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Neural tissue is an important soft tissue; for instance, craniofacial nerves govern

several aspects of human behavior, including the expression of speech,

emotion transmission, sensation, and motor function. Therefore, nerve repair

to promote functional recovery after craniofacial soft tissue injuries is

indispensable. However, the repair and regeneration of craniofacial nerves

are challenging due to their intricate anatomical and physiological

characteristics. Currently, nerve transplantation is an irreplaceable treatment

for segmental nerve defects. With the development of emerging technologies,

transplantation donors have become more diverse. The present article reviews

the traditional and emerging alternative materials aimed at advancing cutting-

edge research on craniofacial nerve repair and facilitating the transition from

the laboratory to the clinic. It also provides a reference for donor selection for

nerve repair after clinical craniofacial soft tissue injuries. We found that

autografts are still widely accepted as the first options for segmental nerve

defects. However, allogeneic composite functional units have a strong

advantage for nerve transplantation for nerve defects accompanied by

several tissue damages or loss. As an alternative to autografts, decellularized

tissue has attracted increasing attention because of its low immunogenicity.

Nerve conduits have been developed from traditional autologous tissue to

composite conduits based on various synthetic materials, with developments in

tissue engineering technology. Nerve conduits have great potential to replace

traditional donors because their structures are more consistent with the

physiological microenvironment and show self-regulation performance with

improvements in 3D technology. New materials, such as hydrogels and

nanomaterials, have attracted increasing attention in the biomedical field.

Their biocompatibility and stimuli-responsiveness have been gradually

explored by researchers in the regeneration and regulation of neural networks.
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Introduction

Although the surface area of the head and neck accounts for

approximately 12 percent of the entire body, they are widely

populated with craniofacial nerves, which perform various

functions. As part of peripheral nerves, craniofacial nerves are

responsible for extremely complex sensory and motor functions,

including olfaction, vision, hearing, taste, touch, chewing, eye

movement, and balance. It is important to pay attention to nerve

repair during craniofacial injuries. The causes of craniofacial

nerve injury are complex and diverse. Trauma, infection,

inflammation, tumors, and iatrogenic factors can cause

reversible or irreversible nerve injuries (Jandali and

Revenaugh, 2019; Pan et al., 2020). Therefore, the complicated

anatomical structure and physiological functions of the

craniofacial nerves make their regeneration a challenge.

In 1943, Herbert Seddon proposed a classification method

based on the severity and prognosis of peripheral nerve injuries,

including neurapraxia, axonotmesis, and neurotmesis (Kaya

and Sarikcioglu, 2015). Based on Seddon’s classification,

Sunderland proposed five categories according to the extent

of axonal injury (Sunderland, 1951) (Table 1). The degree and

type of nerve injury should be considered in surgical repair. The

location, length, shape, and cross-sectional area of the donor

and the damaged nerves are important considerations in donor

selection. Patient preferences should be assessed, as nerve

harvesting may result in loss of function at the donor site

(Altafulla et al., 2019). However, autologous nerve

transplantation is still the preferred treatment for segmental

nerve defects that are difficult for primary repair. However,

imperfect results have suppressed the advantages of autologous

transplantation as the first-line option, which include the

formation of neuroma, loss of sensation at the donor site,

infection, and pain caused by the nerve stump. This has

encouraged researchers to explore additional treatment

options for nerve transplantation (Szynkaruk et al., 2013;

Carvalho et al., 2020). Allotransplantation allows a wide

range of donor sources for nerve transplantation. Among

these, the complex functional unit containing nerve tissue

facilitates nerve function recovery in multiple tissue injuries.

Meanwhile, there is the risk of long-term immunosuppression

after transplantation and infection, especially under

circumstances where the structures of cranial and facial

tissues are complex and the bacterial flora is diverse (Husain

et al., 2003; Singh et al., 2005; Cuellar-Rodriguez et al., 2009). In

recent years, the advantages of nerve conduits combined with

tissue engineering have been realized in the field of nerve

transplantation (Zor et al., 2010; Szynkaruk et al., 2013;

Roche et al., 2015a; Long et al., 2021). Researchers are

incorporating absorbable and non-absorbable materials, such

as silica gel, polyhydroxy acid, poly (lactate-glycolic acid)

graphene foam, and polycaprolactone, in these new conduits

(Han et al., 2019; Bahremandi Tolou et al., 2021). Improving the

physiological performance of emerging grafts by combining

cells, such as Schwann cells (SC), or growth factors has become

an important research trend (Huard et al., 1998; Evans, 2001;

Murrell et al., 2005; Matsumine et al., 2016; Watanabe et al.,

2017). These new explorations have stimulated the interest of

researchers in using novel materials, such as hydrogels and

nanomaterials, for nerve regeneration (Oprych et al., 2016;

Celikkin et al., 2017; Fan et al., 2017). Their superior

biocompatibility allows simulation of the extracellular matrix

(ECM) and microenvironment in vivo to promote adhesion and

survival of neural cells. Sensitive responses to external stimuli

make it possible to use external factors (light, electricity,

magnetic field, temperature, etc.) to achieve the directional

control of implant materials (Riggio et al., 2014; Marcus

et al., 2016; Abatangelo et al., 2020).

TABLE 1 Seddon’s and Sunderland’s classification of peripheral nerve injuries. Peripheral nerve injuries are divided into three categories in Seddon’s
classification, including neurapraxia, axonotmesis and neurotmesis. Based on Seddon’s classification, Sunderland classified five different levels in
detail according to the extent of a xonal injury. Neurapraxia in Seddon’s classification is equivalent to the first degree injury in Sunderland’s
classification. Neurotmesis is equivalent to the fifth degree nerve injury and axonotmesis is equivalent to the second-to-fourth-degree nerve injury.

Seddon’s
Classification

Sunderland’s
classification

Axon Myelin Endoneurium Perineurium Epineurium

Neurapraxia 1st-degree √a × √ √ √

2nd-degree ×b × √ √ √

Axonotmesis 3rd-degree × × × √ √

4th-degree × × × × √

Neurotmesis 5th-degree × × × × ×

aIntact.
bDamaged or severed.
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To drive cutting-edge research on craniofacial nerve repair

and its progression from the laboratory to the clinic, we reviewed

the selection of donors for repair and regeneration of craniofacial

nerve injury, especially segmental defects. The main focus is on

nerves that are easily damaged and have obvious effects on

human function, such as the facial nerve, trigeminal nerve

and its branches (mandibular nerve, inferior alveolar nerve),

branches of the vagus nerve (recurrent laryngeal nerve), optic

nerve, and oculomotor nerve. The present article has

summarized the following areas: autografts, allografts,

xenografts, and nerve conduits. Allografts have been

subdivided into allogeneic composite functional units and

decellularized tissues, as required. Finally, the two most widely

used novel materials (hydrogels and nanomaterials) in the

biomedical field are described in detail to promote the

application of novel materials for craniofacial nerve repair

(Figure 1).

Autografts

Given the underlying principles, end-to-end repair is not

feasible for peripheral nerve regeneration in some cases, such as

excessive nerve tension, delayed repair, or obvious segmental

nerve defects. Autogenous nerve transplantation is the first-line

treatment for this condition. In addition to better

biocompatibility, autografts can provide cells (e.g., SCs) and

cellular components that can promote nerve growth. They

have not been associated with rejection and have a lower

infection rate than allografts (Moore et al., 2015). However,

autografts have some unavoidable disadvantages, including

trauma and sensory defects as a result of harvesting the donor

nerve and pain caused by the nerve stump. Therefore, the

selection of autografts should be based on the principles of

easy acquisition, less trauma, and a match with the size at the

recipient site (Trehan et al., 2016). Common clinical donors for

craniofacial nerve autotransplantation include the great auricular

nerve (GAN), sural nerve, hypoglossal and masseter nerves,

antebrachial cutaneous nerve, and motor nerve to the vastus

lateralis.

Great auricular nerve

The GAN is a branch of the cervical plexus that arises from

the second and third cervical nerves and passes through the

posterior margin of the sternocleidomastoid muscle (SCM). It

proceeds forward and upward and divides into two branches that

are dominant in the areas of the mandible, auricula, and earlobe

(Humphrey and Kriet, 2008; Altafulla et al., 2019). GAN has

more than one marker. Traditionally, the McKinney spot, which

is 6.5 cm below the external auditory canal and 0.5 cm behind the

external jugular vein, has been the anatomical marker for

distinguishing the GAN during surgical localization

(McKinney and Katrana, 1980). The greater auricular point of

the GAN at the posterior edge of the SCM has also been described

as an important landmark (Raikos et al., 2017). Another marker,

Erb’s point, is situated 2–3 cm above the clavicle and at the same

level as the carotid nodule (Tubbs et al., 2007a). Researchers have

delineated another marker for locating the mastoid branch of the

GAN, which is 9 cm outside the external occipital eminence and

1 cm above the mastoid cusp (Tubbs et al., 2007b). Unlike

traditional landmarks, this point uses bony structures that are

easy to localize rather than deep blood vessels or muscles.

Transplantation of the craniofacial nerve and its branches

with the GAN as a donor can be used for several types of nerve

repair, including facial nerve repair, jaw reconstruction and

restoration of perioral sensation, recurrent laryngeal nerve

reconstruction after thyroidectomy to preserve vocal function,

promoting corneal nerve regeneration, and restoration of

sensation as a surgical method for neurotrophic keratosis

(LaBanc et al., 1987; Yoshimura et al., 2013; Sun et al., 2015;

Benkhatar et al., 2018). For facial nerve reconstruction, the GAN

is used to reconstruct nerve damage caused by resection of

craniofacial masses, such as facial nerve schwannomas,

endolymphatic sac tumor, facial nerve hemangioma, skull base

tumor, and nerve defects or function loss caused by trauma and

inflammatory diseases (Stephanian et al., 1992; Katoh et al., 1998;

Chi et al., 2006; De Ceulaer et al., 2012; Hou et al., 2012;

Marchioni et al., 2014; Sai et al., 2019). Selecting the GAN as

the donor for facial nerve repair has advantages, such as

FIGURE 1
The brief description on donors for nerve transplantation in
craniofacial soft tissue injuries.
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proximity to the surgical region, which helps avoid a second site

of surgery, and easy localization because it is a clear marker. The

GAN is also utilized as a nerve graft to reconstruct the inferior

alveolar nerve for mandibular defects resulting from trauma or

mandibular resection caused by a tumor. Yoshimura et al.

performed segmental mandibular resection of a large ossifying

fibroma and immediate reconstruction with the iliac bone and

GAN. Postoperative neurosensory examination revealed

sensitivity recovery of the dental pulp and mental region

(Yoshimura et al., 2013). GAN transplantation for repairing

craniofacial nerve defects has shown relatively stable effects in

long-term clinical applications; the most commonly used nerve

donor is the GAN without blood vessels.

However, vascularized nerve grafts may promote nerve

regeneration better than non-vascularized nerve grafts when

they are longer and nerve recovery conditions are poor (e.g.,

in areas with poor vascularization). Koshima et al. used a

vascularized GAN graft for the primary repair of facial nerve

defects. The nerve regeneration results were satisfactory, and

there were fewer complications at the donor site. The main

reason for the better effects of this transplantation is that

blood supply can be restored immediately after surgery using

a vascularized nerve graft (Koshima et al., 2004). Therefore,

vascularized grafts have more significant early effects on nerve

repairs. Corneal nerve fibers arise predominantly from the

ophthalmic branch of the trigeminal nerve. Neurotrophic

keratitis primarily results from herpes virus invasion, corneal

surgery, diabetes, and orbital or intracranial surgery-related

trigeminal nerve damage. Corneal neuralization is increasingly

being used to restore corneal innervation after trigeminal nerve

injury (Benkhatar et al., 2018). End-to-end anastomosis of the

GAN and contralateral supratrochlear nerve (Benkhatar et al.,

2018) or implantation of sensory fibers from the ipsilateral GAN

in the precorneal stroma (Jowett and Pineda Ii, 2019) is effective

in restoring corneal perception in adults.

Sural nerve

The sural nerve is a sensory nerve consisting of branches of

the tibial nerve and common peroneal nerve. It passes through

the deep fascia and descends laterally to the Achilles tendon

before advancing to the lateral malleolus and the distal side of the

calcaneus (Im et al., 2022). In craniofacial nerve transplantation,

sural nerves are often used to restore sensory disturbances and

malocclusions in the mandibular region as a result of inferior

alveolar nerve (IAN) defects caused by tumor resection or trauma

(LaBanc et al., 1987; DeLeonibus et al., 2017) and facial paralysis

caused by facial nerve injury (Biglioli et al., 2018; Jeong et al.,

2018; Baccarani et al., 2019; Rashid et al., 2019; Yoshioka, 2020;

Chang et al., 2021; Sakuma et al., 2021). Traditionally, end-to-

end suturing of the sural nerve with the nerve stump via

interposition transplantation has been a common method for

repairing nerve defects (Rashid et al., 2019; Matos Cruz and De

Jesus, 2022). Rashid et al. used sural nerves to repair facial nerve

defects caused by parotid gland tumor resection. The results

demonstrate that sural nerve interposition transplantation is easy

to perform and has a good effect on segmental facial nerve defects

(Rashid et al., 2019). However, nerve sharing or cross nerve

transplantation shows greater advantages when the proximal end

of the recipient nerve is not available or the defect site is too long.

LaBanc et al. reported a case of the successful restoration of the

sensation of the lower lip by transplanting the autogenous sural

nerve to the region between the ipsilateral GAN and distal IAN

using the principle of nerve sharing (LaBanc et al., 1987). In 2009,

researchers presented a new method of repairing the paralyzed

eyelid, which involves transferring the facial nerve on the

undamaged side to supply the upper and lower eyelids with

two sural nerve grafts. Biglioli modified this technique by

repairing the upper eyelid using cross grafting of the facial

and sural nerves, with the lower eyelid suspended upward by

the fascia lata. Eyelid closure and the blink reflex were effectively

observed in 14 patients with eyelid paralysis who underwent this

surgery (Biglioli et al., 2018). Therefore, nerve sharing and cross

nerve transplantation have shown significant advantages in

patients with long nerve defects. The muscle-nerve-muscle

neurotisation technique also embodies the principle of nerve

sharing. For example, the sural nerve was attached to the bilateral

frontalis muscle to facilitate innervation from the healthy to the

affected frontalis muscle. Postoperative nerve conduction and

muscle response were normal, and spontaneous and

simultaneous contraction of the bilateral frontalis muscles was

successfully observed 4 months after surgery (Chang et al., 2021).

Similar to the GAN, the sural nerve plays a significant role during

corneal neuralization in neurotrophic keratopathy and can

successfully promote the restoration of corneal sensation

(Weis et al., 2018; Elalfy et al., 2021; Charlson et al., 2022).

However, previous studies have found that there is no obvious

distinction between the repair ability of the sural nerve and GAN

for corneal neuralization; however, it can provide more options

for adult patients with neurotrophic keratopathy. In this

situation, the patient’s choice and physical condition may be

decisive factors.

Hypoglossal nerve and masseter nerve

The hypoglossal and masseter nerves have similar functions

in nerve transplantation but are not as widely used as sural nerves

and the GAN, which are mainly used as donors for facial nerve

anastomosis in facial resuscitation (Bayrak et al., 2017; Yetiser,

2018; Yoshioka, 2018). Anastomosis of the hypoglossal and facial

nerves is one of the earliest methods used for facial resuscitation.

Complete disconnection of the hypoglossal nerve and

anastomosis with the main trunk of the facial nerve are the

main steps during the surgery. These can provide sufficient facial

Frontiers in Bioengineering and Biotechnology frontiersin.org04

Sun et al. 10.3389/fbioe.2022.978980

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.978980


tension and motor stimulation but may result in lateral tongue

atrophy and difficulties with speech, chewing, and swallowing

(Jandali and Revenaugh, 2019). However, anastomosis of the

masseter and facial nerves can reduce the postoperative

complications of dysarthria and dysphagia (Bayrak et al.,

2017). The masseter nerve has several advantages, such as a

stronger motor impulse, fewer complications of the donor defect,

and faster recovery of innervation (Sakthivel et al., 2020).

Therefore, the masseter nerve presents greater advantages

than the hypoglossal nerve as a donor for facial nerve

anastomosis. However, a single transfer of the hypoglossal or

masseteric nerve can cause significant postoperative mass

movement because both are single motor sources

reinnervating the entire muscular system (Yoshioka, 2018).

The joint transfers between the hypoglossal and masseteric

nerves may solve this problem and promote nerve repair and

motor coordination. Kuta et al. used the masseter nerve to

selectively innervate the midface and restore the vitality of the

remaining region of the face in combination with hypoglossal

nerve transplantation. Apparent improvements in facial

movement and resting facial tone were observed without mass

movement after surgery (Kuta and Taylor, 2022). Yoshioka N

et al. performed joint nerve transfers and cross grafting of the

facial nerves. The masseter and hypoglossal nerves were

transferred to the zygomatic and cervicofacial branches of the

facial nerves, respectively. Patients obtained symmetrical resting

lips and could raise their mouth corners voluntarily without

impaired chewing function, tongue atrophy, or significant mass

movement (Yoshioka, 2018). Therefore, double nerve transfer

involving the hypoglossal and masseter nerves has more

advantages in restoring facial tension, symmetry, and

coordinated movement.

Other autologous nerves

In addition to the commonly used donor nerves mentioned

above, the antebrachial cutaneous nerve and motor nerve to the

vastus lateralis also have the potential to be used in the repair of

the craniofacial nerve, especially for facial nerve repair

(Revenaugh et al., 2012; Jandali and Revenaugh, 2019).

Rodriguez-Lorenzo et al. observed complete restoration of

nerve function after using the platysma motor nerve to repair

the segmental defect of the marginal mandibular nerve caused by

resection of soft tissue sarcoma of the jaw (Rodriguez-Lorenzo

et al., 2016). This approach has been proven to be more effective

in recovering laryngeal local function than performing laryngeal

reinnervation utilizing the ansa cervicalis, but it has not shown

significant advantages compared with the traditional vocal fold

medialization laryngoplasty. Comparative studies are underway

(Paniello et al., 2011;Wang et al., 2011). Li et al. reconstructed the

parotid gland defects by innovatively constructing the

vascularized latissimus dorsi nerve flap. The facial symmetry

and smiling improved postoperatively, and it was confirmed that

vascularized nerve donors can induce better nerve recovery than

single nerve donors (Li S. S. et al., 2021). The supratrochlear or

supraorbital nerve has also been reported for corneal

neutralization. However, using the GAN can minimize further

loss of facial sensation in persons who have suffered sensory

deficits relative to the transfer of the supratrochlear or

supraorbital nerves. However, this carries the risk of a sub-

optimal blink reflex recovery (Jowett and Pineda Ii, 2019). In

general, more clinical cases and research are needed to confirm

the advantages and disadvantages of these rare or modified grafts

as alternatives to traditional transplant donors.

Allografts

Allogeneic composite functional units

Craniofacial nerve composite allograft transplantations are

used to repair severe facial injuries such as severe trauma, deep

burns, and multiple tissue defects after tumor resection. The ideal

reconstructive surgery allows the repair of damaged tissue and

restoration of motor and sensory functions to promote optimal

functional recovery of the recipient site. However, autologous

transplantation does not guarantee ideal functional and aesthetic

recovery of complex craniofacial defects (Devauchelle et al.,

2006). Therefore, optimizing nerve regeneration by utilizing

allogeneic composite functional units is beneficial for overall

functional recovery (Zor et al., 2010; Roche et al., 2015a). In

allogeneic composite functional units, nerve components are part

of the functional unit rather than independent grafts. The

functional unit includes the skin, muscle, bone, fat, and lymph

nodes, in addition to nerve tissue (Broyles et al., 2014). The

midface, lower face, auricle, and periorbital and perinasal regions

are common functional units (Figure 2). The main nerves

involved are the trigeminal and facial nerves and their

branches, such as the maxillary, mandibular, buccal, and

zygomatic branches of the facial nerve (De Letter et al., 2017;

Lassus et al., 2018; Kauke et al., 2021). Devauchelle et al. were the

first to perform the human face allograft. In addition to soft tissue

reconstruction, the bilateral infraorbital and mental-sensitive

nerves were anastomosed. The mandibular branch of the

facial nerve was used to innervate the mimic muscle.

Postoperative sensory function and verbal ability improved

rapidly, and the muscle contractile function gradually

recovered. These results not only verify the feasibility of

allogeneic complex tissue transplantation for repairing severe

facial injury but also provide important technical guidance for

the extensive development of human craniofacial allografts

(Devauchelle et al., 2006). At present, the consistency of the

donor and injury sites is the main consideration in the selection

of transplant units for composite transplantation. For example, a

patient suffered a severe facial defect, resulting in a large soft
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tissue defect on one side of the face with severe damage to the

upper jaw, both eyes, bottom of the mouth, and left side of the

jaw, and all the teeth. After the clinical evaluation, the lower parts

of the face were used as functional units for transplantation. The

main nerves of the unit contain the facial nerves and branches. In

addition, the functional unit includes the maxilla, mandible,

blood vessels, and skin of the middle and lower two-thirds of

the face (Roche et al., 2015b). Eyelid defects for various reasons

often cause chronic eyelid discomfort, corneal ulcers, and visual

impairment. Complex ocular and periorbital defects may occur

after traumatic avulsion, burns, or cancer resection. It is difficult

to achieve better functional and aesthetic restorations using

traditional reconstruction methods (Vasilic et al., 2010;

Siemionow et al., 2018). In this case, a periorbital functional

unit allograft may be a better option. The researchers used fresh

cadavers to develop a newmodel of composite eyeball-periorbital

transplants. The optic nerve, oculomotor nerve, and trochlear

nerve were included to promote the recovery of visual acuity and

eye movement. The edge of the composite flap included the lower

and lateral margins of the orbit, nasal dorsum, and the upper

edge of the eyebrow. This study confirmed the feasibility of

composite eyeball-periorbital transplantation and provided a

new option for the reconstruction of complex periorbital

malformations, as well as a new vascularized composite

allograft model for whole-eye transplantation (Siemionow

et al., 2018). In brief, as the donor of a craniofacial nerve

allograft is mostly a composite functional unit, the main

requirement for selection is consistency with the injury site.

Currently, there are more preclinical studies on the functional

units of craniofacial nerve transplantation, particularly facial

transplantation. However, these studies have mainly focused

on the feasibility of functional units centered on single organs,

such as periorbital and auricular functional units, which are

different from half-facial or full facial allografts that have been

clinically tested (Figure 2). The corresponding nerves mainly

involve the buccal and zygomatic branches of the facial nerve, the

eye branch of the trigeminal nerve, and the GAN (Ulusal et al.,

2005; Mathes et al., 2014; Gao et al., 2017). These studies

confirmed the feasibility of using complex functional subunits

for transplantation and provided more allograft options for

complex craniofacial injuries.

In addition to difficulties in donor acquisition, craniofacial

nerve allografts are associated with adverse consequences of

long-term immunosuppression, especially infectious

complications. Infection in craniofacial allografts follows a

process similar to that of solid organ transplantation, but

there are differences. The incidence of infectious

complications was lower than that of solid organ

transplantation (Roche et al., 2015a). Meanwhile, the graft, as

a functional unit, has a unique source of bacterial flora.

Craniofacial functional transplant units often include organs

such as the oral cavity, nasal cavity, sinus, and upper

FIGURE 2
Common craniofacial allogeneic composite functional units (A) and tissue composition (B).
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respiratory mucosa, which may be sources of several pathogenic

microorganisms. For instance, the oral mucosa can easily be

colonized by streptococcus, candida, and several anaerobic

bacteria. There is an increased risk of opportunistic infection

if the graft contains sinuses or nasal mucosa that may contain

fungal spores (Husain et al., 2003; Singh et al., 2005; Cuellar-

Rodriguez et al., 2009). A mass of donor-derived bare skin may

carry groups of pathogenic bacteria such as staphylococcus, gram-

negative bacteria, and anaerobic bacteria (Gordon et al., 2011).

This increases the requirements for the prevention of infections

after transplantation. Therefore, it is necessary to develop a

comprehensive program for infection prevention according to

the type of functional unit used before transplantation. In

conclusion, repairing complex craniofacial defects with an

allogeneic composite functional unit has benefits and risks in

craniofacial nerve transplantation. It can provide an ideal

function and aesthetic effect that autologous transplantation

cannot; however, it is also associated with facial immune

rejection and the risk of infection caused by

immunosuppression and special bacterial flora.

Decellularized tissues

Decellularized tissues are obtained using physical, chemical,

or enzymatic hydrolysis to destroy the bonds between cells and

the extracellular matrix (ECM), remove the cellular components

in the natural tissue, and retain the ECM, including key structural

and functional proteins. This is associated with low immune

rejection and provides a favorable microenvironment for cell

growth. Therefore, decellularized tissue is considered a new graft

for promoting nerve repair and regeneration. In essence, it can

still be considered a type of allograft if the decellularized tissue is

from the same species. Current studies confirm that

decellularized tissue can remove components that inhibit the

growth of nerve axons and retain growth-promoting proteins,

which play a crucial role in promoting nerve repair

(Buckenmeyer et al., 2020; Sun et al., 2020).

Although mature decellularization techniques for the sciatic

nerve, spinal cord, and other tissues have been used to repair

various nerve injuries, few attempts have been made to use

decellularized tissues for craniofacial nerve repairs. Current

decellularized products for clinical use are made from the

purified ECM of human peripheral nerves after

decellularization. It retains bundle structure and contains

molecules crucial to the growth of axons, such as laminin

(Hall, 1986). These decellularized tissues have been applied

successfully to peripheral nerve regeneration with satisfactory

effects as a mature substitute for nerve transplantation

(Szynkaruk et al., 2013). There have been increased attempts

to use decellularized tissues, with the main focus on the repair of

trigeminal nerve injury in the field of craniofacial nerve

transplantation (Zuniga, 2015; Salomon et al., 2016;

Yampolsky et al., 2017). Yampolsky et al. supported the

hypothesis that decellularized graft can be used to effectively

repair short-distance (<2 cm) trigeminal nerve defects based on

the outcomes of trigeminal nerve reconstruction (Yampolsky

et al., 2017). Salomon et al. used decellularized nerve grafts as

ECM scaffolds to repair the long-span (>30 mm) defects of the

inferior alveolar nerve (IAN) and also observed good recovery

after surgery (Salomon et al., 2016). In 2019, treated human

decellularized allograft nerve was utilized to recover corneal

perception in patients suffering from neurotrophic

keratopathy by transplanting it to the supraorbital nerve,

supratrochlear nerve, or IAN and transferring it to the

affected eye. The study found that patients regained corneal

perception and the integrity of corneal epithelial cells (Leyngold

et al., 2019). However, some researchers have different

perspectives, arguing that there is not sufficient evidence to

support better outcomes with the use of decellularized tissue

to repair long nerve defects than those of autografts or allografts

(Moore et al., 2011; Giusti et al., 2012; Saheb-Al-Zamani et al.,

2013; Poppler et al., 2016). The decellularized tissue loses SCs in

during immunogenicity removal, which are critical cells for axon

regeneration. SCs from the nerve remnant at the recipient site

must fill the graft for nerve regeneration after implantation

(Poppler et al., 2016). Therefore, the researchers do not

recommend the use of current decellularized products to

repair crucial nerves, long-diameter nerves, or short-diameter

sensory nerves with gaps longer than 3 cm (Moore et al., 2009;

Rbia and Shin, 2017). However, the potential advantages of

decellularized tissues cannot be ignored in the field of

craniofacial nerve transplantation and neural transplantation

in its entirety. They eliminate the limitations of limited donor

sources and damage to the donor site in autologous nerve

transplantation. They also provide a good growth

environment for nerve cells and reduce the risk of immune

rejection and infection caused by other allotransplants.

Recently, researchers have attempted to enhance the

effectiveness of decellularized nerve tissues by combining

them with cells or growth factors. For example, Schwann cells

(SCs), adipose stem cells (ADSCs), and bone marrow

mesenchymal stem cells (BMMSCs) can be combined in

decellularized tissues. Compared with a single graft,

decellularized tissue combined with cells or growth factors

showed better outcomes in promoting nerve regeneration

(Nadim et al., 1990; De Ugarte et al., 2003; Chen et al., 2007).

Xenografts

There are no clinical applications of animal-derived

xenografts for nerve repair. In skin transplantations, no skin

substitutes can replace all the functions of intact human skin

(Khan et al., 2020). However, xenotransplantation should still be

considered given the shortage of donors and to reduce the injury
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to the donor site in autologous or allogeneic transplantation. For

large soft tissue defects, autologous or allogeneic transplantation

cannot meet the demand, and the need for xenotransplantation is

more urgent. Therefore, research progress in xenotransplantation

can promote xenotransplantation development in soft tissue injury

nerve repair. At present, pigs are the main animal source of

xenotransplantation tissue, with heart and kidney transplantation

being themain operations (Hawthorne et al., 2021;Meier et al., 2021;

Niu et al., 2021; Ryczek et al., 2021). The main disadvantage to

xenotransplantation is antibody-mediated rejection (AMR).

Based on previous research, the prevention and treatment of

AMR include the following; preformed xenoantibodies are

removed before transplantation, effectively avoiding

hyperacute rejection (HAR) (Reichart and Längin, 2020).

HAR is caused by the binding of preformed antibodies to

porcine alpha 1,3- galactosyl- transferase (GAL). Similarly,

complete knockout of the GAL gene in pig organs also

prevents HAR. GAL gene-knockout pigs have been widely

used in preclinical studies of xenotransplantation (Dai et al.,

2002; Lai et al., 2002). With the development of gene editing

technology, researchers have developed transgenic animals that

express human complement regulators, such as CD40, to exert

the immunomodulatory role of complement and thereby

suppress immune rejection (Schmoeckel et al., 1996).

Although systematic immunosuppressive therapy has achieved

reliable efficacy, its serious side effects should not be ignored.

Recent studies have suggested that immunological tolerance,

based on regulatory T cells (Tregs), can significantly reduce

the use of immunosuppressive agents (Romano et al., 2019).

In conclusion, AMR and infection are still the primary problems

that need to be faced and solved in future xenotransplantation for

nerve repair of soft tissue injuries.

Nerve conduits

Autologous and allogeneic nerve transplantations have

achieved great success as common methods of nerve repair.

However, surgical complications include nerve defects at the

donor site, limited donor sources, and easy induction of

infection. Therefore, fabricating various artificial nerve

conduits based on tissue engineering as a substitute for

autografts is currently an area of focus in nerve regeneration

research (Long et al., 2021). The common nerve conduits in

recent studies consist of autogenous conduits and artificial nerve

conduits. Autogenous conduits include the blood vessels,

muscles, tendons, and other autologous tissues. Previous

studies have shown that veins and arteries can provide

support for the damaged nerves. As tissues promote nerve

repair, their effects are similar to those of the autografts (Chiu

and Strauch, 1990; Tang et al., 1993). There are also differences

between arteries and veins as nerve conduits. Veins are useful

because of their abundance and lower incidence of donor-site

complications. However, separate venous conduits are at risk of

collapse and impeding nerve regeneration (Wolford and Stevao,

2003). Therefore, researchers have modified the veins by filling

them with nerve or muscle tissue, which prevents the wall from

collapsing and provides ECM and growth factors (Edgar et al.,

1984; Lundborg et al., 1994). However, Tang JB et al. suggested

that venous conduits were unsuitable for primary repair of nerves

with nerve gaps greater than 5.0 cm or with complex nerve

injuries based on their findings (Tang et al., 1995). Skeletal

muscle contains multiple types of collagens (e.g., type IV

collagen and laminin), which could guide the regeneration of

the axon (Edgar et al., 1984; Lein et al., 1992; Lundborg et al.,

1994; Meek et al., 2004). Therefore, skeletal muscle could be a

good candidate for a nerve conduit, and it could assist in nerve

regeneration as well as autologous nerve transplant (Pereira et al.,

1991a; Pereira et al., 1991b; Meek et al., 2004). Tendons can also

be used as autologous nerve conduits because they can provide

laminin, fibronectin, and components that can promote the

growth of axons (Guizzardi et al., 1987; Banes et al., 1988).

Similar to muscle tissue, tendons can, theoretically provide a

good spatial structure for nerve growth. However, previous

studies have revealed that the ability of tendons to promote

nerve regeneration has not met expectations (Brandt et al., 1999).

Therefore, tendons are not preferred candidate material for

autologous conduits in the field of nerve transplantation when

compared to blood vessels and muscle.

In addition to autologous tissue, synthetic materials are the

focus of research on nerve conduits. Multiple synthetic materials,

such as polyhydroxy acid, collagen, polylactic acid glycolic acid,

polycaprolactone, and silk, have been explored as substitutes for

interposition transplants (Bini et al., 2004; Rinker and Liau, 2011;

Taras et al., 2011; Huang et al., 2012; Reid et al., 2013; Sarker

et al., 2018). However, although synthetic nerve conduits can

provide some mechanical support, they lack the active

ingredients that could promote axon growth. Recent studies

have considered a combination of nerve conduits with special

cells and growth factors that can promote axon growth or myelin

formation. Olfactory ensheathing cells (OEC) are glial cells that

secrete many neurotrophic factors to promote axonal growth.

Based on this characteristic, Lee et al. implanted OECs into a

nerve conduit and transplanted them into a rat sciatic nerve. The

outcome revealed that there was no obvious difference in nerve

conduction velocity, muscle wet weight, and nerve density

between OEC-containing nerve conduits and autologous nerve

grafts (Lee J. Y. et al., 2021). Other components commonly

combined with nerve conduits include SCs, olfactory stem

cells, ADSC, BMMSCs, IGF-1, and transforming growth

factor-β (TGF-β) (Huard et al., 1998; Evans, 2001; Murrell

et al., 2005; Wang et al., 2016a; Matsumine et al., 2016;

Watanabe et al., 2017). Among them, induced pluripotent

stem cells (iPSC) are a promising source of cells for nerve

repair. They can be induced from adult somatic cells and,

therefore, avoid ethical concerns (Takahashi and Yamanaka,
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2006; Takahashi et al., 2007; Huang et al., 2020). Under suitable

conditions, iPSCs can differentiate into SCs and promote axonal

regeneration and myelination (Pan et al., 2022). They can also

differentiate into neural crest-like cells that produce and secrete

neurotrophic factors such as nerve growth factor (NGF) or

VEGF, which could improve microcirculation and act directly

on axons and endogenous SCs (Mittal and Schrenk-Siemens,

2020). However, iPSCs have an increased risk of uncontrolled cell

division and tumorigenesis. Exosomes have functions similar to

those of maternal cells but without immunogenicity. Therefore,

in nerve repair, researchers use iPSC-derived exosomes to replace

iPSCs, which not only retain the ability to promote nerve repair

but also avoid the risk of carcinogenesis and other biosafety issues

(Yu B. et al., 2014; Sun et al., 2016; Pan et al., 2022).

Although synthetic conduits have shown unique advantages

in peripheral nerve repair, they have not been widely applied in

clinical practice. The conduits are still in the animal model stage,

and in the field of craniofacial nerve transplantation research, the

focus is on nerve injury repair in rats. For example, Long et al.

cross-linked collagen tubes with heparin to construct a neural

guidance pipeline for transporting nerve growth factor (NGF)

and implanted it into facial nerve defects in rats. The short half-

life of NGF was improved by the combination of NGF and

collagen and was enhanced by heparin. Neural-guided conduits

significantly promoted axonal growth and proliferation of SCs

3 months after surgery. The neurological recovery results were

consistent with those of the autografts (Long et al., 2021). The

characteristics of ADSCs are similar to the mesenchymal lineage

and could differentiate into Schwann - like cells. ADSCs are easy

to isolate and amplify. Based on these properties, a silicone tube

containing ADSCs was inserted into the collagen gel and used to

repair the gap in the rat nerve. Postoperative examination

showed that the nerve repair ability of the synthetic material

was nearly identical to that of the autologous nerve transplants

(Watanabe et al., 2017). Therefore, in the field of craniofacial

nerve repair, the effect of a nerve conduit is positive in animal

models, especially in facial nerve injury repair. However, it is still

necessary to research its application in other nerves, such as the

trigeminal and glossopharyngeal nerves and other nerves that

have important sensory or motor functions and are vulnerable to

damage. However, more cases are needed to verify its clinical

feasibility. Attention should be paid to nerve conduits, which

have great potential as substitutes for autografts. Moreover, the

rapid improvement in 3D printing has promoted the

technological progress of nerve conduits. The 3D printing

technology allows for the rapid fabrication of complex

peripheral nerve conduits and enables multiple types of

materials to be involved in the synthesis of the conduits, such

as hydrogels, thermoplastics, thermosetting polyesters, and

bioinks. This could provide more physiologically suitable

grafts for nerve repair and a wider delivery system for

precursor cells and biologically active substances (Ashraf

et al., 2019; Yu et al., 2020; Bahremandi Tolou et al., 2021).

Researchers have even introduced the concept of 4D printing

into neural repair. They have proposed inducing dynamic

reactions of the 3D-printed scaffold using temperature, pH,

light, electricity, and other stimuli. This can realize intelligent

control of the internal environment of the recipient site and

regulate the differentiation and migration of nerve cells.

Combined with these stimulation factors, the performance of

synthetic conduits can be improved to regulate nerve repair

better under physiological conditions (Zhu et al., 2017;

Fantino et al., 2018; Uz et al., 2019) (Figure 3). In conclusion,

it is worth exploring the important role of the conduit as an

alternative to the autograft in craniofacial nerve transplantation

and even in the field of peripheral nerve repair as a whole. Further

research on the laboratory to clinical transformation of this

technique is worthwhile.

Novel materials

The nerve conduit is aimed at replacing autografts. However,

the repair of long nerve defects remains limited. Bioengineering

and nanomedicine focus on the construction of bioactive

materials and the surface modification of neural conduits or

3D biological scaffolds to promote the attachment and survival of

cells and molecules. This could effectively promote the long-

distance regeneration of axons (Sun et al., 2010; Pabari et al.,

2014; Faroni et al., 2015; Mobasseri et al., 2015). Hydrogels and

nanomaterials are two novel materials with the most potential for

nerve repair. They are possible replacement materials for

craniofacial nerve transplantation and the combined repair of

craniofacial soft tissues because of their superior biocompatibility

and stimuli-responsiveness.

Hydrogels

Hydrogels can be classified in several ways. Here, they are

divided into natural and synthetic hydrogels, according to their

source. Hydrogels are perfect carriers of active substances and are

biodegradable. They can, therefore, provide structural and

nutritional support for the growth of neural tissues in the

early stage of repair but also provide suitable space for the

growth of newly formed tissue through gradual degradation.

Moreover, it has satisfactory biocompatibility compared with

other materials. It can provide a growth environment similar to

the extracellular matrix for nerve repair and guide the orderly

regeneration of axons in specific directions, helping to rebuild

damaged neural networks (Araújo et al., 2017; Celikkin et al.,

2017; Fan et al., 2017) (Table 2). Natural hydrogels include

hyaluronic acid (HA), fibrin, chitosan, and silk fibroin. HA

can hydrate the ECM and regulate the dynamic balance of

tissues as a polysaccharide component of the extracellular

matrix (ECM). It also helps the matrix maintain the gel state
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FIGURE 3
Advantages of 3D printing in craniofacial nerve transplantation.

TABLE 2 The common hydrogel materials in nerve repair.

Materials Additives Main outcomes Target cells/tissue Model Ref.

Hyaluronic acid cross-linked by
galactose oxidase and horseradish
peroxidase

BMMSC,
NGF

Providing nutrition supply for cell survival and
proliferation and suppressing neuroinflammation
and apoptosis

Neural cells in the
hippocampus

Traumatic brain
injury in mice

Wang et al.
(2022)

Hyaluronic acid cross-linked by
transglutaminase

- Showing fast neurite outgrowth, strong synaptic
connectivity, and long-lasting coordinated electrical
activity

Embryonic neurons
from rats

- Broguiere
et al. (2016)

Chitosan hydrogel BDNF,
VEGF

Promoting the proliferation and secretion of
neurotrophic factors by Schwann cells and vascular
penetration

Schwann cells from rats Sciatic nerve
defects in rats

Rao et al.
(2020)

Double cross-linked chitosan
hydrogel

- Promoting Schwann cell proliferation and sciatic
nerve regeneration

Schwann cells from rats Sciatic nerve
defects in rats

Deng et al.
(2022)

P-conjugated chitosan
hydrochloride hydrogel

- Accelerating full-thickness wound healing by
enhancing synchronized vascularization,
extracellular matrix deposition, and nerve
regeneration

HUVECs, fibroblasts,
and Neuro-2A cells

Full-thickness
skin wounds of
rats

Li et al.
(2021a)

Collagen hydrogels MSC Promoting neuronal differentiation and suppressing
inflammatory reaction

Neural stem cells from
the embryonic brain of
rats

- He et al.
(2021)

XT-type DNA hydrogels VEGF, NGF Promoting proliferation, migration and myelination
of Schwann cells

Schwann cells from rats Sciatic nerve
defects in rats

Liu et al.
(2021)

Extracellular matrix hydrogel - Promoting increased macrophage invasion, higher
percentages of M2 macrophages and enhanced
Schwann cell migration

- Sciatic nerve
defects in rats

Prest et al.
(2018)
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and promotes the structural stability of the ECM by interacting

with other proteins or polysaccharides (Abatangelo et al., 2020).

Cross-linked HA hydrogels have been shown to promote

significant axonal growth and to achieve sustained electrical

activity and strong synaptic connections in vivo (Horn et al.,

2007; Broguiere et al., 2016). Meanwhile, HA hydrogel scaffolds

have also shown advantages in neural regeneration, including

improving the survival rate of NSCs and SCs and promoting the

differentiation of neural progenitor cells into neurons and glial

cells. However, this property can be affected by various chemical

modifications (Pan et al., 2009; Seidlits et al., 2010; Liang et al.,

2013; Wang et al., 2013). Porous cross-linked HA hydrogels

provide the possibility of accelerating nerve regeneration by

promoting cell infiltration, assisting in angiogenesis, and

inhibiting scar formation during repair (Hou et al., 2005). In

line with HA hydrogels, other types of natural hydrogels, such as

fibrin, collagen, chitosan, and keratin hydrogels, are also highly

effective in promoting the differentiation of NSCs and axonal

regeneration (Sierpinski et al., 2008; Mooney et al., 2010; Pace

et al., 2014; Yao et al., 2016; Salehi et al., 2018; Yoo et al., 2020).

They do, however, exhibit different properties due to their diverse

composition. Degradation products such as chitosan hydrogels

can protect nerve cells from toxic and oxidative damage and

stimulate the proliferation of SCs (Zhou et al., 2008; Huang et al.,

2015; Wang et al., 2016b). Sericin has significant neurotrophic

effects as a kind of natural protein. Glycine and serine are

degradation products of sericin and are important

neurotransmitters that play indispensable roles in information

transmission (Hernandes and Troncone, 2009).

In addition to natural materials, synthetic hydrogels have

been widely used for nerve regeneration. Synthetic materials have

strong plasticity and superior physical properties compared to

natural materials. Polyethylene glycol hydrogel is an adhesive

gelatinous material that acts as a fibrin sealant to enhance nerve

repair. It can effectively reduce scar formation and contribute to

axonal regeneration and myelination (Isaacs et al., 2009; Estrada

et al., 2014). Hejcl et al. found that the positively charged 2-

hydroxyethyl methacrylate (HEMA) hydrogel was structurally

conducive to massive implantation of connective tissue. They

observed that the porous structure of the 2-MEMA hydrogel was

filled with blood vessels, nerve filaments, and Schwann cells,

making it a good scaffold for axon growth (Hejcl et al., 2008).

Although synthetic hydrogels have advantages in their

physicochemical properties, they are inferior to natural

materials in biocompatibility. Therefore, it is necessary to

improve biocompatibility through the molecular modification

of synthetic hydrogels or by fusing them with other materials. For

example, researchers modified poly (2-hydroxyethyl

methacrylate) using laminin-derived peptides to improve cell

adhesion and promote the differentiation of NSCs (Kubinová

et al., 2010). In conclusion, hydrogels have obtained positive

results in the field of neural repair because of their good

biocompatibility and plasticity. Adjusting the physicochemical

properties of hydrogels to improve their nerve repair ability or

using them as cellular or molecular carriers to promote nerve

regeneration is still an important research direction. Research on

the comprehensive ability of hydrogels to repair nerves, blood

vessels, muscles, and skin is in great demand for craniofacial

nerve transplantation and craniofacial multi-tissue combined

repair.

Nanomaterials

Nanomaterials have inherent advantages for tissue repair.

First, nanomaterials can be used as carriers of a wide range of

drugs, bioactive substances, or genes because of their high

surface-area-to-volume ratio (Kim and Hyeon, 2014).

Secondly, the stimuli responsiveness is the intrinsic

characteristic of nanometer materials. These materials can

respond to changes in stimuli, including pH, temperature,

light, and magnetic fields. In addition, the strength, surface

morphology, and degradation behavior of nanomaterials can

be regulated by different molecular or synthetic conditions to

meet the requirements of tissue repair. In the field of nerve repair,

nanomaterials do not only serve as fillers for nerve conduits to

provide structural and nutritional support (Li et al., 2014; Meyer

et al., 2016) but their inherent properties, such as conductivity,

can also be taken advantage of to improve the physical and

chemical properties of nerve conduits (Oprych et al., 2016).

Meantime, nanoparticles can deliver molecules to cells in a

directional manner (Chen et al., 2017). This section reviews

the common nanomaterials and their properties in nerve

repair to promote their application in craniofacial nerve

transplantation and craniofacial repair. Nanoscale hydrogels

were not repeated.

Carbon nanotubes (CNTs) are chemically stable and inert.

They have electrical properties consistent with those of neural

tissue. They also facilitate cell adhesion, differentiation, and

growth. These characteristics support their application in

neural repair (Hopley et al., 2014; Alshehri et al., 2016). CNTs

have shown the general characteristics of repair materials, such as

the ability to promote nerve cell differentiation and axon growth

(Yu W. et al., 2014; Roberts et al., 2014; Ahn et al., 2015). They

also show advantages in promoting nerve regeneration. For

example, using carbon nanotubes as coatings for

polydimethylsiloxane (PDMS) scaffolds enhances cell adhesion

and viability while doubling the survival and proliferation rates of

primary neurons and SCs (Kang et al., 2015). CNTs are superior

conductive materials. Their conductive properties and unique

nanoscale textures may affect the growth of cells and neurites.

Researchers have found that long neurites tend to line up in the

direction of the nanotubes on horizontal CNTs, which has

important implications for using physical and electrical factors

to direct axonal growth (Roberts et al., 2014). Tu Q et al. observed

the effect of surface charge on neurites and its branches. The
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results showed that positively charged graphene oxide (GO) was

more conducive to the growth and branching of neurites than

neutral ions, zwitterions, or negatively charged GO (Tu et al.,

2014). The application of metal nanoparticles, such as iron, gold,

and silver, has attracted more attention in nerve repair.

Superparamagnetism and photoreactivity are the two

characteristics that distinguish metal nanoparticles from other

materials. Superparamagnetic nanoparticles (SMNPs) can guide

cells to specific locations by using an external magnetic field. This

superparamagnetism can contribute to the directional growth of

neurites during nerve repair (Riggio et al., 2014; Marcus et al.,

2016). The distribution of nerve cells and the growth direction of

primary neurons can be successfully regulated by controlling the

external magnetic field gradient using magnetic iron

nanoparticles as a medium. Therefore, as a remote control

platform, magnetic nanoparticles (MNPs) are expected to

become a new therapeutic agent for nerve injury (Marcus

et al., 2016). Gold nanoparticles are widely used in biomedical

research for their unique optical properties, as their absorption

spectrum can vary in the range between visible and near-infrared.

Irradiation of gold nanorods in NG108-15 neural cells with a

780 nm laser stimulated cell growth, especially neurite growth

(Paviolo et al., 2013). Similarly, stimulation of gold nanorod-

treated neural cells with 780 nm near-infrared light-induced

intracellular calcium transients. This stimulatory effect may be

related to the mechanisms of cell differentiation and axon growth

under optical induction (Paviolo et al., 2014). Recently, the

combination of nanomaterials and hydrogels has shown its

advantages. Hybrid materials possess the biological affinity of

hydrogels and the superior photoelectric, mechanical, thermal,

and other physical properties of nanomaterials (He et al., 2020;

Huang et al., 2021; Zheng et al., 2022). For example, combining

CNTs with self-assembled peptides had better electrical

conductivity and injectable properties, providing a practical

method for promoting nerve repair (He et al., 2020). The

fusion of pegylated CNTs with silk fibroin provided a flexible

scaffold for photoacoustic nerve stimulation (Zheng et al., 2022).

Table 3 summarizes the recent studies on nanomaterial binding

hydrogels in peripheral nerve regeneration.

Recently, the advantages of nanoencapsulation have become

increasingly apparent. Its application in neural repair is a topic of

great interest. Nanoencapsulation uses an ultrathin external

structure (<100 nm) to encapsulate viable cells or factors (Ariga

and Fakhrullin, 2021). External materials come from a wide range of

sources, such as polymers, hydrogels, and minerals (Lee H. et al.,

2021). Its main advantage is its better physicochemical protection,

which allows cells and factors to survive and function under harsh

conditions such as ultra-low temperatures and toxic

microenvironments (Park et al., 2014; Youn et al., 2017; Zhu

et al., 2019; Wang et al., 2021). However, recent studies have

extended the benefits of nanoencapsulation. Based on a metal-

organic framework, Lee et al. combined Fe3+ and benzene-1,3,

5-tricarboxylic acid to wrap living cells. Thus, the catalytic efficiency

of the enzymatic reactions was improved. Nanoshells have

exogenous biochemical functions, such as converting toxic

chemicals into nutrients (Lee et al., 2022). Polyphenols have

strong anti-inflammatory properties, but their low bioavailability

limits their application. The nano-embedding of polyphenols with

different carriers can improve their bioavailability and reduce their

degradability (Jayusman et al., 2022). In addition, as a natural barrier

in the human body, the blood-brain barrier prevents harmful

substances from entering the brain and also hinders the entry of

TABLE 3 The common researches of nanomaterial binding hydrogel in peripheral nerve regeneration.

Nanomaterial Hydrogel material Main outcomes Cell model Animal
model

Ref.

Carbon nanotubes Functional self-
assembling peptide

Promoting axon growth and myelination Dorsal root ganglia
neurons from rats

- He et al. (2020)

Polyethylene glycol-
functionalized carbon
nanotubes

Silk fibroin Demonstrating nongenetic photoacoustic
neural stimulation functions and
promoting neurite outgrowth

Cortical neuron and dorsal
root ganglia from rats

Skin injury
model in mice

Zheng et al.
(2022)

Poly (3,4-
ethylenedioxythiophene)
nanoparticles

Chitin Enhancing angiogenesis and the
proliferation of Schwann cells

Schwann cells from rats Sciatic nerve
defects in rats

Huang et al.
(2021)

Poly (L-lactic acid) Decellularized matrix
from porcine sciatic
nerves

Directing and promoting axonal
extension, nerve fiber myelination, and
functional recovery

Dorsal root ganglia from
rats

Sciatic nerve
defects in rats

Zheng et al.
(2021)

PHBV-magnesium oleate-N-
acetyl-cysteine

Gellan/xanthan Simulating a neuronal microenvironment
conducive of axonal repair, particularly in
the early stages of nerve regeneration

Rat pheochromocytoma
cells

Sciatic nerve
defects in rats

Ramburrun
et al. (2021)

Polycaprolactone Collagen/hyaluronic acid Enhancing the proliferation of Schwann
cells and axonal growth

Schwann cells and dorsal
root ganglia from rats

- Entekhabi et al.
(2021)

Polycaprolactone Sodium Alginate cross-
linked with N,N′-
disuccinimidyl carbonate

Increasing the number of myelinated
axons and Schwann cell migration

Rat pheochromocytoma
cells

Sciatic nerve
defects in rats

Askarzadeh
et al. (2020)
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most drugs. Lipid-based nanoparticles are good carriers for

neuroprotective drugs and factors that cross the blood-brain

barrier (Fernandes et al., 2021). In conclusion, we believe that

nanoencapsulation can show its unique advantages in future

neural repair research. Furthermore, the use of

nanoencapsulation to create a system composed of physically

separated but interacting cell hybrids is also a future research

direction.

Although a variety of nanomaterials have shown potential in

promoting nerve repair, their toxicity to cells and tissues cannot be

ignored. These side effects arise mainly from two aspects: Reactive

oxygen species (ROS) may be generated during the interactions

between nanoparticles and cells. This leads to oxidative stress,

which in turn threatens the growth of cells and tissues (Soto et al.,

2007; Balasubramanyam et al., 2009; Radziun et al., 2011). However,

the toxicity does not originate from the nanoparticles themselves but

from the coating applied in the process of surface modification and

functionalization (Rivet et al., 2012). In addition, there are specific side

effects associated with different material types. CNTs have been shown

to have effects on the reproductive system, affecting embryonic

development and delaying pregnancy. These side effects have been

proven to be concentration-dependent (Philbrook et al., 2011; Xu et al.,

2015). In addition to causing oxidative stress, silver nanoparticles are

prone to deposition in organs such as the kidney, liver, spleen, and

lungs. In animal testing, it has been found to penetrate the blood-brain

barrier and enter nerve cells, causing neuronal degeneration (Tang

et al., 2009). Therefore, the neurotoxicity of nanomaterials should be

fully considered in the selection, surface modification, and

functionalization of these conduits.

Summary

Although there are many surgical methods and grafts for nerve

repair in craniofacial soft tissue injuries, the ultimate purpose is to

achieve functional and aesthetic normalization. Autografts are still

the preferred choice for segmental nerve defects in clinical practice

because their regeneration microenvironment is the most suitable

for physiological conditions (Moore et al., 2015). Vascularization of

the graft can promote an immediate postoperative blood supply and

achieve better functional recovery compared to nerve grafts alone

(Koshima et al., 2004; Li S. S. et al., 2021). At the same time, when it

comes to motor nerve transfers, dual nerve transfers and combined

transplantation of sensory andmotor nerves are effectivemethods to

reduce postoperative mass movement (Yoshioka, 2018; Kuta and

Taylor, 2022). But the trauma and nerve defect complications at the

donor site are inevitable. However, with the development of tissue

engineering technology, artificial tissues or scaffolds may replace

autografts. For complex craniofacial defects, using allogeneic

composite functional units for transplantation is inevitable to

achieve functional recovery (Zor et al., 2010; Roche et al., 2015a).

The nerve tissue in this unit plays amajor role in functional recovery,

while the effect of the structural restoration of bone and other soft

tissues is also indispensable. However, the limited source of donors

and individual differences are inherent problems.

Immunosuppression and infection have puzzled researchers for a

long time. In particular, the complexity of cranial and facial tissues

increases the risk of infection by specific bacterial flora frommultiple

sources (Husain et al., 2003; Singh et al., 2005; Cuellar-Rodriguez

et al., 2009). Therefore, designing more reasonable allogeneic

composite functional units by using animal models and

controlling the infection during perioperative and early

postoperative periods are urgent areas of study that need to be

explored. Decellularized tissue is rarely rejected because of the

removal of immunogenicity and has been widely used in

peripheral nerves. However, decellularized tissue has not shown

better results for functional recovery than autografts in clinical

studies of the craniofacial nerves. Therefore, it should be applied

with caution in large-caliber nerves and long defect gaps (Moore

et al., 2009; Rbia and Shin, 2017). But its advantages of low

immunogenicity and the absence of donor site complications

should not be overlooked. Therefore, combining decellularized

tissue with special additives (e.g., NSCs and growth factors) to

produce new grafts that are more suitable for the physiological

environment of nerve regeneration is an important part of current

research. Traditional autologous nerve conduits (e.g., arteries, veins,

muscles, and tendons) have shown good results in promoting nerve

repair in clinical applications, but they do not show stronger repair

ability than autologous nerve grafts and have defects leading to

complications at the donor site (Chiu and Strauch, 1990; Tang et al.,

1993; Tang et al., 1995; Brandt et al., 1999; Meek et al., 2004).

Synthetic conduit materials have a wide range of sources and strong

plasticity. Synthetic conduits have more physiologically appropriate

structures and have become better delivery systems for a wide range

of cells, growth factors, and drugs because of advances in tissue

engineering, particularly 3D printing (Ashraf et al., 2019; Yu et al.,

2020; Bahremandi Tolou et al., 2021). However, this technique has

not been widely applied in nerve transplantation. Therefore,

research to clinical transformation of synthetic conduits

combined with 3D printing technology is undoubtedly the focus

of current research. With the introduction of 4D printing, basic

research should focus on achieving dynamic regulation of 3D

scaffolds using stimulation factors such as temperature, pH, light,

and electricity. This is conducive to the construction of new

materials that can intelligently adjust the nerve repair

microenvironment and promote nerve function normalization.

The replacement of biological grafts with synthetic materials is

new in the field of nerve transplantation. As representative novel

materials, hydrogels and nanomaterials show excellent

biocompatibility and stimuli-responsiveness (Kim and Hyeon,

2014; Araújo et al., 2017; Celikkin et al., 2017; Fan et al., 2017).

Their ability to promote neural cell proliferation, inhibit scar

formation, and accelerate the growth of neurites has been

demonstrated. However, the toxicity and side effects (on the

reproductive system and oxidative stress) of the material and

modifying substances should be avoided. Future research should
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focus on improving and modifying nerve conduits using novel

materials to promote the directional growth of axons and inhibit

scar formation. This may solve the problem of repairing long nerve

defects.
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