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Abstract: The role of the 6′′-OH (ω-OH) group in the antioxidant activity of flavonoid glycosides
has been largely overlooked. Herein, we selected quercitrin (quercetin-3-O-rhamnoside) and
isoquercitrin (quercetin-3-O-glucoside) as model compounds to investigate the role of the 6′′-OH
group in several antioxidant pathways, including Fe2+-binding, hydrogen-donating (H-donating),
and electron-transfer (ET). The results revealed that quercitrin and isoquercitrin both exhibited
dose-dependent antioxidant activities. However, isoquercitrin showed higher levels of activity
than quercitrin in the Fe2+-binding, ET-based ferric ion reducing antioxidant power, and
multi-pathways-based superoxide anion-scavenging assays. In contrast, quercitrin exhibited greater
activity than isoquercitrin in an H-donating-based 1,1-diphenyl-2-picrylhydrazyl radical-scavenging
assay. Finally, in a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl assay based on an oxidatively damaged
mesenchymal stem cell (MSC) model, isoquercitrin performed more effectively as a cytoprotector
than quercitrin. Based on these results, we concluded that (1) quercitrin and isoquercitrin can both
indirectly (i.e., Fe2+-chelating or Fe2+-binding) and directly participate in the scavenging of reactive
oxygen species (ROS) to protect MSCs against ROS-induced oxidative damage; (2) the 6′′-OH group
in isoquercitrin enhanced its ET and Fe2+-chelating abilities and lowered its H-donating abilities
via steric hindrance or H-bonding compared with quercitrin; and (3) isoquercitrin exhibited higher
ROS scavenging activity than quercitrin, allowing it to improve protect MSCs against ROS-induced
oxidative damage.

Keywords: quercitrin; isoquercitrin; Q3G; 6′′-OH; ω-OH; flavonoid glycoside; antioxidant
mechanisms; mesenchymal stem cells

1. Introduction

Flavonoid glycosides can be found in a wide range of plants, especially those used in Chinese
herbal medicines, and have been reported to exhibit remarkable antioxidant effects [1]. The glycosyl
groups found in flavonoid glycosides are usually hexanoses, which are preferentially condensed
in their six-membered (pyranosyl) ring forms. Among these pyranosyl rings, the glucopyranosyl
and rhamnopyranosyl systems are regarded as two typical rings [2,3], because of their chemical
stability. Flavonoid glucosides and flavonoid rhamnosides are therefore two of the most common
members of the flavonoid glycoside family and can be found in a wide range of plants.
For example, quercitrin (quercetin-3-O-rhamnoside, Figure 1A and Video S1) has been isolated from
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seven Loranthaceae plants [4], whereas isoquercitrin (quercetin-3-O-glucoside, Q3G, Figure 1B and
Video S2) has been reported to be widely distributed in several Moraceae plants [5]. Furthermore,
quercitrin and isoquercitrin have been reported to co-exist in several medicinal plants, including
Hypericum japonicum [6], Amomum villosum [7], and Polygonum hydropiper [8].
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Figure 1. Structures of quercitrin (quercetin-3-O-rhamnoside, A) and isoquercitrin (quercetin-3-O-
glucoside, Q3G, B).

Since stereo configurations of chiral carbons in the sugar chain do not actually influence the
antioxidant effects [9], the difference between glucose and rhamnose can be reduced to the ω-OH
group (more precisely, the ω-O atom) in rhamnopyranosyl. However, when a rhamnopyranosyl or
glucopyranosyl unit is linked to a flavonoid moiety, the ω-position is numbered as C6′′ . For this
reason, theω-OH group in the rhamnopyranosyl compounds described in this study will be referred
to as the 6′′-OH group. As aω-functional group in flavonoid glycosides, the 6′′-OH has been largely
neglected by researchers with an interest in the antioxidant activities of these compounds. In fact, most
of the structure activity relationship studies pertaining to the antioxidant effects of these compounds
have focused on the A, B, or C rings, with very few reports on the effects of the glycosyl moiety [10].
Furthermore, there have been no reports concerning the 6′′-OH group of glycosyl units until now.

Interestingly, the ball-and-stick models suggested of quercitrin and isoquercitrin that the 6′′-OH
group may be a chemically active functional group. For example, the O atom of the 6′′-OH group is
highly electronegative (3.44) with two lone pairs of electrons. Furthermore, the 6′′-OH group at the
ω-position of the glycosyl ring apparently emerges out of the pyranosyl ring (Figure 2B), making it very
different from the other three -OH groups (at the 2′′-, 3′′-, and 4′′-positions) attached to the pyranosyl
ring. Lastly, given that the σ bond between C5′′ and C6′′ can freely rotate (Figure 2B), the 6′′-OH group
could readily turn to its target site for reaction. With all of this in mind, we imagined that the 6′′-OH
group could play a number of versatile roles in the antioxidant activity of flavonoid glycosides.
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To explore this possibility, we selected quercitrin and isoquercitrin as two model compounds to
compare their antioxidant effects. We also used these compounds to conduct a mechanistic analysis of
the role played by the 6′′-OH group in antioxidant processes. Finally, we compared the cytoprotective
effects of these two model compounds using mesenchymal stem cells (MSCs) to provide some biological
evidence of the antioxidant effects of these compounds.

Given that MSCs have the potential to treat various diseases, especially those induced by
reactive oxygen species (ROS) using stem cells transplantation engineering [11], it was envisaged
that the results of this study would support the screening of flavonoid glycosides and their
synthetic derivatives/analogues as effective antioxidants for cell transplantation engineering purposes.
Furthermore, the results of this study could provide two candidates for the clinical application of
MSCs in transplantation therapy, especially for ROS-induced diseases.

Finally, it is noteworthy that Mou and co-workers recently utilized a pyrogallol autoxidation assay
to investigate the •O2

− radical-scavenging ability of quercetin at pH 8.2 [12]. However, the results
of our previous studies have suggested that the pyrogallol autoxidation assay is strongly dependent
on the pH at which it is conducted [13]. This dependence on the pH exists because samples bearing
an acidic group such as a phenolic -OH group are sensitive to alkaline conditions. As illustrated in
Figure 1A, quercitrin and isoquercitrin both contain several phenolic -OH groups that are weakly
acidic. For this reason, any assays involving these compounds would be greatly distorted at pH 8.2,
which could potentially result in erroneous experimental results [12]. In this study, we have conducted
our experiments at physiological pH 7.4 (instead of pH 8.2) to improve the reliability of our results
and provide a satisfactory explanation for the effects of quercitrin and isoquercitrin.

2. Results and Discussion

It has been well documented that ROS (especially •O2
− radical anions and •OH radicals) can be

generated via Fe2+ catalysis according to the following equations (Equations (1) and (2)) [14]:

Fe2+ + O2→Fe2+ −O2→ Fe3+ − •O2
−→ Fe3+ + •O2

− (1)

Fe2+ + H2O2→ Fe3+ + •OH + OH− (Fenton Reaction) (2)

Fe2+-binding (or chelating) can therefore efficiently reduce the generation of ROS and is considered
by many to be an indirect approach to elicit the antioxidant activity of flavonoids and phytophenols [15].
In fact, Fe2+-chelating has been developed as a therapeutic approach for many diseases related to
ROS [16]. In this study, quercitrin and isoquercitrin both bound Fe2+ ions efficiently to give strong
UV absorption around 600 nm (Figure 3). This result indicated that quercitrin and isoquercitrin could
undergo Fe2+-binding to inhibit the generation of •O2

−. However, the UV spectra (Figure 3A) and
physical appearances (Figure 3B) of the methanol solutions suggested that isoquercitrin had higher
Fe2+-binding ability than quercitrin.

As shown in Figure 2, the 6′′-CH3 group in quercitrin preferentially sat in an axial position
(a bond), making it difficult for this group to access the flavone moiety (especially the A and C rings).
It was therefore not possible for this group to participate in binding reactions at the 4- and 5-positions.
However, the 6′′-C and 6′′-OH groups in the isoquercitrin molecule (Figure 2B) preferentially sat in
an equatorial position (e bond). This orientation placed the 6′′-OH group in close proximity to the
flavone moiety (especially the A and C rings). Moreover, this conformation allowed for the 6′′-OH
group to swing to access the 4- and 5-positions via the free rotation of the σ bond between C5′′ and C6′′ .
The O atom of the 6′′-OH could therefore participate in binding reactions at the 4- and 5-positions to
form a stereo complex similar to that of EDTA (Figure 4). In fact, this reaction is formally characterized
as a steric chelation reaction (not only a binding reaction). However, in the quercitrin molecule, there
was only a planar Fe-binding interaction between the 4- and 5-positions with no similar steric chelation
interaction. The difference helps to explain why isoquercitrin exhibited a much higher Fe2+-binding
ability than quercitrin.
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To verify whether quercitrin and isoquercitrin can directly scavenge ROS, we studied their
radical-scavenging effects on DPPH• radicals, which do not require metal catalysis. The DPPH•-
scavenging assay confirmed that quercitrin and isoquercitrin could efficiently eliminate DPPH• radicals
(Figure 5A and Table 1). This result implied that quercitrin and isoquercitrin both exert antioxidant
activities by undergoing direct radical-scavenging reactions. However, isoquercitrin was found to
be less effective as a DPPH• scavenger than quercitrin. Previous studies in this area have suggested
that DPPH-scavenging mainly involves hydrogen-donating (H-donating) pathways, leading to the
formation of stable DPPH-H molecules [17]. However, in the isoquercitrin molecule, the 6′′-OH group
could combine with H• radicals to form H-bonding interactions that could hinder the H-donating
ability of the phenolic -OH groups in the A and B rings, because the 6′′-OH group has two lone pairs
of electrons. Furthermore, steric hindrance from the 6′′-OH group could have an adverse impact on
the H-donating ability of the phenolic -OH groups.
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(A) DPPH•-scavenging assay; (B) Cu2+ reducing power assay; (C) FRAP assay (Fe3+ reducing);
(D) •O2

−-scavenging assay. Each value is expressed as mean ± SD, n = 3. Trolox and BHA are
used as the positive controls.

Table 1. IC50 values of quercitrin and isoquercitrin in various antioxidant assays.

Assays Quercitrin
µg/mL (µM)

Isoquercitrin
µg/mL (µM)

Positive Controls
Ratio (1) Ratio (2)Trolox

µg/mL (µM)
BHA

µg/mL (µM)

DPPH•
scavenging

4.45 ± 0.17
(9.93 ± 0.38 a)

5.89 ± 0.25
(12.68 ± 0.54 b)

4.53 ± 0.11
(18.10 ± 0.44 c)

4.42 ± 0.19
(24.53 ± 1.04 d) 1.8 1.4

Cu2+-Reducing
8.91 ± 0.27

(19.87 ± 0.61 a)
11.75 ± 0.36

(25.31 ± 0.78 b)
15.68 ± 0.63

(62.66 ± 2.51 d)
7.96 ± 0.28

(44.19 ± 0.69 c) 3.2 2.5

FRAP 6.14 ± 0.29
(13.70 ± 0.65 b)

5.71 ± 0.16
(12.30 ± 0.34 a)

6.98 ± 0.11
(27.88 ± 0.47 d)

4.61 ± 0.13
(25.60 ± 0.69 c) 2.0 2.3

•O2
−

scavenging
39.45 ± 2.43

(87.99 ± 5.43 b)
36.30 ± 2.24

(78.16 ± 4.83 a)
34.31 ± 0.90

(137.08 ± 3.61 c)
N.D.
N.D. 1.6 1.8

Each IC50 value was calculated by linear regression analysis of the dose response curves in Figure 5. The mass
units of the IC50 values (µg/mL) were converted to molar units, and the resulting values are shown in
parentheses. The linear regression was analyzed using version 6.0 of the Origin professional software (OriginLab
Corporation, Northampton, MA, USA). Each experiment was performed in triplicate, and the IC50 values were
presented as the mean ± SD (standard deviation, n = 3). Means values (µM) with different superscripts (a, b, c,
d) in the same row were significantly different (p < 0.05). N.D., not detected. Ratio (1) = IC50,Trolox:IC50,Quercitrin;
Ratio (2) = IC50,Trolox:IC50,Isoquercitrin.

It was recently reported that DPPH• scavenging could also include a minor approach, i.e.,
electron-transfer (ET) [18]. To explore the possibility of ET in the cases of quercitrin and isoquercitrin,
we determined the Cu-reducing powers of these compounds. The presence of an ET pathway is critical
to the conversion of Cu2+→Cu+, because the reduction of metal species in this way is well known to
involve electron (e) transfer reactions. As seen in Figure 5B, both quercitrin and isoquercitrin gave good
dose-response curves. This result therefore suggests that both of these compounds possess ET abilities,
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enabling them to scavenge ROS. However, recent results from the literature have also indicated that
the ET approaches involved in Cu-reducing processes are generally accompanied by a proton (H+)
transfer [19].

To determine whether quercitrin and isoquercitrin could undergo ET processes, we conducted
a FRAP assay under acidic conditions at pH 3.6. The ionization and transfer of protons (H+) would
be highly inhibited under these acidic conditions. The occurrence of a Fe-reducing reaction in an
FRAP assay would therefore be considered as a minor ET process. The data in Figure 5C revealed
that both quercitrin and isoquercitrin could reduce Fe3+ to Fe2+ in a concentration-dependent manner
at concentrations in the range of 0.0–10.0 µg/mL. This result means that both of these compounds
possess minor ET activity. However, the mere ET activity of isoquercitrin was higher than that of
quercitrin, most likely because of the 6′′-OH group in isoquercitrin. It has been hypothesized that
the 6′′-OH group in isoquercitrin could induce the flow of an “electron stream” through the flavone
moiety, because the O atom of this group is highly electronegative (3.44) and can freely rotate on its
σ bond. In contrast, quercitrin does not contain a 6′′-O atom (or 6′′-OH group), leading to its lower ET
activity compared with isoquercitrin.

Although the effects of the 6′′-OH group of isoquercitrin only appear to be negligible based
on the analyses presented above, this group did lead to an increase in the •O2

−-scavenging
activity of isoquercitrin compared with quercitrin. According to the IC50 values, isoquercitrin (IC50

78.16 ± 4.83 µM) exhibited stronger •O2
−-scavenging activity than quercitrin (IC50 87.99 ± 5.43 µM).

This result therefore indicates that the inclusion of a 6′′-OH group leads to an increase in the antioxidant
activity of flavonoid glucosides. The total effects of having a 6′′-OH group in these compounds
can be attributed to the fact that their •O2

−-scavenging activity would involve several antioxidant
pathways, including Fe2+-binding [20], H-donating, ET [21], proton transfer [22], and even radical
adduct formation (RAF) [23]. In addition, it is noteworthy that the IC50 value determined in the
current study for quercitrin was significantly lower than that of Mou [12], who reported an IC50 value
of 97.26 µg/mL (216.30 µM). This discrepancy further confirms the problems associated with pH
interference during pyrogallol autoxidation.

The ratio values of IC50,Trolox:IC50,Quercitrin and IC50,Trolox:IC50,Isoquercitrin (Table 1) suggested both
quercitrin and isoquercitrin possessed higher antioxidant ability than the positive control Trolox.

Our assumption about the relative antioxidant levels of isoquercitrin and quercitrin was further
supported by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl (MTT) results obtained using an MSC-based
model. In this assay, MSCs were initially oxidatively damaged using the Fenton reagent (FeCl2
plus H2O2), which was used to generate •OH radicals. The results revealed that quercitrin and
isoquercitrin both protected the MSCs from •OH radical-induced damage at concentrations in the
range of 0–100 µg/mL. However, isoquercitrin exhibited much stronger protective activity than
quercitrin at the same concentrations (Figure 6).

The results of our MTT assay can also be used to explain our previous observations. For example,
quercitrin can protect osteoblastic MC3T3-E1 cells against H2O2-induced dysfunction [24] and reduce
UVB-induced cell death and apoptosis in HaCaT cells [25]. These results can be explained in the
sense that H2O2 can lead to oxidative damage, whereas UVB irradiation can lead to the formation of
large quantities of •OH radicals capable of exerting considerable toxicity. Furthermore, isoquercitrin
can inhibit the H2O2-induced apoptosis of EA.hy926 cells [26]; several medicinal plants, including
Hypericum japonicum and its injection (Tianjihuang Injection), exhibit hepatoprotective effects against
CCl4-induced damage in rabbits [27].
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3. Materials and Methods

3.1. Animals and Chemicals

Sprague-Dawley (SD) rats of four weeks of age were obtained from the Animal Centre at the
Guangzhou University of Chinese Medicine, China. Quercitrin (C21H20O11, CAS number: 522-12-3,
98%) and isoquercitrin (Q3G, C21H20O12, CAS number: 482-35-9, 98%) were obtained from Sichuan
Weikeqi Biological Technology Co., Ltd. (Chengdu, China). Pyrogallol, 2,4,6-tripyridyl triazine (TPTZ),
(±)-6-hydroxyl-2,5,7,8-tetramethlychromane-2-carboxylic acid (Trolox), and butylated hydroxyanisole
(BHA) were obtained from Sigma-Aldrich (Shanghai, China). MTT was from, Duchefa (Haarlem,
The Netherlands). 1,1-Diphenyl-2-picrylhydrazyl radical (DPPH•) was obtained from Aladdin
Chemical, Ltd. (Shanghai, China). 2,9-Dimethyl-1,10-phenanthroline hemihydrate (neocuproine)
was obtained from J & K Scientific, Ltd. (Beijing, China). Tris-hydroxymethyl amino methane (Tris)
was obtained from Dinggguo Biotechnology, Ltd. (Beijing, China). Dulbecco’s modified Eagle’s
medium (DMEM) and fetal bovine serum (FBS) were purchased from Gibco (Grand Island, NY,
USA). CD44 was purchased from Boster, Ltd. (Wuhan, China). H2O2, FeCl2·4H2O, CH3COONH4,
FeCl3·6H2O, Na2EDTA, CuSO4, hydrochloric acid, and all of the other reagents were purchased as the
analytical grade from Guangdong Guanghua Chemical Plants Co., Ltd. (Shantou, China).

3.2. Ultraviolet (UV) Spectra Determination of Fe2+-Binding

The Fe-binding effects of quercitrin and isoquercitrin were evaluated by UV spectroscopy. In these
experiments, the Fe-binding reactions between quercitrin and isoquercitrin were monitored based on
their UV spectra. Briefly, a 100–200 µL ethanolic solution of quercitrin (1 mg/mL) or isoquercitrin
(1 mg/mL) was added to 1 mL of an aqueous solution of FeCl2·4H2O (5 mg/mL), and the total volume
was adjusted to 1600 µL with 95% ethanol and mixed vigorously. The resulting mixture was then
incubated at 37 ◦C for 10 min. The product mixtures were photographed using a camera (Olympus
Pen, Shenzhen, China). The supernatant of each mixture was collected and analyzed on a UV/Vis
spectrophotometer (Jinhua 754 PC, Shanghai, China).
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3.3. DPPH• Radical-Scavenging Assay and Cu2+-Reducing Power Assay

The DPPH• radical-scavenging and Cu2+-reducing power assays were conducted according to
previously reported procedures from the literature [28]. The experimental protocols, experimental
apparatus, and formula for calculating the inhibition percentages were similar to those previously
reported [28]. In contrast to this previous report, the samples being tested in this study were quercitrin
and isoquercitrin, with Trolox and BHA being used as the positive controls. The final concentrations of
quercitrin and isoquercitrin are shown in Figure 5A,B.

3.4. Ferric Ion Reducing Antioxidant Power (FRAP) Assay

The FRAP assay method used in this study was adapted from the method reported by Benzie and
Strain [29]. This assay can be used to give an indication of the reducing ability of a material or mixture.
The assay was performed in pH 3.6 buffer. Briefly, according to ratio of 1:1:10, the FRAP reagent was
freshly prepared by mixing together 10 mM TPTZ and 20 mM FeCl3 in 0.25 M HOAc-NaOAc buffer
(pH 3.6). The test sample (x = 10–50 µL, 0.1 mg/mL) was added to (100− x) µL of 95% ethanol followed
by 400 µL of FRAP reagent. The absorbance was read at 593 nm after 30 min of incubation at 37 ◦C
against a blank consisting of acetate buffer. The relative reducing power of the sample compared with
the maximum absorbance was calculated using the following formula.

Relative reducing power% =
A− Amin

Amax − Amin
× 100% (3)

where, Amax is the maximum absorbance, Amin is the minimum absorbance, and A is the absorbance
of sample.

3.5. Scavenging Ability towards •O2
− Radicals (Pyrogallol Autoxidation Assay)

The superoxide anion (•O2
−)-scavenging activity was determined using a method previously

developed in our laboratory [13]. Briefly, a 10–50 µL sample solution (1 mg/mL) was added to Tris-HCl
buffer (0.05 M, pH 7.4) containing Na2EDTA (1 mM) and the total volume was adjusted to 990 µL
using buffer. Ten microliters of pyrogallol solution (60 mM in 1 mM HCl) was added to the sample,
and the resulting mixture was vigorously agitated before being analyzed at 325 nm every 30 s for
5 min. The •O2

− radical-scavenging ability was calculated as follows:

Inhibition% =
(

∆A325nm,control

T
)− (

∆A325nm,sample

T
)

(
∆A325nm,control

T
)

× 100% (4)

where ∆A325nm,control is the increase in the A325nm value of the mixture without the sample, ∆A325nm,sample
is the increase in the A325nm value of the mixture with the sample and T is the time required for the
determination (5 min in this case).

3.6. Protective Effect towards the ROS-Induced Damage of MSCs (MTT Assay)

The MSCs were cultured according to a previously reported method [28,30] with slight
modifications. In brief, bone marrow was obtained from the femur and tibia of rat. The marrow
samples were diluted with DMEM (LG: low glucose) containing 10% FBS. MSCs were prepared by
gradient centrifugation at 900 g for 30 min on 1.073 g/mL Percoll. The prepared cells were detached by
treatment with 0.25% trypsin and passaged into cultural flasks at 1× 104/cm2. MSCs at passage 3 were
used for the investigation. The cultured MSCs were seeded into 96-well plates (4 × 103 cells/well).
After adherence for 24 h, the cells were divided into three groups, including control, model, and sample
groups. The MSCs in the control group were incubated for 24 h in DMEM. The MSCs in the model
group were injured for 5 min using FeCl2 (100 µM) followed by H2O2 (50 µM). The resulting mixture
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of FeCl2 and H2O2 was removed and the MSCs were incubated for 24 h in DMEM. The MSCs in the
sample groups were injured and incubated for 24 h in DMEM in the presence of various concentrations
of quercitrin and isoquercitrin. After being incubated, the cells were treated with 20 µL of MTT
(5 mg/mL in PBS), and the resulting mixtures were incubated for 4 h. The culture medium was
subsequently discarded and replaced with 150 µL of DMSO. The absorbance of each well was then
measured at 490 nm using a Bio-Kinetics plate reader (PE-1420, Bio-Kinetics Corporation, Sioux Center,
IA, USA). The serum medium was used for the control group and each sample test was repeated in
five independent wells.

3.7. Statistical Analysis

The results were reported as the mean ± SD of three independent measurements, the IC50 values
were calculated by linear regression analysis and independent-sample T tests were performed to
compare the different groups. A p value of less than 0.05 was considered statistically significant.
Statistical analyses were performed using the SPSS software 17.0 (SPSS Inc., Chicago, IL, USA) for
windows. All of the linear regression analyses described in this paper were processed using version 6.0
of the Origin professional software.

4. Conclusions

Quercitrin and isoquercitrin can both behave as antioxidants in an indirect (i.e., Fe2+-chelating)
and direct manner to scavenge ROS to protect MSCs against ROS-induced oxidative damage. In terms
of the role played by the 6′′-OH group in isoquercitrin, this group may lead to enhanced ET and
Fe2+-chelating abilities compared with quercitrin, but lower H-donating ability via steric hindrance or
H-bonding. Overall, isoquercitrin exhibited higher ROS-scavenging activity and greater cytoprotective
effects towards MSCs than quercitrin. The present study may lead to the development of novel
protectors in MSC transplantation engineering based on the structural modification of the 6′′-position
of flavonoid glycosides.

Supplementary Materials: Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/21/
9/1246/s1.
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BHA butylated hydroxyanisole
DMEM Dulbecco’s modified Eagle’s medium
DMSO dimethyl sulfoxide
DPPH 1,1-diphenyl-2-picrylhydrazyl radical
EDTA ethylene diamine tetraacetic acid
ET electron transfer
FBS fetal bovine serum
FRAP Ferric ion reducing power assay
MSCs mesenchymal stem cells
MTT [3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl]
Q3G quercetin-3-O-glucoside
RAF radical adduct formation
ROS reactive oxygen species
SD standard deviation
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SPSS statistical product and service solutions
TPTZ 2,4,6-tripyridyl triazine
Tris tris-hydroxymethyl amino methane
Trolox (±)-6-hydroxyl-2,5,7,8-tetramethlychroman-2-carboxylic acid
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