryma D, Simone CB, Fan Y.
Unsupervised machine learning of radiomic features for predicting
treatment response and overall survival of early stage non-small cell
lung cancer patients treated with stereotactic body radiation therapy.
Radiat Oncol. 2018;129(2):218–226. doi:10.1016/j.radonc.2018.06.025

16. Dou TH, Coroller TP, van Griethuysen JJM, Mak RH, Aerts HJWL.
Peritumoral radiomics features predict distant metastasis in locally
advanced NSCLC. PLoS One. 2018;13(11):e0206108. doi:10.1371/
journal.pone.0206108

17. Luo Y, McShan DL, Matuszak MM, et al. A multiobjective Bayesian
networks approach for joint prediction of tumor local control and
radiation pneumonitis in nonsmall-cell lung cancer (NSCLC) for
response-adapted radiotherapy. Med Phys. 2018;45(8):3980–3995.
doi:10.1002/mp.13029

18. Zhu X, Dong D, Chen Z, et al. Radiomic signature as a diagnostic factor
for histologic subtype classification of non-small cell lung cancer. Eur
Radiol. 2018;28(7):2772–2778. doi:10.1007/s00330-017-5221-1

19. Aerts HJ, Grossmann P, Tan Y, et al. Defining a radiomic response
phenotype: a pilot study using targeted therapy in NSCLC. Sci Rep.
2016;6:33860. doi:10.1038/srep33860

20. Tu W, Sun G, Fan L, et al. Radiomics signature: A potential and
incremental predictor for EGFR mutation status in NSCLC patients,
comparison with CT morphology. Lung Cancer. 2019;132:28–35.
doi:10.1016/j.lungcan.2019.03.025

21. Yu L, Tao G, Zhu L, et al. Prediction of pathologic stage in non-small
cell lung cancer using machine learning algorithm based on CT
image feature analysis. BMC Cancer. 2019;19(1):464. doi:10.1186/
s12885-019-5646-9

22. Zhao W, Yang J, Ni B, et al. Toward automatic prediction of EGFR
mutation status in pulmonary adenocarcinoma with 3D deep learning.
Cancer Med. 2019;8(7):3532–3543. doi:10.1002/cam4.2233

23. Liu J, Cui J, Liu F, Yuan Y, Guo F, Zhang G. Multi-subtype classi-
fication model for non-small cell lung cancer based on radiomics:
SLS model. Med Phys. 2019;46(7):3091–3100. doi:10.1002/
mp.13551

24. Kim TJ, Lee CT, Jheon SH, Park JS, Chung JH. Radiologic character-
istics of surgically resected non-small cell lung cancer With ALK
rearrangement or EGFR mutations. Ann Thorac Surg. 2016;101
(2):473–480. doi:10.1016/j.athoracsur.2015.07.062

Ma et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
OncoTargets and Therapy 2020:136934

https://doi.org/10.1148/radiol.14140848
https://doi.org/10.3390/cancers12030526
https://doi.org/10.1002/ijc.29915
https://doi.org/10.1016/j.lungcan.2017.11.001
https://doi.org/10.1007/s12325-017-0527-6
https://doi.org/10.1097/CCO.0000000000000431
https://doi.org/10.1016/j.jtho.2020.02.011
https://doi.org/10.1002/cam4.1768
https://doi.org/10.1007/s00432-020-03166-1
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1007/s00330-018-5770-y
https://doi.org/10.1016/j.radonc.2018.06.025
https://doi.org/10.1371/journal.pone.0206108
https://doi.org/10.1371/journal.pone.0206108
https://doi.org/10.1002/mp.13029
https://doi.org/10.1007/s00330-017-5221-1
https://doi.org/10.1038/srep33860
https://doi.org/10.1016/j.lungcan.2019.03.025
https://doi.org/10.1186/s12885-019-5646-9
https://doi.org/10.1186/s12885-019-5646-9
https://doi.org/10.1002/cam4.2233
https://doi.org/10.1002/mp.13551
https://doi.org/10.1002/mp.13551
https://doi.org/10.1016/j.athoracsur.2015.07.062
http://www.dovepress.com
http://www.dovepress.com


25. Wu S, Zheng J, Li Y, et al. A radiomics nomogram for the preoperative
prediction of lymph node metastasis in bladder cancer. Clin Cancer Res.
2017;23(22):6904–6911. doi:10.1158/1078-0432.CCR-17-1510

26. Liu Z, Li Z, Qu J, et al. Radiomics of multiparametric MRI for
pretreatment prediction of pathologic complete response to neoadju-
vant chemotherapy in breast cancer: a multicenter study. Clin Cancer
Res. 2019;25(12):3538–3547. doi:10.1158/1078-0432.CCR-18-3190

27. Malik SM, Maher VE, Bijwaard KE, et al. U.S. Food and Drug
Administration approval: crizotinib for treatment of advanced or meta-
static non-small cell lung cancer that is anaplastic lymphoma kinase
positive. Clin Cancer Res. 2014;20(8):2029–2034. doi:10.1158/1078-
0432.CCR-13-3077

28. Kazandjian D, Blumenthal GM, Yuan W, He K, Keegan P, Pazdur R.
FDA approval of gefitinib for the treatment of patients with metastatic
EGFR mutation-positive non-small cell lung cancer. Clin Cancer Res.
2016;22(6):1307–1312. doi:10.1158/1078-0432.CCR-15-2266

29. Ettinger DS, Wood DE, Aggarwal C, et al. NCCN guidelines
insights: non-small cell lung cancer, version 1.2020. J Natl Compr
Canc Netw. 2019;17(12):1464–1472. doi:10.6004/jnccn.2019.0059

30. Zhou JY, Zheng J, Yu ZF, et al. Comparative analysis of clinicor-
adiologic characteristics of lung adenocarcinomas with ALK rearran-
gements or EGFR mutations. Eur Radiol. 2015;25(5):1257–1266.
doi:10.1007/s00330-014-3516-z

31. Fukui T, Yatabe Y, Kobayashi Y, et al. Clinicoradiologic character-
istics of patients with lung adenocarcinoma harboring EML4-ALK
fusion oncogene. Lung Cancer. 2012;77(2):319–325. doi:10.1016/j.
lungcan.2012.03.013

32. Lee SM, Park CM, Lee KH, Bahn YE, Kim JI, Goo JM. C-arm
cone-beam CT-guided percutaneous transthoracic needle biopsy of
lung nodules: clinical experience in 1108 patients. Radiology.
2014;271(1):291–300. doi:10.1148/radiol.13131265

33. Saito S, Espinoza-Mercado F, Liu H, Sata N, Cui X, Soukiasian HJ.
Current status of research and treatment for non-small cell lung
cancer in never-smoking females. Cancer Biol Ther. 2017;18
(6):359–368. doi:10.1080/15384047.2017.1323580

34. Rodig SJ, Mino-Kenudson M, Dacic S, et al. Unique clinicopatholo-
gic features characterize ALK-rearranged lung adenocarcinoma in the
western population. Clin Cancer Res. 2009;15(16):5216–5223.
doi:10.1158/1078-0432.CCR-09-0802

35. Zito Marino F, Rossi G, Brunelli M, et al. Diagnosis of anaplastic
lymphoma kinase rearrangement in cytological samples through
a fluorescence in situ hybridization-based assay: cytological smears
versus cell blocks. Cancer Cytopathol. 2017;125(5):303–312.
doi:10.1002/cncy.21835

36. Lindeman NI, Cagle PT, Aisner DL, et al. Updated Molecular Testing
Guideline for the Selection of Lung Cancer Patients for Treatment
With Targeted Tyrosine Kinase Inhibitors: guideline From the
College of American Pathologists, the International Association for
the Study of Lung Cancer, and the Association for Molecular
Pathology. J Mol Diagn. 2018;20(2):129–159. doi:10.1016/j.
jmoldx.2017.11.004

37. Ruan M, Liu L, Wang L, et al. Correlation between combining F-FDG
PET/CT metabolic parameters and other clinical features and ALK or
ROS1 fusion in patients with non-small-cell lung cancer. Eur J Nucl
Med Mol Imaging. 2020;47(5):1183–1197. doi:10.1007/s00259-019-
04652-6

38. Rizzo S, Petrella F, Buscarino V, et al. CT radiogenomic character-
ization of EGFR, K-RAS, and ALK mutations in non-small cell lung
cancer. Eur Radiol. 2016;26(1):32–42. doi:10.1007/s00330-015-
3814-0

39. LiM, Zhang L, TangW, et al. EGFRQuantitative features of dual-energy
spectral computed tomography for solid lung adenocarcinoma with and
mutations, and rearrangement: a preliminary study. Transl Lung Cancer
Res. 2019;8(4):401–412. doi:10.21037/tlcr.2019.08.13

40. He L, Huang Y, Ma Z, Liang C, Liang C, Liu Z. Effects of
contrast-enhancement, reconstruction slice thickness and convolution
kernel on the diagnostic performance of radiomics signature in solitary
pulmonary nodule. Sci Rep. 2016;6:34921. doi:10.1038/srep34921

41. Kakino R, Nakamura M, Mitsuyoshi T, et al. Comparison of radiomic
features in diagnostic CT images with and without contrast enhance-
ment in the delayed phase for NSCLC patients. Phys Med.
2020;69:176–182. doi:10.1016/j.ejmp.2019.12.019

42. Ger RB, Zhou S, Chi PM, et al. Comprehensive investigation on
controlling for CT imaging variabilities in radiomics studies. Sci Rep.
2018;8(1):13047. doi:10.1038/s41598-018-31509-z

43. Park S, Lee SM, Do KH, et al. Deep learning algorithm for reducing
CT slice thickness: effect on reproducibility of radiomic features in
lung cancer. Korean J Radiol. 2019;20(10):1431–1440. doi:10.3348/
kjr.2019.0212

44. Li Y, Lu L, Xiao M, et al. CT slice thickness and convolution kernel
affect performance of a radiomic model for predicting EGFR status in
non-small cell lung cancer: a preliminary study. Sci Rep. 2018;8
(1):17913. doi:10.1038/s41598-018-36421-0

OncoTargets and Therapy Dovepress
Publish your work in this journal
OncoTargets and Therapy is an international, peer-reviewed, open
access journal focusing on the pathological basis of all cancers,
potential targets for therapy and treatment protocols employed to
improve the management of cancer patients. The journal also
focuses on the impact of management programs and new therapeutic

agents and protocols on patient perspectives such as quality of life,
adherence and satisfaction. The manuscript management system is
completely online and includes a very quick and fair peer-review
system, which is all easy to use. Visit http://www.dovepress.com/
testimonials.php to read real quotes from published authors.

Submit your manuscript here: https://www.dovepress.com/oncotargets-and-therapy-journal

Dovepress Ma et al

OncoTargets and Therapy 2020:13 submit your manuscript | www.dovepress.com

DovePress
6935

https://doi.org/10.1158/1078-0432.CCR-17-1510
https://doi.org/10.1158/1078-0432.CCR-18-3190
https://doi.org/10.1158/1078-0432.CCR-13-3077
https://doi.org/10.1158/1078-0432.CCR-13-3077
https://doi.org/10.1158/1078-0432.CCR-15-2266
https://doi.org/10.6004/jnccn.2019.0059
https://doi.org/10.1007/s00330-014-3516-z
https://doi.org/10.1016/j.lungcan.2012.03.013
https://doi.org/10.1016/j.lungcan.2012.03.013
https://doi.org/10.1148/radiol.13131265
https://doi.org/10.1080/15384047.2017.1323580
https://doi.org/10.1158/1078-0432.CCR-09-0802
https://doi.org/10.1002/cncy.21835
https://doi.org/10.1016/j.jmoldx.2017.11.004
https://doi.org/10.1016/j.jmoldx.2017.11.004
https://doi.org/10.1007/s00259-019-04652-6
https://doi.org/10.1007/s00259-019-04652-6
https://doi.org/10.1007/s00330-015-3814-0
https://doi.org/10.1007/s00330-015-3814-0
https://doi.org/10.21037/tlcr.2019.08.13
https://doi.org/10.1038/srep34921
https://doi.org/10.1016/j.ejmp.2019.12.019
https://doi.org/10.1038/s41598-018-31509-z
https://doi.org/10.3348/kjr.2019.0212
https://doi.org/10.3348/kjr.2019.0212
https://doi.org/10.1038/s41598-018-36421-0
http://www.dovepress.com
http://www.dovepress.com/testimonials.php
http://www.dovepress.com/testimonials.php
http://www.dovepress.com
http://www.dovepress.com

