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Abstract: Background: In the pathogenesis of central nervous system disorders (e.g., neurodegener-
ative), an important role is attributed to an unhealthy lifestyle affecting brain energy metabolism.
Physical activity in the prevention and treatment of lifestyle-related diseases is getting increasing
attention. Methods: We performed a series of assessments in adult female Long Evans rats subjected
to 6 weeks of Western diet feeding and wheel-running training. A control group of lean rats was fed
with a standard diet. In all experimental groups, we measured physiological parameters (animal
weights, body composition, serum metabolic parameters). We assessed the impact of simultaneous
exposure to a Western diet and wheel-running on the cerebrocortical protein expression (global pro-
teomic profiling), and in the second part of the experiment, we measured the cortical levels of protein
related to brain metabolism (Western blot). Results: Western diet led to an obese phenotype and
induced changes in the serum metabolic parameters. Wheel-running did not reduce animal weights
or fat mass but significantly decreased serum glucose level. The global proteome analysis revealed
that the altered proteins were functionally annotated as they were involved mostly in metabolic
pathways. Western blot analysis showed the downregulation of the mitochondrial protein—Acyl-
CoA dehydrogenase family member 9, hexokinase 1 (HK1)—enzyme involved in principal glucose
metabolism pathways and monocarboxylate transporter 2 (MCT2). Wheel-running reversed this
decline in the cortical levels of HK1 and MCT2. Conclusion: The cerebrocortical proteome is affected
by a combination of physical activity and Western diet in female rats. An analysis of the cortical
proteins involved in brain energy metabolism provides a valuable basis for the deeper investigation
of changes in the brain structure and function induced by simultaneous exposure to a Western diet
and physical activity.

Keywords: western diet; wheel-running training; female rats; global brain proteome; brain energy
metabolism

1. Introduction

The Western diet pattern characterized by a high daily intake of saturated fats and
refined carbohydrates often leads to overweight and obesity, which increase the risk of
several debilitating and deadly diseases, including diabetes, heart disease, and some can-
cers [1]. In addition, long-term exposure to highly palatable foods typical of a Western diet

Nutrients 2021, 13, 4242. https://doi.org/10.3390/nu13124242 https://www.mdpi.com/journal/nutrients

https://www.mdpi.com/journal/nutrients
https://www.mdpi.com
https://orcid.org/0000-0001-8668-8878
https://orcid.org/0000-0002-5859-6316
https://orcid.org/0000-0002-4541-1239
https://orcid.org/0000-0003-4590-1534
https://doi.org/10.3390/nu13124242
https://doi.org/10.3390/nu13124242
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nu13124242
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com/article/10.3390/nu13124242?type=check_update&version=2


Nutrients 2021, 13, 4242 2 of 17

has been linked to cognitive impairments in both animal models and humans [2,3]. Western
diet-induced adverse effects in the brain seem to be related to disturbances of brain energy
metabolism, especially to the principal glucose metabolic pathways. The disturbances of
glucose homeostasis can be due to the well-recognized development of insulin resistance,
but they may also be caused by impaired glucose transport into the brain [4]. Glucose
is reversibly transported from arterial blood across the membranes of endothelial cells
into and from brain cells via isoforms of equilibrative glucose transporters (GLUTs) that
have different kinetic properties, with GLUT1 localized mostly in the endothelium and
astrocytes and GLUT3 and GLUT8 localized mostly in neurons [5]. Thus far, it has been
merely shown that such a diet reduced GLUT1 expression in the hippocampus [6]. A
Western diet may also induce changes in the levels of other compounds important for brain
energy homeostasis [7]. It has been observed that a Western diet lowered the hippocampal
expression of the MCT1 transporter, which is responsible for moving monocarboxylates
across the blood–brain barrier [6].

Physical activity has been associated with a plethora of functional, cellular, and molec-
ular alterations within the brain [8,9]. Regular exercise correlates with an increase in the
amount of neurotrophic factors and markers of synaptic plasticity [10], reduces inflamma-
tory factors [11], as well as contributes to the improvement of mood and cognitive abilities
(including memory and learning) [12]. Studies published thus far show that the energy
challenge caused by exercise can affect the CNS by improving cellular bioenergetics, stimu-
lating the removal of damaged organelles and molecules, and attenuating inflammation
processes [13,14]. However, little is known about why it has such a profound effect on
the brain. Neurobiological mechanisms associated with physical activity are not entirely
known, which is partly due to a lack of uniformity and parameterization in experimental
protocols employed to assess the impact of exercise in animal models [15]. Therefore, in the
present study, we have used a forced wheel-running protocol in which the same training
load is applied to all the subjects [15,16].

Our primary goal was to investigate the effects of simultaneous training (wheel-
running) and a Western diet on the cerebrocortical proteome profile. In the second part
of the experiment, we verify the levels of particular proteins related to brain energy
metabolism in the frontal cortex. Both the frontal and temporal lobes have some common
functions, including working and long-term memory and emotional functions [17,18].
These structures are also of particular importance to recent clinical and animal studies
related to the beneficial effects of physical activity on the brain [19–21].

Finally, pervasive sex differences in metabolic traits, such as body fat distribution,
glucose homeostasis, insulin signaling, ectopic fat accumulation, and lipid metabolism
have often been omitted in human and animal model research [22]. Considering that
susceptibility to mental and metabolic diseases is strongly associated with sex [23] and
exposure to environmental factors such as unhealthy diet and a lack of physical activity [24],
we decided to perform our study on the female rats.

2. Materials and Methods
2.1. Animals and Experimental Groups

All animals were provided by the Animal House of the Department of Experimental
Medicine, Medical University of Silesia (Katowice, Poland) and were treated in accordance
with Directive 2010/63/EU for animal experiments using the protocols approved and mon-
itored by the Local Ethics Committee for Animal Experimentation in Katowice (protocol
number 62/2016). Sample sizes that were used in the present study were chosen based
on our experience and other investigators conducting similar experiments. The minimum
number of rats required to obtain consistent data was used, and every effort was taken to
minimize the suffering of the animals. Before the study began, the rats were adapted to
their new conditions for one week. Rats were housed 3–4 per cage in a climate-controlled
room (22 ± 2 ◦C, relative humidity: 55 ± 10%) with a 12 h:12 h light/dark cycle starting at
07:00 a.m., and they received food and water ad libitum.
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The rats were randomly divided into 3 experimental groups. All interventions (diet
and wheel-running procedure) lasted for 6 weeks. Upon the initiation of the experiments,
the rats (average weight 220 g, 9–10 weeks old) were either maintained on a standard
diet as controls (CTR group, n = 12) or switched to a Western diet with six human snack
foods varied daily in addition to standard chow (WD group, n = 12). The animals in group
WD/EX (n = 11) were subjected to the exercise (wheel-running) procedure and fed with a
Western diet.

2.2. Dietary Protocol

The standard diet (standard rodent chow) energy content (3.57 kcal/g) comes from 67%
carbohydrates, 25% proteins, and 8% fats. To mimic the human obesogenic diet, animals
were fed with commercially available human snacks as previously described [25]. The
animals received one of two sets of snacks interchangeably. These were given to the animals
on alternate days as one diversified diet. Set 1 included the following: candy bar (Mars;
Mars Inc., McLean, VA, USA), crackers (Lajkonik Snacks, Skawina, Poland), and kabanos
(dry sausage made of pork; Tarczyński, Trzebnica, Poland). The following snacks were in
set 2: candy bar (Bounty; Mars Inc., McLean, VA, USA), potato chips (Lays Salt; PepsiCo,
NC, USA), and Tilsit cheese (Hochland SE, Heimenkirch, Germany). WD rats received
clean water and a sweet beverage—10% fructose solution (39.8 kcal/100 mL; sweetened
with Consweet Sweetener Confex-Product, Warsaw, Poland) in a second container. The
average caloric density of these two dietary sets (including 10% fructose) was 4.84 kcal/g
with the following caloric profile: carbohydrates 33.2%, fat 33.1%, and proteins 16.6%. In
each group, all foods were provided ad libitum. All animals had free access to water for
the duration of the experiment.

The food was supplied daily, and food intake was monitored every day (chow and
snacks were weighed before and after consumption). Liquid intake (water and 10% fruc-
tose) were monitored every second day. The diet intake in each cage was calculated as
Wd = initial food weight—(leftover food weight + spilled food weight). Total energy
intake was determined by calculating the combined intake of liquid fructose, snacks, and
chow. The daily energy intake per rat (kcal/day/rat) was calculated as: Wd/7/n * Et (Et is
total energy of a snacks and standard chow), n is the number of rats in the cage.

Composition and nutritional profile of the Western diet is provided in the Supplemen-
tary Materials (Supplementary Table S1A,B).

2.3. Wheel-Running Training

In the present study, six custom-made polycarbonate motor running wheels were used.
The advantage of this system is the possibility of controlling the training; all animals run at
the same speed for the same period of time, in contrast to voluntary activity where the level
of activity depends on the animal’s preferences [15]. The rats were exercised 5 days/week
for 6 weeks, of which the first week was an introduction week (the habituation phase).
During the habituation phase, both intensity (speed) and volume (time) were increased
following upward progressive patterns, as summarized in Figure 1. For the next 5 weeks,
the rats were subjected to the wheel-running incremental training, in which the animals
reached a final speed of 15 m per minute and a total distance of 900 m daily (3 times for
20 min of wheel-running with 5-min rest). No electric shocks were used, so if the rat refused
to run, it was motivated by a short pause. After this, if the rat persisted in its refusal to
run, it was removed from the wheel and re-introduced to it at a later time. About a 75%
success rate response was observed; that is, 11 rats from the group of 15 rats subjected to
the wheel-running training protocol managed to complete the habituation phase.
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Figure 1. The schedule shows the wheel-running training protocol. The rats were exercised
5 days/week for 6 weeks, of which the first week was an introduction week (the habituation phase).
The speed, time, and number of sessions by day are described.

2.4. Tissue Collection

Rats were fasted overnight before tissue collection. The following morning (at 7:00
a.m.), they were decapitated, and trunk blood was collected. In order to eliminate hormonal
fluctuation, rats were sacrificed alternately (one animal from each group). The brain was
rapidly removed and put on an ice-chilled metal plate, dorsal side up. Subsequently, approx-
imately 2.0 mm-thick slices of the frontal and temporal cortices were removed from each
hemisphere. The brain structures (frontal cortex for Western blotting analysis) and temporal
cortex for liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis) were
weighed and stored at −80 ◦C until usage. The blood samples were centrifuged at 2500× g
for 10 min (4 ◦C). Then, the collected serum was stored at −80 ◦C for subsequent analysis.

The two components (abdominal fat mass and lean body mass) of the body composi-
tion were measured. The average content of the retroperitoneal and subcutaneous adipose
tissue in the animals was assessed by weighing. After the removal of the internal organs,
fat, skin, and tail, the trunk of the decapitated animal was weighed and considered as a
lean body mass.

2.5. Biochemical and Hormonal Assays

For the determination of biochemical and hormonal parameters, the rats were food
deprived for 8 h before testing. Serum glucose levels were measured using a Mindray
BS-200 Chemistry Analyzer (Shenzhen Mindray Bio-Medical Electronics Co., Shenzhen,
China). The serum concentrations of insulin and leptin were determined using commercial
ELISA kits (insulin: R&D Systems, Minneapolis, MN, USA; leptin: Thermo Fisher Scientific,
USA; leptin: Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s
instructions. Serum 17-β estradiol level was measured with a chemiluminescent immuno-
metric assay on an IMMULITE 2000 analyzer (Siemens Healthcare Diagnostics, Eschborn,
Germany). For the insulin assay, the intra-assay coefficient of variation (%CV) was <10%,
and the sensitivity was 5 µlU/mL. For leptin, the %CV was 4.3%, and the sensitivity of the
assay was 22 pg/mL. For the 17-β estradiol assay, the %CV was respectively 4.5% and the
sensitivity was 2 pg/mL.

2.6. Global Proteomic Profiling

The temporal cortices from groups: CTR (n = 11), WD (n = 12), and WD/EX (n = 7)
were used for liquid chromatography-tandem mass spectrometry (LC-MS/MS) for protein
analysis as previously described [25] (detailed in Appendix A). The PANTHER [26,27]
and Metascape [28] functional annotation tools were used to identify the significant on-
tology associations. The complete list of Rattus norvegicus proteins detected by mass
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spectrometry-based proteomics was used for the background and the GO term subcate-
gories “GOTERM_BP_DIRECT”, “GOTERM_CC_DIRECT”, and “GOTERM_MF_DIRECT”
were selected for analysis. False discovery rate (FDR) correction of Fisher p-value was
applied to identify the significant functional annotations (significance was considered
when p < 0.05).

2.7. Western Blotting

For protein extraction, thawed tissue pieces (frontal cortices from groups: CTR, n = 6;
WD, n = 6; WD/EX, n = 5) were homogenized by sonication in an RIPA buffer (300 µL for
each 10 mg of tissue; Sigma-Aldrich Corp., MO, USA) with protease (Complete™ ULTRA
Tablets, Roche Holding AG, Basel, Switzerland) and phosphatase (PhosSTOP™, Roche
Holding AG) inhibitors and then centrifuged at 12,000× g for 20 min at 4 ◦C. The protein
concentration was determined with BCA Reagent (Abcam, Cambrige, UK; ab102536). The
BSA standard curve was used to calculate the total sample protein concentration. The sam-
ples containing 15 µg (GLUTs, MCTs), 20 µg (Acad9, Acat1, ATP5j), or 30 µg (HK1, G6PD)
of total protein were separated on 4–15% or 8–16% SDS-PAGE precast gels containing
fluorophore (Bio-Rad Laboratories, Inc., Hercules, CA, USA) and transferred onto PVDF
membranes (Bio-Rad Laboratories, Inc.). Visualization of total protein (loading control) was
performed directly in the exposed to UV light gel after electrophoresis. Membranes were
blocked for 1 h at room temperature in Casein Blocking Buffer (Sigma-Aldrich Corp.) and
incubated overnight at 4 ◦C (1× casein in deionized H2O) with the appropriate primary
antibody (Supplementary Table S2 summarizes the antibodies used in the experiment).
After washing, the membranes were incubated with a secondary goat anti-rabbit IgG
antibody (1:5000; Abcam, ab97051). Immunoblots were visualized by Clarity Western ECL
Blotting Substrates (Bio-Rad Laboratories Inc.) and detected by the ChemiDoc™ Touch
Imaging System (Bio-Rad Laboratories Inc.). The targeted proteins were quantified by
ImageLab Software 5.2.1 (Bio-Rad Laboratories Inc.). After normalization to the loading
total protein (stain free gels), the results were expressed as a mean ± standard deviation
(SD) fold change of the tested samples in comparison to the control.

2.8. Statistical Analysis

Prism 9.01 (GraphPad Software, San Diego, CA, USA) was used for statistical analyses
and figure generation. The results are expressed as the means ± standard error (SD).
The distribution of each dataset was checked for normality using the Shapiro–Wilk test.
Depending on the data distribution, either the one-way ANOVA with Tukey post hoc or
Kruskal–Wallis with Dunnett post hoc were used for the estimation of significant differences
between three groups. In the case of repeating measurements, two-way ANOVA with
Tukey multiple comparison test was applied. In all analyses, p-values of less than 0.05 were
considered to be statistically significant.

3. Results
3.1. Wheel Running Modifies the Biochemical, but Not Phenotypic, Changes Induced by the
Consumption of a Western Diet

At baseline (week 0), the average weight of the rats was 204 ± 15 g, with no differences
between experimental groups. Figure 2A shows mean body weight across the 6 weeks of the
experiment. Two-way ANOVA analysis revealed that rats consuming a Western diet gained
weight more excessively than controls (an intervention: F(2, 177) = 70.80, p < 0.0001), a time:
(F(6177) = 35.2, p < 0.0001), and an interaction of these factors (F(12, 177) = 2.41, p = 0.0063),
and showed significantly higher fat mass (ANOVA p < 0.0001, F(2, 32) = 25.52) and lean body
mass (ANOVA p < 0.0001, F(2, 32) = 18.25), as compared to the control animals. Tukey’s post
hoc test revealed that rats consuming a Western diet showed a greater body weight gain
compared to the control rats (weeks 1–6: p < 0.01, p < 0.05 vs. WD group, p < 0.0001, p < 0.01,
p < 0.05 vs. WD/EX group (Figure 2B,C). These observations were associated with changes in
average energy intake. Namely, a significant increase in energy intake was observed both in
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the WD groups in comparison to the control (ANOVA p = 0.0005, F(2, 30) = 10.05, CTR vs.
WD: p = 0.0007, CTR vs. WD/EX: p = 0.0039; Figure 2D). We observed that wheel-running
training normalized a high level of glucose (Kruskal–Wallis test p = 0.0006, CTR vs. WD:
p < 0.01, WD vs. WD/EX: p = 0.008, Figure 2E). The serum glucose levels were similar in
the WD/EX and the CTR groups (304.0 vs. 307.1 mg/dL). In addition, exercise tended to
decrease the Western diet-induced rise in the serum levels of leptin. Specifically, for the WD
group, the serum leptin levels were by 3.5 and 2.7 times higher in comparison to the control
(p = 0.022), and WD/EX (p = 0.04), respectively (Kruskal–Wallis test p = 0.0054, Figure 2F).
The examination of the serum insulin levels showed no significant changes (ANOVA p = 0.49,
F(2, 20) = 0.73, Figure 2G). To assess the potential influence of 17-β estradiol levels on the
studied factors, we measured the serum level of this hormone at the end of the experiment.
We did not observe statistically significant differences between the groups (Kruskal–Wallis
test p = 0.47, Figure 2H).

Figure 2. Animal weights, body composition, energy intake and serum biochemical parameters of control rats (CTR, n = 12),
rats fed with western diet (WD, n = 12), and exercised rats fed with western diet (WD/EX, n = 11). The data shown in
panels A-F were collected and analyzed from three experimental groups. Data are expressed as means ± standard deviation
(SD). (A) Body weight of rats recorded weekly during the 6-week feeding period. Two-way ANOVA, Tukey’s multiple
comparisons test: Significant differences are indicated by *** p < 0.001, ** p < 0.01, * p < 0.05: CTR vs. WD; # p < 0.05, ####
p < 0.0001, ### p < 0.001: CTR vs. WD/EX; $p < 0.05: WD vs. WD/EX; (B) Fat mass, (C) Lean body mass expressed in grams.
One-way ANOVA; Tukey’s multiple comparisons test: Significant differences are indicated by **** p < 0.0001, *** p < 0.001;
(D) Average energy intake calculate as per rat/kcal. One-way ANOVA, Tukey’s multiple comparisons test: Significant
differences are indicated by *** p < 0.001, ** p < 0.01; (E) Serum glucose expressed in mg/dL. One-way ANOVA, Tukey’s
multiple comparisons test: Significant differences are indicated by **** p < 0.0001; (F) Serum leptin levels expressed in
pg/mL. One-way ANOVA, Tukey’s multiple comparisons test: Significant differences are indicated by * p < 0.05; (G) Serum
insulin expressed in µlU/mL; and (H) Serum 17-β estradiol expressed in pg/mL.
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3.2. The Combination of a Western Diet and Wheel Running Alters the Rat Cerebrocortical
Proteome Profile

The analysis of proteomics data identified 909 proteins in the rat cerebrocortical
samples. The analysis of LC-MS/MS data using the multiple-sample ANOVA analysis
revealed that the levels of 80 proteins significantly differed between the studied groups
(data presented as a heat map, Supplementary Figure S1). The identified proteins are
involved in many biological processes. The altered proteins were functionally annotated as
factors involved in small molecule catabolic process, neuron maturation, and regulation of
synaptic plasticity (Figure 3A). The identification information for these proteins, including
accession number (IDs), gene, full protein name, fold change, and corresponding biological
processes (GO:BP), are summarized in Appendix B.

Figure 3. (A) Summary of significantly changed biological processes for proteins, which were
significantly different in the multiple sample ANOVA analysis (CTR vs. WD vs. WD/EX) (Metascape);
(B–D) Three representative proteins showing changes in the expression mitochondrial proteins in
the cerebrocortical samples after exposition to the Western diet and wheel-running. The data shown
in panels (B–D) were collected and analyzed from three experimental groups: control rats fed
with standard diet (CTR, n = 12), rats fed with Western diet (WD, n = 11), and exercised rats fed
with Western diet (WD/EX, n = 7); LFQ intensity—Label-Free Quantitation calculated by MaxLFQ
algorithm to determine the relative amount of proteins in more biological samples. Data are expressed
as means ± SD; One-way ANOVA, Fisher post hoc test: Significant differences are indicated by *
p < 0.05, ** p < 0.01.

Post hoc analysis showed that among the proteins that differed between the con-
trol and Western diet-fed animals, three were upregulated (Alpha-1-inhibitor 3—A1i3,
Acetyl-CoA acetyltransferase, mitochondrial—Acat1, ATP synthase-coupling factor 6,
mitochondrial—ATP5j) and four were downregulated (Acyl-CoA dehydrogenase family
member 9—Acad9, Contactin-associated protein 1—Cntnap-1, Disks large homolog 4—
Dlg4, Protein kinase C—PKC). Exposure to a Western diet and wheel-running resulted
in decreased levels of 46 proteins and increased levels of 34 proteins. Among the 80 pro-
teins common to the three group comparisons, one-fourth are known to be involved in
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metabolism pathways, especially mitochondrial. This is demonstrated by three representa-
tive examples in Figure 3B–D showing Acyl-CoA dehydrogenase family member 9 (Acad9)
(ANOVA p = 0.014, F(2, 27) = 4.97), Acetyl-CoA acetyltransferase, mitochondrial (Acat1)
(ANOVA p = 0.038, F(2, 27) = 3.69), and ATP synthase-coupling factor 6, mitochondrial
(ATP5j) (ANOVA p = 0.009, F(2, 27) = 5.57).

Organizing the proteomic data by two interventions (WD and WD/EX) allowed us to
determine which biological processes changed by a Western diet consumption were still
affected after training (Figure 4A). There was an overlap between proteins regulated by a
Western diet and by the wheel-running (Figure 4B,C). Western diet consumption altered 22
proteins compared to the CTR. In the WD/EX group, the abundance of 104 was altered.
The identification information for these proteins, including gene and full protein name, are
summarized in Appendix B.

Figure 4. (A) Enriched terms (GO: BP) identified for proteins that were significantly different in the WD and WD/EX groups
(both in comparison to CTR), filtered, and hierarchically clustered (Metascape); (B) The circos plot shows how genes from
the input gene lists overlap. On the outside, each arc represents the identity of each gene list (red: WD; blue: WD/EX). On
the inside, each arc represents a gene list, where each gene has a spot on the arc. Dark orange color represents the genes that
appear in multiple lists and light orange color represents genes that are unique to that gene list. Purple lines link the same
gene that are shared by multiple gene lists. Blue lines link the different genes where they fall into the same ontology term
(Metascape); (C) Venn diagram of altered proteins.

3.3. Simultaneous Exposure to a Western Diet and Wheel Running Induced Changes in the
Metabolic Proteins of the Frontal Cortex

In the second part of the experiment, Western blot analysis was performed for the three
mitochondrial proteins that differed between the control and Western diet-fed animals:
Acad9, Acat1, and ATP5j (Figure 5A). The cortical level of Acad9—a protein involved in
fatty acid beta oxidation—had a 0.42-fold decrease in the WD (p = 0.0006) and 0.24-fold
in the WD/EX groups (p < 0.0001) (ANOVA p < 0.0001, F(2, 14) = 21.43; Figure 5B). No
changes were observed in cortical levels of Acat1 (Kruskal–Wallis test: p = 0.38; Figure 5C),
the enzyme that catalyzes the reversible formation of acetoacetyl-CoA from two molecules
of acetyl-CoA. In both groups fed with a Western diet (WD, WD/EX), a significant increase
in the level of ATP5j was reported (ANOVA p = 0.02, F(2, 14) = 5.17 Figure 5D) as compared
to the CTR. Namely, a 1.68-fold increase (p = 0.043) was observed in the WD, and in the
WD/EX, a 1.75 fold increase was noted (p = 0.003).

Subsequently, we decided to analyze the protein levels of two key enzymes involved
in the glucose metabolism pathways: hexokinase 1 (HK1) and glucose-6-phosphate dehy-
drogenase (G6PD) (Figure 6A). No significant changes were observed in the cortical levels
of G6PD (ANOVA p = 0.18, F(2, 12) = 1.97, Figure 6B). The level of HK1 had a 0.7-fold
decrease in the frontal cortex of the WD (p = 0.037) as compared to the control (ANOVA
p = 0.0004, F(2, 12) = 16.15; Figure 6C). Exposure to moderate intensity training reversed
this decline. The level of cortical HK1 significantly increased in the group of exercised WD
rats as compared to the WD rats (p = 0.0003) and to the CTR group (p = 0.03).
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Figure 5. Mitochondrial proteins involved in glucose metabolism pathways in the frontal cortex.
Western blot images (A) and quantification of (B) Acyl-CoA dehydrogenase family member 9—Acad9,
(C) Acetyl-CoA acetyltransferase, mitochondrial—Acat1, and (D) ATP synthase-coupling factor 6,
mitochondrial—ATP5j measured in the frontal cortex of rats fed for 6 weeks with standard diet
(control, CTR, n = 6) or Western diet (WD, n = 6), or exercised and fed with Western diet (WD/EX,
n = 5) and normalized to total protein levels (representative loading control is shown corresponding
to the Acad9). Data are expressed as mean values ± SD; one-way ANOVA, Tukey’s test: significant
differences are indicated by * p < 0.05, *** p < 0.001, **** p < 0.0001.

Figure 6. Enzymes involved in principal glucose metabolism pathways in the frontal cortex. West-
ern blot images (A) and quantification of (B) glucose-6-phosphate dehydrogenase (G6PD) and (C)
hexokinase-1 (HK1) measured in the frontal cortex of rats fed for 6 weeks with standard diet (control,
CTR, n = 6) or Western diet (WD, n = 6), or exercised and fed with Western diet (WD/EX, n = 5)
and normalized to total protein levels (representative loading control is shown corresponding to the
G6PD). One-way ANOVA followed by Tukey’s test was used; mean values ± SD are shown on each
graph. * p < 0.05, *** p < 0.001.

In the next step, the authors evaluated the influence of simultaneous exposure to a
Western diet and exercise on brain glucose transport. In the frontal cortex, two isoforms
of GLUT1 (45 kDa and 55 kDa), GLUT3, and GLUT8 were measured (representative blots
Figure 7A). No statistical changes were observed in the GLUTs in frontal cortex of animals
fed with a Western diet (GLUT1 45kDa: Kruskal–Wallis test: p = 0.28; GLUT1 55 kDa:
ANOVA p = 0.64, F(2, 12) = 0.45; GLUT8 ANOVA p = 0.045, F(2, 12) = 4.06, Figure 7B–E). We
reported an almost 2-fold increase in cortical levels of GLUT3 (p = 0.04), a major neuronal
glucose transporter, in animals fed with a WD and exercised in wheels (WD/EX group), as
compared to the WD group (ANOVA p = 0.028, F(2, 12) = 4.872; Figure 7D).
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Figure 7. Glucose transporters (GLUTs) expressed in the frontal cortex. Western blot images (A) and
quantification of (B) GLUT1 45kDa, (C) GLUT1 55 kDa, (D) GLUT3, and (E) GLUT8 measured in the
frontal cortex of rats fed for 6 weeks with standard diet (control, CTR, n = 6) or Western diet (WD,
n = 6), or exercised and fed with Western diet (WD/EX, n = 5), and normalized to total protein levels
(representative loading control is shown corresponding to the GLUT1). One-way ANOVA followed
by Tukey’s test was used; mean values ± SD are shown on each graph. * p < 0.05.

Furthermore, the effect of exposure to a Western diet and exercise have been evaluated
for the cortical level of MCTs (Figure 8A). No statistical changes were observed in the MCT1
levels (ANOVA p = 0.078, F(2, 11) = 3.22, Figure 8B). In response to a Western diet feeding,
statistical changes in MCT2 levels were observed (ANOVA p < 0.0001, F(2, 12) = 38.79). In
the WD group, MCT2 level was reduced as compared to the CTR (p = 0.0022) (Figure 7C).
The wheel-running reversed this decline: a 1.54-fold increase in MCT2 was observed in the
WD/EX rats (p < 0.0001). In the exercised rats fed with a WD, a 0.68-fold decrease in MCT4
was observed, as compared to the WD (p = 0.005) and to the CTR (p = 0.028) (ANOVA
p = 0.005, F(2, 12) = 8.47; Figure 7D). In the WD/EX group, the MCT5 level was significantly
increased as compared to the CTR (p = 0.006) and to the WD (p = 0.004) (ANOVA p = 0.0022,
F(2, 9) = 13.0, Figure 7E).

Figure 8. Monocarboxylate transporters (MCTs) expressed in the frontal cortex. Western blot images
(A) and quantification of (B) MCT1, (C) MCT2, (D) MCT4, and (E) MCT5 measured in the frontal
cortex of rats fed for 6 weeks with standard diet (control, CTR, n = 6) or Western diet (WD, n = 6),
or exercised and fed with Western diet (WD/EX, n = 5) and normalized to total protein levels
(representative loading control is shown corresponding to the MCT2). Data are expressed as mean
values ± SD; one-way ANOVA, Tukey’s test: Significant differences are indicated by * p < 0.05,
** p < 0.01, **** p < 0.0001.
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4. Discussion

The novelty of the present study is the determination of cerebrocortical proteomic
profile in a model of wheel-running exercise, while previous investigations focused pri-
marily on proteomic analysis in various peripheral tissues (e.g., skeletal muscles, liver)
of trained animals. Moreover, the proteomic responses of nervous tissue following a
high-fat, high-sugar diet and exercise training in female rats have been rarely studied
thus far. In the present study, we used an obesogenic diet with human snacks, which is a
well-described model of diet-induced obesity in laboratory rodents [29,30]. The potential of
physical exercise to decrease body weight, alleviate depression, combat aging, and enhance
cognition has been well-supported by animal and human studies. In animal research,
exercise regimens vary widely across experiments, which makes it hard to directly compare
observed effects. Moreover, some prior studies suggest that voluntary and forced exercises
may differentially affect the brain and behavior [31,32]. We employed a wheel-running
system (motor driven)—which allowed us to control the training intensity and avoid ad-
ditional stress associated with commonly used treadmill training with electrical stimuli.
We observed that wheel-running training improved some endocrine features related to
obesity, i.e., the serum levels of glucose and leptin. However, the basic parameters of the
obesogenic phenotype—animal weights, fat and lean body masses (muscles and skeleton)—
were similar to the ones observed in the WD rats, which can be due to the gross assessment
of these parameters. Previously, it was shown that a 4-week exercise training resulted in
sustained weight gain in females [33].

An analysis of the brain proteome revealed that the expression of proteins in the
temporal cortex of exercised rats fed with a Western diet was clearly altered, while minor
changes were detected as a result of the consumption of a Western diet without wheel-
running training. The post hoc analysis of the proteomic data from the three experimental
groups revealed significant changes in the expression of seven proteins in the WD rats.
Being fed with a Western diet resulted in the upregulation of three proteins: ATP synthase
(ATP5j), Alpha-1-inhibitor 3 (A1i3), and Acetyl-CoA acetyltransferase (Acat1). Concur-
rently, four proteins were downregulated: Acyl-CoA dehydrogenase family member 9
(Acad9), Contactin-associated protein 1 (Cntnap-1), Disks large homolog 4 (Dlg4), and
Protein kinase C (PKC). Here, it is worth mentioning that the aim of our study was to
obtain the general picture of the effect induced by a combination of a Western diet and
wheel-running training. The results of proteomics allow us as the authors to explore the
potential baseline reference for further studies on brain changes induced by lifestyle mod-
ifications/unhealthy lifestyle. Hence, the validation of such data in the temporal cortex
using Western blot would be very interesting but is beyond the scope of the present study.
Due to the importance of mitochondrial energy metabolism, we focused our attention on
three proteins: ATP5j, Acat1, and Acad9. In the frontal cortex of WD rats, the changes in
the protein levels of Acad9, Acat1, and ATP5j are in line with those shown in the analysis
of the global proteome. Acad9 promotes dehydrogenase activity toward a broad range of
substrates with greater specificity for long-chain unsaturated acyl-CoAs, beta-oxidation of
acyl-CoA, and amino acid catabolism. This protein was recently shown to be crucial for
oxidative phosphorylation complex I assembly, and it is also considered the main site of
oxygen radical production in mitochondria [34]. In the present study, the levels of Acad9
and ATP5j were significantly modulated by a Western diet in the frontal cortex. Six weeks
of wheel-running did not affect the changes induced by being fed a Western diet. Namely,
the cortical levels of Acad9 and ATP5j in the WD/EX group did not differ from those in the
WD group. The results from previous studies indicated that treadmill training improves
mitochondrial bioenergetics in the brain cortex and cerebellum [35] and provides mitochon-
drial protection against oxidative damage in the gastrocnemius muscle [36]. Moreover, the
results arising from other experimental studies show that regular, moderate aerobic exercise
promotes antioxidant capacity in the brain. In contrast, anaerobic or high-intensity exercise,
aerobic-exhausted exercise, or the combination of both types of training could deteriorate
the antioxidant response [37,38]. We concluded that the decreased levels of Acad9 may be
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a result of enhanced oxidative stress as a synergistic effect of exposure to a Western diet
and wheel-running training. It is a matter of speculation if the unexpectedly consistent
decrease in Acad9 across all studied groups might become a signal for the activation of
potent, protective antioxidative mechanisms. However, such conjecture warrants further
studies. Moreover, Guo et al. (2013) using a proteomic approach found that ATP5j (as part
of the oxidation–phosphorylation pathway) was upregulated in the liver mitochondria of
high-fat diet-fed diabetic mice [39]. In the study of Huang et al. (2018), an inactivation of
ACAT1 in the myeloid cell lineage improved insulin sensitivity and suppressed a Western
diet-induced obesity in mice [40]. Recently, Zhao et al. (2021) showed that a high-fat diet
increased the level of ACAT1 in the liver of mice; this effect was normalized in mice fed
with a high-fat diet and additionally exercised on treadmill wheels [41]. In this context,
the absence of an experimental group with exercised rats fed with a standard diet may
be considered a limitation of the present study. We have focused on the changes in pro-
teins and pathways that can serve as a reference for better understanding and a reason
to expand exercise usage as a therapeutic strategy for CNS diseases. With this purpose
in mind, a quantitative proteomic approach has been undertaken to identify the protein
expression changes in the rat brain as the effect of simultaneous exposure to a Western diet
and wheel-running. It is worth mentioning here that we deliberately used the temporal
cortex for the brain proteome for several reasons. The first one is linked to the fact that
several recent works outlined that Western diet/high-fat diet-induced changes extend
beyond the hypothalamus to affect areas directly related to cognition, such as the frontal
and parietal cortex [18]. Secondly, some aspects of this Western diet model have been
described previously [25], and the proteomic approach used in the present study may
add substantial pieces to the puzzle if conducted under the same experimental conditions.
Finally, in order to reduce the number of animals in the experiment, in accordance with the
3R principle, we conducted proteome and Western blot studies on the same cohort of rats.

Abnormal glucose metabolism and transport underlie disorders of the brain and
the whole organism. It is well known that changes in glucose metabolism are associated
with the etiology of neurodegenerative diseases [42–44] and depression [45]. Referring to
the above-mentioned disturbances of the brain energy metabolism induced by a Western
diet and functional annotation data of a protein list identified by LC-MS/MS, we have
additionally analyzed the cortical levels of hexokinase-1 (HK1), glucose-6-phosphate dehy-
drogenase (G6PD), as well as glucose (GLUT1, GLUT3, and GLUT8) and monocarboxylate
(MCT1, MCT2, MCT4, and MCT5) transporters. While a significant decrease in the cortical
levels of HK1 and MCT2 were found after exposure to a Western diet, the other studied
proteins remain unchanged. Of special interest may be a lack of significant changes in
the levels of G6PD, which is a key regulatory enzyme in the pentose phosphate pathway
(PPP). G6PD expression and activity are critical for maintaining the proper redox cellular
status [46], and its retained activity in the WD group may be—hypothetically—a protective
mechanism. Previously, a significant decrease in the mRNA expression of HK1, glucok-
inase, and pyruvate kinase was observed in the livers of mice fed with a high-fat diet
(HFD) [47]. In study by Pierre et al. 2007 [48], the authors showed that MCT2 expression
was neither increased in an extract containing cingulate and motor cortex nor in the cere-
bellum of mice fed with a HFD compared to mice fed with a standard diet. By contrast, it
was significantly enhanced in extracts composed of piriform, insular and entorhinal cortex,
and hippocampus. However, there are no studies evaluating the effect of regular exercise
on unhealthy, diet-induced disturbances of cerebral energy metabolism. Similar to our
results of proteomic analysis, exposure to a diet and wheel-running changed the levels of
most of the proteins studied. In the WD/EX rats, the cortical levels of HK1, GLUT3, MCT2,
and MCT5 increased, and the level of MCT4 decreased. It is worth emphasizing here that
wheel-running increased the cortical levels of two proteins: HK1 and MCT2. We may
hypothesize that physical activity may increase the availability of glucose for neurons by
increasing glucose transport into the cells through MCT2. Concomitantly, the augmented
glucose phosphorylation by hexokinase to glucose-6-phosphate, which is a substrate not
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only for glycolysis but also possessing extreme antioxidative importance via the pentose
phosphate pathway, as it enhances the protective intracellular antioxidant mechanisms [49].
Regular physical activity has a positive effect on the functions of the CNS; however, little
is known about the exact mechanisms by which the skeletal muscle activity and whole
body energy challenge exert long-lasting beneficial changes in the CNS. It has been recently
demonstrated that physical activity reduces the development of age-related skeletal muscle
insulin resistance by enhancing the expression of GLUT1 and GLUT4 [50], whereas acute
exercise increased GLUT1 expression in the rat cerebral cortex and both MCT1 and MCT2 in
the cortex and hippocampus [51]. It has been proposed that intermittent energy challenges
such as regular aerobic activity or fasting may exert positive effects on brain function
acting through similar mechanisms [14]. Energy challenges stimulate pathways associated
with the usage of alternative energy sources such as monocarboxylates [52]. Brain MCTs
have been proposed to play a key role in coupling neuronal activity and lactate transport
through a mechanism referred to as the astrocyte–neuron lactate shuttle (ANLS). Given the
key role of the ANLS in mediating lactate transport for memory formation, it is feasible
that exercise-induced increases in monocarboxylate and MCT proteins in the brain may
benefit brain functions, including cognitive ones [51].

It is widely postulated that unhealthy, obesogenic diets and exercise training have
opposite impacts on health, especially on the brain. We concluded that proteins that are
differentially regulated by Western diet and wheel-running are particularly promising
candidate proteins that contribute to exercise-induced health benefits. This rationale is
supported by showing the downregulation of the cortical levels of Acad9, HK1, and
MCT2, which in our opinion provides strong evidence for the disruption of brain energy
metabolism as a response to a hypercaloric diet. Further studies are warranted to investigate
other brain metabolism-related proteins as suggested by the results of proteome analysis.
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proteome profiling.
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Appendix A

Appendix A.1. Protein Extraction

The frozen brain tissue samples were ground in liquid nitrogen in precooled adaptors
for 45 s at 30 Hz frequency using a ball mill MM400 (Retsch, Germany). Then, tissues
were lysed in in buffer with 1 M triethylammonium bicarbonate (TEAB) and 0.1% sodium
dodecyl sulfate (SDS) and automatically homogenized using a Precellys 24 homogenizer
(Bertin Technologies, France) in 0.5 mL tubes pre-filled with ceramic (zirconium oxide)
beads (Bertin Technologies, France). Next, the material was subjected to a three-fold cycle
of freezing and thawing. Then, the tissue in the buffer was sonicated in a bath for three
1 min cycles on ice and homogenized again using the Precellys 24 instrument. The protein
concentration was measured using a Pierce BCA protein assay kit (Thermo Fisher Scientific,
USA) in the isolated protein fraction according to the manufacturer’s instructions.

Appendix A.2. In-Solution Digestion

Ten-microgram aliquots of proteins were diluted with 15 µL of 50 mM NH4HCO3 and
reduced with 5.6 mM DTT for 5 min at 95 ◦C. Then, samples were alkylated with 5 mM
iodoacetamide for 20 min in the dark at RT. The proteins were digested with 0.2 µg of
sequencing-grade trypsin (Promega, Madison, WI, USA) overnight at 37 ◦C.

Appendix A.3. Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) Analysis of
Proteins

The analysis was performed with the use of the Dionex UltiMate 3000 RSLC nanoLC
System connected to a Q Exactive Orbitrap mass spectrometer (Thermo Fisher Scientific).
Peptides derived from the in-solution digestion were separated on a reverse phase Acclaim
PepMap RSLC nanoViper C18 column (75 µm × 25 cm, 2 µm granulation) using acetonitrile
gradient (from 4 to 60%, in 0.1% formic acid) at 30 ◦C and a flow rate of 300 nL/min (for
230 min). The spectrometer was operated in data-dependent MS/MS mode with survey
scans acquired at a resolution of 70,000 at m/z 200 in MS mode, and 17,500 at m/z 200 in
MS2 mode. Spectra were recorded in the scanning range of 300–2000 m/z in the positive
ion mode. Higher energy collisional dissociation (HCD) ion fragmentation was performed
with normalized collision energies set to 27.

Appendix A.4. Data Analysis of Proteins

Protein identification was performed using the Swiss-Prot rat database with a precision
tolerance set to 10 ppm for peptide masses and 0.08 Da for fragment ion masses. All raw
data obtained for each dataset were imported into MaxQuant ver. 1.5.3.30 for protein
identification and quantification. A protein was considered as positively identified if at
least two peptides per protein were found by the Andromeda search engine and the peptide
score reached the significance threshold FDR = 0.01.

The obtained data were exported to Perseus ver. 1.5.3.2 software (part of the MaxQuant
package). The numeric data were transformed to a logarithmic scale, and each sample was
annotated with its group affiliation. Next, the data were filtered based on valid values—
proteins that had valid values in 70% of samples in at least one group were kept in the
table. A one-way analysis of variance (ANOVA) analysis was performed on the analyzed
sample data with permutation-based FDR 0.05 used for truncation, and the resulting list
of differentiating proteins was normalized using a Z-score algorithm for the hierarchical
clustering of data.

Statistical analysis was performed in Prism 9.01 (GraphPad Software, CA, USA), and
differentially regulated proteins were calculated using Tukey’s multiple comparisons test.
Significantly regulated proteins were defined with an adjusted p-value.
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Appendix B

Supplementary information: Summary of global proteome profiling (see Supplemen-
tary Flie S1).
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