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Cell-derived extracellular matrices (CD-ECMs) captured increasing attention since the
first studies in the 1980s. The biological resemblance of CD-ECMs to their in vivo
counterparts and natural complexity provide them with a prevailing bioactivity. CD-ECMs
offer the opportunity to produce microenvironments with costumizable biological and
biophysical properties in a controlled setting. As a result, CD-ECMs can improve cellular
functions such as stemness or be employed as a platform to study cellular niches in
health and disease. Either on their own or integrated with other materials, CD-ECMs
can also be utilized as biomaterials to engineer tissues de novo or facilitate endogenous
healing and regeneration. This review provides a brief overview over the methodologies
used to facilitate CD-ECM deposition and manufacturing. It explores the versatile uses
of CD-ECM in fundamental research and therapeutic approaches, while highlighting
innovative strategies. Furthermore, current challenges are identified and it is accentuated
that advancements in methodologies, as well as innovative interdisciplinary approaches
are needed to take CD-ECM-based research to the next level.

Keywords: cell-derived extracellular matrix, stem cell niche, cell differentiation, tissue engineering, regenerative
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INTRODUCTION

The extracellular matrix (ECM) is the non-cellular component present in all connective tissues
and has a composition specific for each tissue. It is comprised of a complex and highly organized
three-dimensional macromolecular network of biomolecules. These include fibrous proteins (such
as collagens) and glycosaminoglycan (GAG)-based components. Fibrous ECM components form
the backbone of the polymer network, thereby providing shape/stability and tensile strength to
tissues. They also regulate cell adhesion and support cell migration. GAG-based components fill
the interstitial space, ensuring hydration and lubrication of tissues, and acting as a reservoir and
modulator of cytokine signaling (Theocharis et al., 2016; Yong et al., 2020).

ECM-driven communication arises from a complex combination of biochemical, topological
and biomechanical cues, facilitating a reciprocal dialogue with cells, which can respond via
remodeling of the ECM. This multi-dimensional signaling enables the ECM to guide intricate
cellular and tissue processes such as homeostasis, healing and regeneration (Kaukonen et al., 2017).
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ECM AS A BIOMATERIAL

The ECM is a biomaterial designed by nature that underwent
over 600 million years of material optimization (Ozbek
et al., 2010). It serves as a blueprint for many man-made
biomimetic biomaterials. Nonetheless, these materials represent
oversimplified versions of the ECM that are not able to replicate
its complex bioactivity (Kaukonen et al., 2017). As a result, ECM
derived from decellularized tissues, remains one of the most
successful biomaterials in clinics (Hussey et al., 2018).

Unfortunately, tissue-derived ECM faces various challenges
to its clinical application. The limited availability of human
cadaveric tissue leads to the use of animal tissue-derived
ECM as an alternative source. Especially the incomplete
decellularization of tissue carries the risk of disease transmission
and immunological rejection. Some ECMs are plainly not
available, since some specific tissues are hard to isolate (e.g., stem
cell niches). Further, tissue-derived ECM is set in its composition,
therefore cannot be customized in its bioactivity toward a specific
application (Aamodt and Grainger, 2016).

As cell-derived ECM (CD-ECM) partially recapitulates the
complex biological machinery of native tissue (Ahlfors and
Billiar, 2007), it can address many of the tissue-derived ECM’s
limitations. It can be derived from human cell cultures by
gentle decellularization to remove immunogenic components,
while preserving its bioactivity. ECM-synthesizing cells can be
standardized and pre-screened (Sharma et al., 2020), minimizing
the risk of disease transmission. Deriving ECM in vitro provides
the opportunity to select appropriate ECM-producing cell types,
further modify them (e.g., genetically) and expose them to
specific stimuli, thus enabling the creation of ECM with desired
properties (Maia et al., 2020). CD-ECM is therefore an incredibly
versatile material to be used in physiological studies and
therapeutic approaches.

METHODOLOGIES TO GENERATE
CD-ECM

Stromal cell-derived ECMs are rich in collagens (Antebi et al.,
2015), while endothelial/epithelial CD-ECMs contain a laminin-
rich basement membrane-like ECM (Davis and Senger, 2005).
CD-ECM can be generated by culturing cells scaffold-free in 2D
and 3D cultures (Serebriiskii et al., 2008; Hoshiba et al., 2016;
Sharma et al., 2020). Alternatively, cells can also be seeded within
hydrogels or scaffolds, forming hybrid CD-ECM-based materials
(Sart et al., 2014; Suhaeri et al., 2018).

Facilitating ECM Deposition in vitro
Slow ECM assembling kinetics in vitro necessitate long cell
culture periods up to several weeks to harvest sufficient CD-ECM
amounts for the desired application (Bourget et al., 2012). This
can be improved by adjusting culture conditions (Hoshiba, 2017).

The most essential supplement for robust ECM deposition is
ascorbate, a cofactor of lysyl hydroxylase and prolyl hydroxylase,
essential enzymes in collagen fibrillogenesis (Pinnell, 1985).
Collagen type I is the most prominent ECM component and its

deposition increases the overall yield of CD-ECM and improves
its mechanical properties. Nonetheless, rapid degradation of
ascorbate (Grinnell et al., 1989) calls for frequent media changes,
thereby discarding the not-yet deposited ECM components.
A stable form of ascorbate (2-phospho-L-ascorbate) can reduce
the frequency of medium replacements (Chen et al., 2011).

The yield of deposited ECM can be amplified by introducing
macromolecules, which emulate the crowded conditions present
in vivo. The biophysical principle of macromolecular crowding
(MMC) relies on macromolecules occupying space, thereby
increasing the effective concentration of other molecules and
the thermodynamic activity of the system. This has profound
effects on protein folding, molecular interactions and enzyme
kinetics (Chen et al., 2011). In particular, under MMC more
ECM can be deposited within 1 week than after several
weeks under non-crowded conditions. Most commonly used
“crowders” are Ficoll, carrageenan, polyvinylpyrrolidone and
dextran sulfate (Lareu et al., 2007; Lu et al., 2011; Blocki et al.,
2015; Gaspar et al., 2019), albeit dextran sulfate was recently
found to act as a precipitating agent, independent of MMC
(Assunção et al., 2020).

Culturing cells with low serum concentration (<1%
v/v) was also beneficial, as serum carries exogenous matrix
metalloproteases that degrade ECM and imbalance the ECM’s
natural remodeling rate (Satyam et al., 2014; Kumar et al.,
2015). Furthermore, hypoxia was shown to induce synthesis
of ECM richer in collagenous proteins and angiogenic factors,
as seen in fibroblasts (Distler et al., 2007; Kumar et al., 2018)
and mesenchymal stem cells (MSCs) (Cigognini et al., 2016;
Du et al., 2017).

Decellularization and Processing of CD-
ECM
CD-ECMs are usually generated in a small format, permitting
gentle decellularization methods with focus on maintaining
architecture and bioactivity. Most methods use detergents,
enzymes, chelating agents, mechanical approaches and
combinations thereof (Figure 1A; Woods and Gratzer, 2005;
Faulk et al., 2014; Levorson et al., 2014; Gilpin and Yang, 2017).
Complete decellularization is further achieved by removing
genetic material with nucleases to prevent host immune reaction,
as can be observed in tissue-derived ECMs (Crapo et al., 2011).

Decellularized CD-ECMs can then be used in their original
format, fragmented (Carvalho et al., 2019b), grinded (Wei et al.,
2015) or solubilized (Decaris et al., 2012). These formats give rise
to 2D ECM layers or more complex 3D structures comprising
3D scaffolds (McAllister et al., 2009), spheroids (Cheng et al.,
2009), fibers (Roberts et al., 2017), and sheets (Sharma et al., 2020;
Figure 1B).

APPLICATIONS OF CD-ECM

Numerous applications have been explored for CD-ECMs
including the improvement of cellular functions, seen in
tailored cellular niches, the study of ECM in a physiological
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FIGURE 1 | Methodologies to generate CD-ECM in different formats. (A) CD-ECMs are synthesized by different cell types (i.e., MSCs and fibroblasts). Culture
conditions are adjusted to facilitate ECM deposition by e.g., introducing MMC or hypoxia into cell culture. The assembled ECM is then gently decellularized, while
preserving the ECM’s integrity as much as possible. The resulting CD-ECM can be used in its original format or further processed. (B) The arrangement in which the
ECM producing cells are cultured determines the format of the CD-ECM material. Which type of presentation is most advantageous depends on the desired
application. Easiest decellularization can be achieved in 2D cultures. The resulting CD-ECM is suitable for coating of culture dishes and biomaterial surfaces or can
be further processed and integrated with other biomaterials, such as hydrogels. Integration of CD-ECM with other materials provides the opportunity to combine the
bioactivity of the ECM with desired geometries and mechanical properties. CD-ECM assembled in 3D recapitulates native cellular niches more closely. It can thus be
utilized to engineer improved tissue models and ECM 3D scaffolds with desired geometries. Various techniques exist that enable the construction of 3D scaffolds
based on CD-ECM.

and pathophysiological context, and the application in tissue
engineering and regenerative medicine (TERM) (Figure 2).

Recreation of Cellular Niches
Stem Cell Niches
The emulation of the native cellular microenvironment in culture
is a prerequisite to maintain the cells’ phenotype and function.
This is especially true for sensitive cell types, such as stem cells,
which are known to undergo senescence and lose their stemness
ex vivo (Hoshiba et al., 2016).

Various studies demonstrated that MSC-derived ECM can
recapitulate the stem cell niche sufficiently to protect reseeded
MSCs from oxidative stress, promote their proliferation, and
conserve their stemness (Chen et al., 2007; Lai et al., 2010; Liu
et al., 2016; Xing et al., 2020). CD-ECMs were also shown to
maintain the native phenotype of neural progenitor cells (Yang
et al., 2017; Hoshiba et al., 2018), embryonic stem cells (ESCs)
(Klimanskaya et al., 2005), periodontal ligament stem cells (Xiong
et al., 2019) and hematopoietic stem cells (Prewitz et al., 2013).
Furthermore, ECMs derived from younger MSCs were shown
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FIGURE 2 | CD-ECM applications in fundamental research, pathophysiological studies and renegerative medicine. The ease with which CD-ECM can be modified,
makes it the ideal platform to study detailed ECM mechanisms or the role of cellular niches under physiological and pathophysiological conditions. Specialized
engineered cellular niches can be further utilized to improve cellular functions in vitro, such as stemness. In TERM, CD-ECMs can be created with specific
mechanical and biological properties to be used on their own (i.e., as vascular grafts) or to enhance the performance of (semi-) synthetic biomaterials.

to rejuvenate in vitro-aged and chronologically-aged MSCs (Pei
et al., 2011; Sun et al., 2011; Lin et al., 2012). These effects were
tightly linked to the biological profile of the ECM (reviewed in
Sart et al., 2020).

Tissue-Specific Niches
Similar to MSC-derived ECM supporting stemness, ECMs
derived from adipogenically or osteogenically induced MSCs
promoted the respective lineage commitment of reseeded MSCs
via integrated structural and regulatory proteins (Ang et al.,
2014; Jeon et al., 2018; Carvalho et al., 2019a). Chondrogenic
differentiation was best supported by chondrogenic ECM
deposited in 3D (Cheng et al., 2009; Lu et al., 2011). Synovial
MSC-derived ECM also protected chondrocytes from pro-
inflammatory stimuli (Yan et al., 2020).

CD-ECMs from stromal, endothelial and epithelial cells could
improve the function of specialized cell types, such as podocytes
(Satyam et al., 2020), chondrocytes (Wei et al., 2015; Yang et al.,
2018; Zhang et al., 2019), hepatocytes (Grant et al., 2017; Guo
et al., 2017), Schwann cells (Xiao et al., 2016), as well as promote
natural killer cell differentiation (Lee et al., 2020).

Similarly to adult stem cells, CD-ECMs synthesized by
differentiating ESCs were able to promote early differentiation
of ESCs, even without external factors (Goh et al., 2013). ECM
produced by an endoderm-inducing cell line and ECM from liver
progenitor cells promoted differentiation of pluripotent cells into

insulin-expressing pancreatic β-cells (Higuchi et al., 2010) and
hepatic cells (Kanninen et al., 2016), respectively.

Hence, CD-ECMs can be utilized to tailor cell and tissue-
specific niches to promote cellular functions and study cell-niche
interactions in detail.

Engineering ECM in Disease
The ECM has a long-implicated role in disease development
and progression, although the exact mechanisms often remain
elusive. While the CD-ECM platform provides the opportunity to
manipulate ECM and study it in detail, few studies utilized CD-
ECM to study ECM mechanisms in disease (Raghunathan et al.,
2018), most of them related to cancer.

It is currently well accepted that the tumor microenvironment
plays a pivotal role in cancer cell behavior, including proliferation,
invasiveness, metastasis and drug resistance (Serebriiskii et al.,
2008). CD-ECMs provide the prospect to improve cancer models
by recreating the cancer microenvironment using standard
2D, 3D cultures or more complex, organ-on-a-chip strategies
(Gioiella et al., 2016; Kaukonen et al., 2017; Hoshiba, 2018).
Indeed, culture of cancer cells on tumor CD-ECMs led to
more physiologically relevant cancer cell phenotypes, as observed
in various carcinoma (Serebriiskii et al., 2008; Eberle et al.,
2011; Kaukonen et al., 2017), breast (Castelló-Cros et al., 2009;
Hoshiba and Tanaka, 2013), and colon (Hoshiba, 2018) cancer
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models. Increased malignancy and drug resistance of cells
was observed on invasive cancer CD-ECMs, in comparison
to non-invasive cancer CD-ECMs (Hoshiba and Tanaka, 2013;
Hoshiba, 2018). In contrast, upon culture on MSC-derived
ECM, cancer cells proliferated less (Marinkovic et al., 2016)
and showed reduced tumorgenecity upon implantation (Sun
et al., 2010). Differences in cancer cell behavior were attributed
not only to the biochemical composition of the tumor-
associated ECM, but also to changes in stiffness (Kaukonen
et al., 2016; Hoshiba, 2018) and a decreased cell adhesion
(Hoshiba and Tanaka, 2013).

Engineering and Characterization of
CD-ECM to Study ECM Physiology
The ease of manipulating CD-ECM in vitro provides the
opportunity to examine the reciprocal relationship between
cells and their ECM.

Biochemical ECM re-engineering could be achieved through
direct addition of functional groups (Xing et al., 2015) or
exogenous factors (Sart et al., 2020), genetic modification
(Higuchi et al., 2010) or growth factor stimulation of
ECM-synthesizing cells (Wolchok and Tresco, 2012). Other
changes in culture conditions, such as hypoxic cultures,
were also shown to affect ECM properties and bioactivity
(Hielscher, 2013).

Mechano-physical re-engineering could be achieved by
culturing ECM-secreting cells in 3D sacrificial hydrogels
(Yuan et al., 2018), on micro-molds (Schell et al., 2016),
and micro- and nano-grooves (Ozguldez et al., 2018; Almici
et al., 2020; Yang et al., 2020), forcing cell reorganization
and leading to ECM assemblies with unique architectures
(i.e., parallel fiber alignment). ECM postprocessing, such as
cross-linking, could further alter ECM stiffness (Subbiah et al.,
2016) or the overall presentation of CD-ECM.In particular,
cross-linking of pepsin-solubilized CD-ECM with genipin
resulted in the formation of hydrogels (Nyambat et al., 2020),
Changes in biochemical and mechano-physical properties
of the ECM let to changes in gene expression and behavior
of reseeded cells (Kim et al., 2015; Ozguldez et al., 2018;
Sart et al., 2020).

CD-ECM characterization and correlation with specific
bioactivities can contribute to the mechanistic understanding
of the ECM. ECM ultrastructure can be generally studied by
scanning electron microscopy or atomic force microscopy
(Kaukonen et al., 2016; Raghunathan et al., 2018). The latter
method can also be used for biomechanical characterization
(Prewitz et al., 2013; Assunção et al., 2020). Identification
of proteins of interest is best performed by antibody-based
assays such as immunocytochemistry or western blotting (Sart
et al., 2020). Proteomic analysis based on mass spectroscopy
enables the simultaneous identification of many components,
however also faces challenges based on the insolubility and high
complexity of the ECM (Ragelle et al., 2017; Senthebane et al.,
2018; Silva et al., 2019). Furthermore, additional methods, such as
Raman microscopy, can be used for biochemical characterization
(Brauchle and Schenke-Layland, 2013).

CD-ECM Applications in TERM
CD-ECM uses for TERM have been increasingly explored, either
with CD-ECM alone or integrated in biomaterials. 3D scaffolds
purely composed of CD-ECM were produced by decellularizing
stacked cell sheets (McAllister et al., 2009) and pellets (Zwolinski
et al., 2011), or depositing ECM in sacrificial materials, such as
hollow tubes (ECM fibers) (Roberts et al., 2017) and foams (ECM
porous scaffolds) (Wolchok and Tresco, 2010; Figure 1B).

For applications that require specific mechanical properties
of the biomaterials, CD-ECM was integrated with synthetic
materials, forming hybrid scaffolds (Schenke-Layland et al., 2009;
Carvalho et al., 2019b; Sart et al., 2020). Hybrid materials met
mechanical requirements, while providing adequate biochemical
stimuli, thus facilitating implant integration and functionality
(Silva et al., 2020). Commonly, CD-ECM was utilized as
a coating by simply decellularizing cells on the biomaterial
surface (Kumar et al., 2016; Junka et al., 2020), although
solubilized CD-ECM was also used as a coating (Decaris et al.,
2012). A more sophisticated approach introduced azide-modified
monosaccharides into culture media, which subsequently were
incorporated into the ECM. The CD-ECM could then be
covalently “clicked” to material surfaces (Ruff et al., 2017).
Alternative approaches directly incorporated CD-ECM into the
biomaterial during synthesis (e.g., electro-spinning) (Schenke-
Layland et al., 2009; Carvalho et al., 2019b).

CD-ECMs based biomaterials were mainly investigated for
skeletal and cardiovascular repair, although other applications
such as in skin (Suhaeri et al., 2018) and peripheral nerve repair
(Gu et al., 2017) were also explored.

CD-ECM for Skeletal Repair
Most approaches to engineer CD-ECM-carrying bone implants
utilized inorganic materials (reviewed in Zhang et al., 2016),
such as meshes and scaffolds (Kang et al., 2012; Antebi et al.,
2015; Kim et al., 2015; Jeon et al., 2016; Kumar et al., 2016;
Noh et al., 2016; Junka et al., 2020; Silva et al., 2020). These
were coated with ECM assembled by collagen I-overexpressing
epithelial cells (Noh et al., 2016), fibroblasts (Kim et al., 2015),
MSCs (Kang et al., 2011; Silva et al., 2020), endothelial cells
(Kang et al., 2012), osteoblasts (Jeon et al., 2016; Kumar et al.,
2016) and combinations thereof (Junka et al., 2020). CD-ECM
coated scaffolds promoted attachment, proliferation, and bone-
like tissue formation in vitro. In a more advanced approach, Kim
et al. (2015) enhanced an PLGA/PLA-based mesh scaffold coated
with CD-ECM, by covalently conjugating heparin to the ECM.
The heparin then acted as a growth factor reservoir for bone
morphogenic protein-2 (BMP2), thereby promoting bone healing
in vivo (Kim et al., 2015). CD-ECM was also used to increase
retention of osteogenically precommitted MSCs on biomaterial
surfaces after implantation. This revitalized ECM successfully
repaired mouse calvaria defects (Zeitouni et al., 2012).

Therapeutic approaches targeting cartilage repair mainly
utilized 3D scaffolds purely composed of CD-ECM (Jin et al.,
2007; Tang et al., 2013, 2014) or CD-ECM-loaded hydrogels
(Yuan et al., 2013). Indeed, 3D scaffolds of chondrocyte- and
MSC-derived ECM reseeded with chondrocytes induced ectopic
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hyaline-like cartilage formation in vivo (Jin et al., 2007; Tang
et al., 2013). When applied to an osteochondral defect together
with bone marrow stimulation, autologous MSC-derived ECM
could enhance cartilage repair (Tang et al., 2014). In another
study, a protective effect on the degenerating cartilage could
be demonstrated, when collagen I microspheres containing
nucleus pulposus CD-ECM and MSCs were injected into a rabbit
degenerative disc model (Yuan et al., 2013).

CD-ECM for Cardiovascular Tissue Engineering and
Repair
CD-ECMs have been explored as cardiac patches for cell-
delivery (Schmuck et al., 2014; Kim et al., 2019), as well as
to engineer heart valves replacements (Weber et al., 2013) and
blood vessel grafts (McAllister et al., 2009; Syedain et al., 2014;
Xing et al., 2017).

Cardiac patches were composed of fibroblast ECM alone
(Schmuck et al., 2014) or combined with a polyvinyl alcohol
sheet, resulting in a stretchable scaffold for cell delivery.
Application of the latter in a rat myocardial infarct model resulted
in improved cardiac remodeling (Kim et al., 2019).

A cardiac valve prototype containing vein-derived fibroblast
ECM was implanted in a non-human primate. Albeit valve
functionality was reduced, there was a significant improvement
in repopulation by host cells, when compared to decellularized
human heart valves (Weber et al., 2013).

McAllister et al. (2009) utilized partially devitalized autologous
fibroblast/endothelial CD-ECM sheets to form vascular
access grafts for dialysis patients. Complete remodeling and
repopulation of CD-ECM occurred, although diffuse dilation
of the graft was observed (McAllister et al., 2009).

In order to improve this low graft resistance, Syedain et al.
(2014) stimulated tubular fibroblast cultures in a pulsed-flow-
stretch bioreactor. Upon implantation of the decellularized graft
into the femoral artery of sheep, no dilation was observed. Once
completely recellularized, the grafts resembled native vessels in
terms of cellular composition, ECM architecture and mechanical
properties (Syedain et al., 2014).

CONCLUSION AND OUTLOOK

Although CD-ECM was continuously explored for over three
decades and many safety concerns associated with tissue-derived
products can be addressed, relatively slow advancements were
made over the years. This can be partially attributed to the low

amounts of CD-ECM that can be harvested in vitro, indicating
that strategies for upscaling processes as well as manufacturing of
larger 3D constructs need to be developed.

In addition, most TERM approaches used unmodified ECM
from MSCs or tissue-specific cell types to induce cellular
responses in vitro and in vivo. And although various approaches
on how to re-engineer the CD-ECM are proposed, relatively
few are applied to address scientific questions or to manufacture
biomaterials with enhanced desired bioactivities. The reason for
the limited progress can be partially attributed to our restricted
fundamental understanding of the ECM. Hence, functional
studies in combination with CD-ECM characterization will have
to be adopted. Another reason is that re-engineering approaches
are mainly focused on biological manipulation. Research at the
interface to other disciplines such as materials science is indeed
required to enable further evolvement of the CD-ECM research
field. Future applications could focus on bio-inks with tailor-
made bioactivities for 3D bioprinting or improved biomimetic
cell niches in organ-on-a-chip approaches.

In conclusion, CD-ECM based research is far from its full
potential. Advancements in methodologies as well as innovative
interdisciplinary approaches are needed to pave the way for an
exciting next generation of CD-ECMs for basic research and
therapeutic approaches.
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