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Abstract

The genome of each cell in the human body is constantly under assault from a plethora of exogenous and endogenous
processes that can damage DNA. If not successfully repaired, DNA damage generally becomes permanently imprinted
in cells, and all their progenies, as somatic mutations. In most cases, the patterns of these somatic mutations contain
the tell-tale signs of the mutagenic processes that have imprinted and are termed mutational signatures. Recent pan-
cancer genomic analyses have elucidated the compendium of mutational signatures for all types of small mutational
events, including (1) single base substitutions, (2) doublet base substitutions, and (3) small insertions/deletions. In
contrast to small mutational events, where, in most cases, DNA damage is a prerequisite, aneuploidy, which refers
to the abnormal number of chromosomes in a cell, usually develops from mistakes during DNA replication. Such mis-
takes include DNA replication stress, mitotic errors caused by faulty microtubule dynamics, or cohesion defects that
contribute to chromosomal breakage and can lead to copy number (CN) alterations (CNAs) or even to structural rear-
rangements. These aberrations also leave behind genomic scars which can be inferred from sequencing as CN signa-
tures and rearrangement signatures. The analyses of mutational signatures of small mutational events have been
extensively reviewed, so we will not comprehensively re-examine them here. Rather, our focus will be on summarising
the existing knowledge for mutational signatures of CNAs. As studying CN signatures is an emerging field, we briefly
summarise the utility that mutational signatures of small mutational events have provided in basic science, cancer
treatment, and cancer prevention, and we emphasise the future role that CN signatures may play in each of these
fields.
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The difference between DNA damage and somatic
mutations

Some processes, mainly those due to internal cellular
mechanisms, are ubiquitous and can be found in every
cell. Examples of such ubiquitous processes include
generation of reactive oxygen species, as part of the nor-
mal functioning of the mitochondria, or internal cellular
processes inadvertently mutating DNA during replica-
tion [1]. Other processes are tissue-specific or can be
due to lifestyle choices or to environmental exposures.
For example, ultraviolet radiation (UV) in sunlight will

damage the DNA of skin cells, but it will not affect cells
in internal organs (e.g. cells in the liver or pancreas).
Similarly, smoking tobacco cigarettes will damage the
DNA of certain organs, most prominently cells of the
lung, but it will not alter the genomes of cells in other
organs, such as the brain. These endogenous and exoge-
nous processes result in DNA damage. In general, DNA
damage refers to chemical modifications of nucleotides
(adenine, thymine, guanine, and cytosine) as well as to
changes/breaks in the covalent bonds between adjacent
nucleotides or the hydrogen bonds between traditional
DNA base-pairs. Some examples of DNA damage are
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oxidation, deamination, and alkylation of DNA bases;
formation of single- and double-strand breaks; formation
of covalent linkages between consecutive bases along the
nucleotide chain; and many others [2]. In contrast, somatic
mutations reflect a change in the sequence of the base-pair
content in DNA. Somatic mutations could include small
mutational events such as substitutions, where a DNA
base-pair is substituted with another DNA base-pair (e.g.
C:G base-pair changes to a T:A base-pair), and small inser-
tions/deletions, where, for example, a set of DNA base-
pairs is completely removed from the genome (e.g. a set
of CAC:GTG base-pairs gets deleted from the genome).
Somatic mutations can also include large mutational events
affecting many millions of base pairs across multiple chro-
mosomes. Examples of such types of mutations generally
include genomic structural variants (SVs), where, for exam-
ple, two chromosomes can become partially fused, or copy
number (CN) variations, where the number of copies of a
large genomic segment gets amplified or deleted. Some
examples of CN changes are a loss of a chromosome arm,
doubling the number of copies of a specific chromosome,
and even the entire diploid genome: doubling the number
of copies (whole-genome duplication) or losing a copy of
the diploid genome (haploidisation).

An important difference between damaged and
mutated DNA is that while some DNA damage may per-
sist for decades, it is generally confined to the cell in
which it occurred [3]. In contrast, somatic mutations
affect both their cell of origin and all progenitors of that
cell, thus having an exponential functional effect in all
offspring. While, in many cases, somatic mutations
require pre-existing DNA damage, the road from a dam-
aged DNA to a somatic mutation involves multiple addi-
tional molecular steps — with the vast majority of DNA
damage being repaired and not resulting in any somatic
mutations. However, a failure of a DNA repair pathway
in a cell can result in a specific type of DNA damage
being un- or under-repaired, causing a mutator pheno-
type, and resulting in an explosion of somatic mutations,
e.g. mismatch repair deficiency [4]. Importantly, not all
mutations necessitate prior DNA damage; examples
include infidelity of the polymerases during replication,
leading to substitutions or indels in progenitor cells, as
well as large CN events such whole-genome doubling
caused through mitotic error [5].

In most cases, sequencing the genomes of cancer or
normal somatic cells allows the derivation of somatic
mutations, but it does not directly allow the study of
DNA damage. Nevertheless, as the activity of DNA
damage and repair processes reflects many of the
imprinted mutations, analysis of somatic mutations
may also be leveraged to understand DNA damage
and repair processes. Different types of sequencing
approaches provide different resolutions in examining
different types of somatic mutations [6]. A complete
sequencing of a genome (also known as whole-genome
sequencing, WGS) allows examination for all types of
somatic mutations, which include (1) single base substi-
tutions (SBSs); (2) small indels and deletions (indels);
(3) copy number alterations (CNAs); and (4) genomic
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SVs. In contrast, sequencing of all exons of the genome,
also known as whole-exome sequencing (WES), allows
interrogation for substitutions and indels in coding
regions as well as providing limited resolution of
genome-wide CNAs. Sequencing only a small set of
actionable genes, such the targeted panels commonly
used for cancer diagnosis, can be utilised to detect sub-
stitutions and indels in these genes and may provide an
extremely low-resolution map for detecting certain very
large genomic segments with CNAs. In most cases,
whole-exome and targeted-panel sequencing do not
allow detection of SVs, unless the experimental proto-
cols have been designed to detect specific SVs.

Understanding somatic mutagenesis through
mutational signatures

Somatic mutations have been shown to play a pivotal
role in cancer initiation and cancer evolution [7,8].
Mutations that impact gene functionality, either through
a gain or through a loss of function, and enhance the fit-
ness characteristics of a cell are often referred to as
driver mutations. While non-neoplastic and cancer cells
harbour fewer than ten driver mutations, their genomes
are moulded with many thousands (and, in some cases,
even millions) of somatic mutations that provide little fit-
ness advantage; such mutations are generally termed
passenger mutations [9]. The distribution of passenger
mutations across the genomic landscape can be affected
by several different factors that alter DNA damage,
DNA repair, or other cellular processes. From a genomic
architecture perspective, the locations of passenger
mutations are modified by replication timing, transcrip-
tional activity, eu- and hetero-chromatin, histone modifi-
cations, transcription factor binding sites, and factors
related to nucleosome occupancy [10]. From a local
sequencing context perspective, different mutational
processes have different biophysical and biochemical
characteristics, resulting in a specific preference for the
immediate sequence context of the imprinted somatic
mutations. This combination of micro- and macro-
genomic features affects the accumulation of somatic
mutations from a particular mutational process, leading
to a characteristic pattern of somatic mutations, termed
the mutational signature.

The first descriptions of specific patterns of DNA dam-
age identified through exogenous sources were presented
in the late 1950s, when it was discovered that UV light
exposure of in vitro systems resulted in the formation of
pyrimidine photodimers (two consecutive bases on one
strand that bind together), predominantly affecting adja-
cent cytosine and thymine nucleotides and leading to
cytosine—cytosine, cytosine—thymine, thymine—cytosine,
and thymine—thymine photodimers [11-13]. Subsequent
work described the biophysical and biochemical proper-
ties leading to the formation of DNA damage from UV
light, including both cyclobutane pyrimidine dimers
(CPDs) and pyrimidine(6-4)pyrimidone photoproducts.
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Almost 20 years later, with the advent of Sanger sequenc-
ing, a causative molecular link was made between UV-
induced DNA damage, subsequent formation of somatic
mutations, and the development of skin cancer by exam-
ining the patterns of mutations in certain skin cancers
[14]. Similar research was also performed for a number
of other cancer types by evaluating the patterns of muta-
tions in the exons of 7P53, the most commonly mutated
gene in human cancer, revealing a number of distinct
mutational patterns including ones attributed to endoge-
nous deamination, tobacco smoking, aflatoxin, and others.

The advances in next-generation sequencing technolo-
gies have facilitated the unbiased assessment of the muta-
tional patterns of cancer genomes [15,16]. By sequencing
the genome of a cancer, one can now observe the com-
bined outcome of all mutational forces that have been
active at different strengths and at different times through-
out the lineage of the cancer cell. Importantly, by utilising
a proper mathematical model and a set of machine learn-
ing (ML) computational approaches, one can decipher
the individual signature of each process that has been
active throughout this lineage. Moreover, by uniting the
ML-derived mutational signatures with experimental data,
one can even understand the mutational processes that
gave rise to these signatures and that caused the mutations
in a cancer patient [17].

During the last decade, analysis of mutational signa-
tures has become a standard approach in examining
somatic mutations derived from next-generation
sequencing data (see [2,18,19] for in depth reviews of
mutational signatures). In the majority of cases, these
analyses have utilised somatic mutations derived from
whole-exome and/or whole-genome sequenced cancer
genomes by applying unsupervised ML approaches
based on non-negative matrix factorisation (NMF). In
brief, from an analysis perspective, the mutations in a
set of cancer genomes are categorised based on a muta-
tional classification into distinct categories resulting into
a mutational matrix, where each column reflects a cancer
genome, each row a distinct mutation type, and the value
of each cell corresponds to the number of mutations of a
particular mutation type in a cancer genome. The muta-
tional matrix is subsequently factorised with NMF into
two matrices, one reflecting the mutational signatures
and the other corresponding to the activities of each sig-
nature in each sample. Initially, analysis of mutational
signatures across cancer types was performed only for
SBSs, due to the simplicity in classifying these types of
mutations, but has now expanded to include SBSs, dou-
blet base substitutions (DBSs), small insertions and dele-
tions (IDs), SVs, and CN signatures [20-24].

Biological underpinnings and clinical implications
of mutational signatures

From a research perspective, mutational signatures of
small mutational events have provided a novel toolset
for indirectly studying the molecular processes of DNA
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damage, DNA repair, and even DNA replication. Ana-
lyses of cancer genomes have elucidated the effect of
genome architecture and the topographical features of
the human genome on the cancer-specific accumulation
of somatic mutations from some mutational signatures
[19]. Experimental works have also revealed the com-
pendium of in vitro-induced mutational signatures and
the vulnerabilities of human stem cells to different
endogenous and exogenous mutagens. Importantly,
examination of mutational signatures has brought sig-
nificant insights into the interactions between mismatch
repair and replication; enzymatic deamination by
AID/APOBEC3; transcription-coupled repair;
transcription-coupled damage; topoisomerases and
DNA repair; clustered mutagenesis and genomic rear-
rangements; and many others [25-31].

From a cancer prevention perspective, analysis of
SBS, DBS, and ID mutational signatures has revealed a
number of environmental mutagens causing specific
cancer types with notable examples including (1) aristo-
lochic acid: a group of acids found naturally in many
types of plants, which has been linked to cancers of the
liver, bladder, kidney, oral cavities, and oesophagus;
(2) aflatoxin: a family of toxins produced by certain
fungi, linked to liver cancer; (3) colibactin: a potent gen-
otoxin associated with certain strains of Escherichia
coli, found in colorectal cancer; and many others [32-
35]. These findings have allowed the proposal and devel-
opment of strategies for preventing cancer by limiting
exposure to such mutagens. Additionally, mutational
signatures have been used as multi-tumour phenotypes
of germline predisposition, which has allowed for better
screening of people with a higher risk for developing
cancer. A notable example is that of NTHLI, where
germline mutations can give rise to a multitude of differ-
ent cancer types, which, prior to mutational signatures,
was not fully appreciated [36].

From a cancer treatment perspective, mutational sig-
natures have proven to be a valuable resource both for
understanding iatrogenic exposures leading to second-
ary/recurrent cancers and for optimally targeting cancer
therapies. Several studies have revealed the mutational
signatures of chemo- and immune-therapies, demon-
strating, in many cases, that secondary cancers are
caused by specific treatment regimens. Notable exam-
ples include secondary cancers after treatment with
temozolomide and platinum therapies, as well as the
role of azathioprine — a drug used in auto-immune con-
ditions — in causing primary cancers. Importantly,
mutational signatures have also been shown to have
clinical utility in selecting an optimum treatment strat-
egy. A presence of specific mutational signatures has
been used as a predictive biomarker for response to
PARP inhibitors, platinum therapy, immunotherapy,
and tamoxifen resistance [37-39].

Large-scale national and international cancer genome
sequencing efforts, such as The Cancer Genome Atlas
(TCGA) project and the International Cancer Genome
Consortium (ICGC), have profiled many thousands of
human cancers, thereby producing a rich resource
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consisting of terabytes of somatic mutational data
[40,41]. This has catalysed a new field of research which
has now been extended to the analysis of CN and SV
signatures.

The lexicon of copy number profiling: the devil is in
the detail

The evaluation of chromosomes in cells through karyo-
typing is an established technique to evaluate aneuploidy
either in the germline setting, e.g. to identify trisomy of
chromosome 21 in Down’s syndrome, or in the somatic
setting, e.g. to reveal chromosomal changes in cancer
[42]. This laboratory technique provides a global low-
resolution snapshot of CN aberrations that include large
gains and losses of DNA, duplicated chromosomes, and
translocations [43]. Higher throughput methods using
comparative genomic hybridisation (CGH) arrays or sin-
gle nucleotide polymorphism (SNP) arrays with vastly
increased resolution allow for genome-wide interroga-
tion of CN down to the gene level on fresh, frozen, and
even formalin-fixed, paraffin-embedded tissues, which
has allowed for unprecedented insights into the CN land-
scape of cancer [44,45]. The advantage of SNP arrays
over CGH is that the genotyping of common SNPs
enables the ability to infer not only the total CN by using
the signal intensity (i.e. logR) across a region of the
genome but also the ratio of reference and alternate allele
intensities (B-allele frequency) to elucidate the allele-
specific CN changes within the same region [46]. Next-
generation sequencing technologies, such as WES and
WGS, can also be utilised to generate allele-specific
CN across the genome [47], by deriving logR from the
sequencing depth and the B-allele frequencies. This
combination of logR and B-allele frequency for a given
sample is commonly referred to as the copy number pro-
file of the sample (Figure 1). Multiple bioinformatic tools

A

S 8 SS=s==
S S S==
S SSSESS
SSS==
SSSsS

<
Derivative @ 0.4 1
chr10+16 0.2 g

0ol B

56 7.8 9 10111213 1415161718 20 22

to derive CN profiles have been developed, ranging from
relatively straightforward methods that utilise logR values
to infer total CN [48], to methods that use both logR and
BAF values to infer allele-specific CN [46,49-51], and
even more sophisticated methods that infer not only
clonal CN but also sub-clonal CNAs through the applica-
tion of haplotype phasing [25]. In addition, the choice of
CN caller is often motivated by the utilised profiling plat-
form, e.g. B-allele frequencies are challenging to obtain
from shallow WGS data (low sequencing coverage
WGS), whereas haplotype phasing is challenging for
non-WGS data. Recent advances that combine informa-
tion across multiple samples have improved CN profiling
where samples are evolutionarily related, e.g. multi-
region sampling of a single tumour [52], while also pav-
ing the way for allele-specific CN calling from shallow
WGS and from single-cell sequencing data [53].

For CN analysis, probably the most commonly used
approach to decipher potential CN drivers from cancer
genome samples is the Genomic Identification of Signifi-
cant Targets in Cancer (GISTIC) tool [54]. Using this
method, one can identify statistically significant regions of
recurrent amplifications and deletions, in essence providing
a method to identify potential CN driver mutations. Whilst
extremely useful, the GISTIC method does not allow one to
infer the mutational processes that may be generating those
CN changes. In an analogous way to mutational signatures,
the newly developed CN signature methods relate CN pat-
terns to potential mutational processes.

A deep look into the short history of copy number
signatures

The field of mutational signature analysis has developed
multiple methods based on non-negative matrix factori-
sation, latent Dirichlet allocation, hierarchical Dirichlet
processes, or other methods for data classification

Figure 1. Examples of CN profiles derived from karyotyping and DNA sequencing. Mock karyotype (left), logR and BAF tracks (middle), and CN
profile (right) for (A) a diploid and (B) an aneuploid genome. Maternal (blue) and paternal (orange) chromosomes are displayed separately and
phased throughout. CN, copy number. The aneuploid genome is whole-genome doubled (WGD) and includes losses prior to (chr1 + 6 + 19)
and following (chr3 + 12 + 14) WGD, as well as gains prior to (chr5 + 20) and following (chr8 + 18) WGD. Additionally, a chromothripsis

event after WGD involving both chr10 and chr16 is included.
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Table 1. Design of features for CN signature methods

Reference Genomic feature

Macintyre et al (2018) [22] Breakpoint count per 10 Mb
CN

CN change point

Breakpoint count per chromosome arm
Length of chains of oscillating CN

Segment size
Wang et al (2021) [62]*

Steele et al (2019/2021) [23,24] LOH status
Total CN

Segment size

*Additional features introduced to the method described in ref 22.

Minimum number of chromosomes with 50% CN altered (1 value)
Number of events per chromosome

CD Steele, N Pillay, LB Alexandrov

Biological process

Chromothripsis

Breakage fusion bridge
Chromothripsis
Chromothripsis

HRD, chromothripsis

Ploidy

Genomic distribution of events
Mechanism-agnostic’

fPatterns identified from mechanism-agnostic approaches can be associated with various datasets post hoc; this allows for linking of multiple mechanism-agnostic sig-
natures with processes such as genome doubling, chromosomal instability, chromothripsis, HRD, and haploidisation [24].

[15,54-56] and tools [15,57-61] to extract meaningful
information from cancer genomes. An early study in
2018 on high-grade serous ovarian cancer (OV) was
one of the first to use such mathematical approaches to
show the potential utility of a CN signature for prognos-
tication [22]. OV is a genetically complex tumour char-
acterised by 7P53 mutations, often associated with
homologous recombination deficiency (HRD) (see
below), breakage fusion bridge cycles — a pattern of
replication-associated genomic instability induced by
telomere shortening, leading to amplifications and geno-
mic rearrangements, and chromothripsis, which is a
mutational process leading to clustered rearrangements
that occur as a single event following the ‘shattering of
a chromosome’ [55]. In their CN signature framework,
Macintyre et al [22] designed a model to capture these
salient genetic features of the OV genome through CN
signatures derived from shallow WGS data (Table 1).
Their analysis demonstrated the potential clinical utility
of CN signatures by identifying a signature that was
linked to poor prognosis in some patients. OV served
as an ideal model upon which to build such a framework,
as the endogenous DNA damage processes linked with
the CN patterns were already well established in that
cancer type [55,56].

The utility of signatures as biomarkers for treatment
stratification in cancer is perhaps best exemplified by
those developed for identifying HRD [22,24]. Inactivat-
ing mutations in BRCAI, BRCA2 or other HR pathway
genes leave tumour cells unable to repair double-strand
breaks of the genome in a faithful manner, instead rely-
ing on error-prone pathways such as non-homologous
end joining or microhomology-mediated end joining
[57,58]. Antagonising this deficiency, either through
inducing DNA damage (as for platinum-based therapies)
or through blocking compensatory repair pathways
(as for PARP inhibition), is a promising therapeutic ave-
nue [59]. Nevertheless, stratifying patients for these
treatments remains an open challenge. The US Food
and Drug Administration has approved the Myriad
Genetics myChoice CDx® test, which combines identifi-
cation of inactivating mutations of BRCAI or BRCA2
along with specific CN-based readouts of ‘genomic
scars’ of HRD [60]. However, alterations of other HR

© 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd
on behalf of The Pathological Society of Great Britain and Ireland. www.pathsoc.org

pathway genes, or non-genetic mechanisms, such as pro-
moter methylation silencing [61], may abrogate the HR
pathway but could be missed by the myChoice CDx® test.
Similar CN-based metrics inspired by the myChoice
CDx® genomic scars have been developed [63]; however,
the application of such metrics across different tumour
types requires careful calibration [64]. Beyond CN geno-
mic scars, signatures of single base substitutions, indels,
and rearrangements have been associated with HRD
tumours [15,16,21]. In an effort to generate a robust test
for HRD, Davies et al built a predictive model for HRD
— HRDetect — that incorporates SBS, indel, and rearrange-
ment signatures, as well as CN genomic scars [65,60],
which holds great promise but is restricted to WGS data.
Other methods that are dependent on whole-genome
sequencing [67] or that have removed the need for WGS
data and are therefore applicable to targeted sequencing
panels [68] have also been published. Additionally, the
distinction between ongoing HRD and historic HRD
needs to be properly assessed in tumours; historic HRD
may leave the scars on the genome that indicate that the
tumour is HR-deficient, but the tumour may have rein-
stated HR through mechanisms such as PTEN mutation,
or compensating mutations up- or down-stream of the
core HR pathway genes [69]. This distinction is important
for patients, as ongoing HRD should be sensitive to
PARP inhibition, whereas tumours that have reinstated
HR may be resistant.

In 2019, through a separate study of genomically com-
plex undifferentiated soft tissue sarcomas (USARCs),
where limited prior knowledge about the underlying muta-
tional processes was known, Steele et al developed a
‘mechanism-agnostic’ approach to summarise CN profiles
into CN signatures [23]. This was achieved by categoris-
ing the segments of an allele-specific CN profile by funda-
mental aspects of CN into a CN summary vector, which
included loss of heterozygosity (LOH) status, total CN
state, and segment size (Figure 2A,B). Once a set of CN
summaries is obtained (Figure 3A), the matrix of all sum-
maries can be decomposed into a matrix of signature def-
initions and a matrix of signature attributions (Figure 3B)
using non-negative matrix factorisation. The set of signa-
tures and their attributions can then be used to infer the
potential biological relevance of the signatures in question
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Figure 2. CN summary vectors for the two profiles displayed in Figure

1. (A) Diploid and (B) aneuploid, as per the summary methodology of Steele

et al [24]. LOH status and total CN categories are displayed above the bar plots. Segment size categories are displayed below the bar charts.

through associations with relevant data such as driver
mutations, chromothripsis, whole-genome doubled
(WGD) status, or even orthogonal information such as
transcriptome profiling [22-24,62,70]. In USARCs, seven
distinctive signatures were identified which were linked to
biological processes including successive whole-genome
doublings, genome-wide LOH events, and chromothripsis
[23]. We were able to integrate these signatures with other
genomic data to elucidate multiple evolutionary routes
through which USARCs potentially develop, demonstrat-
ing the utility of CN signatures for understanding the evo-
lutionary history of cancer genomes. Recently, Steele et al
expanded this work to ~10 000 cancers to develop a pan-
cancer set of 21 CN signatures [24], with new signatures
linked to HRD, extrachromosomal circular DNA forma-
tion, and haploidisation. Moreover, this work provided a
further refinement in the evolutionary relationship
between CN signatures and their role in tumour history.

The two signature methods described above broadly
divide the field into two major classes: those that have
CN features designed specifically to capture previously
known biological processes [22,62,70] and those designed
to be mechanism-agnostic [23,24] (Table 1). Importantly,
patterns identified from mechanism-agnostic approaches
can be subsequently associated with various datasets post
hoc; this has allowed the linking of multiple mechanism-
agnostic signatures with processes such as genome dou-
bling, chromosomal instability, chromothripsis, HRD,
and haploidisation [24]. While mechanism-agnostic
approaches may not capture all known biological pro-
cesses, they can reveal previously unappreciated molecu-
lar mechanisms [24]. In contrast, while CN features
designed to capture a particular set of biological processes
will capture these processes, they would rarely elucidate
previously unknown molecular mechanisms.

© 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd
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Macintyre et al [22] designed a set of CN features that
would each tag a given process known to generate CN
profiles with distinctive values for those features, e.g.
classical chromothripsis will generate many breakpoints
with long oscillating CN runs of short segment size
[71,72] (Table 2). In addition to the studies outlined
above, a set of other CN signature analyses were also
performed, with most of them focusing on detecting
specific biological processes. For example, the above
set of features was expanded by Wang et al [62] to
include metrics of global CN aberration extent and local
CN aberration extent per chromosome (Table 2). To con-
vert the feature space into counts that are suitable for
decomposition, Macintyre et al utilised mixture models
to categorise the feature distributions (Table 2). How-
ever, this mixture model approach may lead to different
categories between different datasets or profiling plat-
forms, causing difficulties when comparing results across
different studies. To rectify this, Wang et al instead gen-
erated manual categories for each feature type, allowing
for the same categories to be used across studies. A fur-
ther study in multiple myeloma took a hybrid approach
where categories for most features were determined using
mixture models, but categories for CN were manually
designed, specifically to fit the known biology of the
malignancy [70].

Biological considerations of copy number
signatures

Multiple studies have now demonstrated the utility of
CN signatures to predict the prognosis of patients, both
in a single-tumour [22,62,70] and in a pan-cancer
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Table 2. Overview of published CN signature methods

Tumour

Number of samples
Number of signatures
Mechanism
Summary method

Decomposition method
Number of components
Platforms

Allele-specific
Genomic information
Included segments
Ploidy sensitive
Software

NMF, non-negative matrix factorisation; HDP, hierarchical Dirichlet process.

Macintyre et al
(2018) [22]

Ovarian

385

7

Designed
Mixture models

NMF
36
Shallow WGS

No

None

All

Yes

Custom code

Wang et al
(2021) [62]

Prostate

1003

5

Designed

Manual categories

NMF

80
Exome

No

Chromosomal counts

All
Yes
Sigminer

Maclachlan et a/
(2021) [70]

Multiple myeloma

752

5

Designed

Hybrid (manual
category - total CN)

HDP

28

Shallow WGS

No

None

All

Yes

Custom code

© 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd
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Steele et al
(2019) [23]

USARC

52

7

Agnostic

Manual categories

NMF
40
Deep WGS

Yes

None

All

Yes

Custom code

Steele et al
(2021) [24]

Pan-cancer
11210

21

Agnostic

Manual categories

NMF

48

SNP6 microarray

Exome sequencing

Deep WGS

Shallow WGS

Reduced representation
bisulphite sequencing

Yes

Post hoc mapping

All

Yes

SigProfiler
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genome that have been mapped to a signature (in grey); regions of the genome unattributed to a signature are in white. (B) CN summary
vector for the DDLPS in A. See legend of Figure 2 for the ordering of CN classes. (C) Signature definitions for the three signatures attributed
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explaining the segments in a genomic bin of the window (blue), where here the bins are the chromosomes of the human genome (x-axis).
Global attributions of the three signatures to this sample are coloured in orange. Signature 8, a signature associated with chromothripsis
amplification, is attributed to chromosomes 12, 1, and 2, due to the highly segmented patterns seen on those chromosomes. Once the chro-
mosomal likelihoods are obtained, the maximum likelihood signature for each segment based on its CN class can be assigned, giving the

assignments shown in the bottom panel of A.

context [24] (Table 2). Synthesis of the results to date
suggests that patients with tumours that exhibit patterns
indicating an amplicon or chromothripsis-like event
have poor survival [24,70]. This corroborates previous
findings of poor survival of patients with chromothriptic
tumours [73] or with extra-chromosomal circular
DNA [74].

The relative simplicity of the signature encoding in
mechanism-agnostic approaches enables the mapping
of signatures back to the genome, reconstituting the
genomic context of the CN signatures [24], thereby pro-
viding information about the processes that generate the
CN event. One notable example is the identification of
chromothripsis signatures associated with oncogenic
MDM?2 amplification in dedifferentiated liposarcoma
(Figure 4) consistent with the recently described com-
plex SV coupled with amplification known as tyfonas
[30]. This result highlights the importance of genomic
context when interpreting CN signatures, especially with

© 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd
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the understanding that the CN landscape of a cancer cell
is heavily shaped by positive and/or negative selection
[75]. Beyond identifying known tumour suppressor
genes/oncogenes using CN signatures, there may be fur-
ther utility in discovering novel cancer driver genes, par-
ticularly in cohorts of rare or understudied tumours. The
recurrence of specific signatures in regions of the
genomes, including distinct recurrence patterns in indi-
vidual tumour types [24], reflects the strong selective
pressures acting on CNAs more broadly. This mirrors
known phenomena such as recurrent aneuploidies seen
in individual tumour types [76], driven through the inter-
play between loss of tumour suppressor genes, gain of
oncogenes, and retention of essential genes [75]. In con-
trast, the vast majority of SBS mutations seen in a
tumour genome are passenger events [77], and possibly
have little effect on selection. This distinction suggests
that SBS signatures provide a more unbiased window
into the processes that generated them, whereas CN
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orange = minor CN, blue = major CN, green = rearrangement). Specific structural alterations to the genome may lead to only CN alterations
(whole-genome doubling; WGD), only rearrangements (translocation), or a combination of both (loss). Further, the consequences of the same struc-
tural alterations (WGD and a loss) may depend on the order in which those structural alterations occurred; a loss followed by WGD (Loss — WGD)
will lead to loss of heterozygosity for the lost segment, whereas the reverse ordering (WGD — Loss) will retain heterozygosity for that segment, which

may be important when assessing second hits to tumour suppressor genes.

profiles have a much stronger inherent bias. This selection
pressure has been directly observed in colon organoids,
where daughter cells of chromosomal mis-segregation
events have a high probability of subsequent cell death
[78], whereas the same is not true of the vast majority of
SBS mutations [27].

Future directions

CNAs and rearrangements represent two distinct but
related consequences of structural alteration to the
genome (Figure 5). As aresult, it is likely that signatures
that incorporate both rearrangements and CN profiles
would more fully describe the consequences of struc-
tural phenomena. As an example, a whole-genome dou-
bling event will be ‘silent’ when viewed through
rearrangement but will be observed through CN data.
In contrast, a balanced translocation or an inversion
may be ‘silent’ within a CN profile but will be observed
through rearrangement data. This may help to distin-
guish different molecular events, e.g. chromothripsis

© 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd
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that has occurred on single versus on multiple chromo-
somes and may further refine patient stratification.

A distinction between CN changes and single base
substitutions is that every substitution can be examined
as a single independent event, barring local clusters of
hypermutation [28] or violations of the infinite sites
model [79,80]. In contrast, every segment in a CN pro-
file cannot be evaluated as a single or as an independent
event, as these CN events may occur simultaneously
[81]. As a result, the interpretation of a CN profile is
limited, in that you can only necessarily observe the
end stage of a process that has generated the patterns.
To exploit the potential of CN signatures for evolution-
ary studies, it may be valuable to perform sub-clonal
CN reconstruction to discover the clonal composition
of the tumour, and hence map CN events onto the
tumour’s evolutionary tree. In this way, it may be pos-
sible to develop a new generation of signatures of
CNAs (event-level signatures) that may more accu-
rately reflect the signatures of the observed CN profiles
(end-state signatures). For SBS data, the difference
between event-level and end-state-level is minimal
[28], whereas for CN data it may be substantial.

J Pathol 2022; 257: 454-465
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Lastly, considerable effort has been expended to vali-
date that signatures of small mutational events correspond
to real biological processes [26,27,82,83]. Similar efforts
will be required for CN signatures; however, the experi-
mental strategies for inducing CNAs and/or processes
are less deterministic and may necessitate careful experi-
mental design. As a further complication, the CN profile
generated from an individual event will depend on the
previous history of the tumour genome, e.g. a loss before
and after genome doubling will lead to loss or retention of
heterozygosity, respectively (Figure 5). Despite these
challenges, the emerging evidence suggests that CN sig-
natures represent a fertile research area to understand can-
cer pathogenesis and can be utilised as a robust approach
for prognostication and, in some cases, for therapeutic
stratification of cancer patients.
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