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A tree search algorithm 
towards solving Ising formulated 
combinatorial optimization 
problems
Yunuo Cen, Debasis Das & Xuanyao Fong*

Simulated annealing (SA) attracts more attention among classical heuristic algorithms because many 
combinatorial optimization problems can be easily recast as the ground state search problem of the 
Ising Hamiltonian. However, for practical implementation, the annealing process cannot be arbitrarily 
slow and hence, it may deviate from the expected stationary Boltzmann distribution and become 
trapped in a local energy minimum. To overcome this problem, this paper proposes a heuristic search 
algorithm by expanding search space from a Markov chain to a recursive depth limited tree based on 
SA, where the parent and child nodes represent the current and future spin states. At each iteration, 
the algorithm selects the best near-optimal solution within the feasible search space by exploring 
along the tree in the sense of “look ahead”. Furthermore, motivated by the coherent Ising machine 
(CIM), the discrete representation of spin states is relaxed to a continuous representation with a 
regularization term, which enables the use of the reduced dynamics of the oscillators to explore the 
surrounding neighborhood of the selected tree nodes. We tested our algorithm on a representative 
NP-hard problem (MAX-CUT) to illustrate the effectiveness of the proposed algorithm compared 
to semi-definite programming (SDP), SA, and simulated CIM. Our results show that with the primal 
heuristics SA and CIM, our high-level tree search strategy is able to provide solutions within fewer 
epochs for Ising formulated combinatorial optimization problems.

Many combinatorial optimization problems (e.g., VLSI floorplanning1, drug discovery2, and advertisement 
allocation3) aim to find the optimal solution among a finite set of feasible solutions. However, finding the exact 
solution to combinatorial optimization problems generally requires the exploration of the entire solution space, 
which increases exponentially in size with the size of the optimization problem and makes it intractable to solve 
exactly4. As a result, the research community has a significant interest in algorithms to find near-optimal solu-
tions within a reasonable time.

Among the approaches in the literature, the Ising model (Fig. 1h) has attracted the most attention because 
it is straightforward to recast many combinatorial optimization problems as the problem of searching for the 
ground state of an Ising Hamiltonian4. Moreover, two well-known heuristic algorithms have been studied exten-
sively: quantum annealing (QA)5 and its classical counterpart, SA6. In these algorithms, the cost function is 
directly encoded as the Ising Hamiltonian and feasible solutions to the combinatorial optimization problems 
are obtained by searching for the energy minima. Furthermore, it can be theoretically shown that QA and SA 
can obtain the exact solution if the annealing time is large enough7. However, the QA is usually implemented on 
superconducting qubits, which can be costly. On the other hand, the Ising spins for SA can be hardware-friendly 
for conventional computers8, especially for CMOS-compatible spintronics implementation9–12. Regardless of the 
implementation, achieving the Boltzmann distribution using the annealing process may become intractable. It 
may be more practical to achieve a quasi-equilibrium distribution by considering only the flipping probabilities 
of identical spins. However, such an approach usually traps the SA in a local optimum13. Some studies try to avoid 
this situation by introducing noise11 but the effectiveness of noise injection is still under debate.

The CIM has garnered much research interest because its bistable coherent states can be naturally mapped 
to the Ising Hamiltonian14, and is efficient for sampling spin configurations (which also are the solutions to the 
combinatorial optimization problems)15. Compared to SA, CIM has the theoretical advantage of facilitating a 
quantum parallel search across multiple regions16. Compared to QA, CIM has the physical advantages of room 
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temperature operation, scalability, and connectivity17, which arises from the fact that the information loss due to 
the measurement-feedback scheme for capturing the reduced dynamics of CIM seems to be unimportant18. Based 
on this scheme, the research community has scaled up the size of CIM from the initial 4 spins19 to 100,000 spins20. 
However, the cost of scaling up the CIM is not cheap, and the effort to stabilize a large CIM may not be trivial. The 
poor man’s CIM (as depicted in Fig. 1f) offers significant advantages in stability, size and cost, and can achieve 
similar performance in terms of success rate21. However, in the measurement-feedback scheme, measurements 
need to be made from the optical systems and converted to a digital signal for the field-programmable gate array 
(FPGA). After the calculations in FPGA are completed, the results are converted back to an analog signal and 
injected back into the optical system. The data conversion and movement between analog and digital domains is 
a severe bottleneck for the computational performance and hence, it is desirable to reduce the number of these 
processes. Doing so reduces the epochs-to-solution and achieves speedup for the CIM to find a near-optimal 
solution. Table 1 summarizes the main contribution of this work with respect to the related works in the literature.

To overcome the aforementioned challenges, we propose a tree search algorithm, which we call as coherent 
Ising tree search (CITS), that combines two primal heuristics (SA and CIM) to find near-optimal solutions. The 
proposed algorithm is inspired by the Monte Carlo tree search (MCTS), which is a best-first search algorithm 
that expands the search tree based on random exploration and takes the most promising move22. CITS is a 
recursive size limited search algorithm following the idea of “look-ahead”. The main differences between CITS 
and MCTS are as follows:

•	 MCTS expands child nodes for all possible moves at each time step, and the overall tree is needed for the 
future time steps. The expansion step of CITS is as follows: the child node corresponding to the selected spin 
state becomes a root node, and the unselected nodes are pruned away, eventually expanding the child nodes 
to a tree (limited to predefined depth and breadth) based on the primal SA heuristic. At each time step, CITS 
generates a size limited tree and hence, it is a recursive size limited search algorithm;

Figure 1.   Search space of SA, CIM and CITS within coupled Ising spins: (a) The Markov chain of SA, where the 
straight solid/dot lines represent the Metropolis-Hasting sampling at current/future time step. (b) The Markov 
chain of CIM, where the curve solid/dot lines represent the oscillator dynamics at current/future time step. (c). 
The Ising tree structure of CITS, where the straight lines represent the expansion based on SA and the curve line 
represents the exploration based on CIM; (d) Intuitive explanation of annealing mechanism of CITS. From the 
initial spin configuration with high Ising Hamiltonian, expanding the search space by primal heuristic SA (blue 
straight lines), then exploring the two local spaces in parallel by primal heuristic CIM (blue curve lines). (e) 
Explanatory annealing process on two uncoupled Ising spins. Each dashed triangle represents the child nodes 
of the corresponding time step. Only the most potential node is selected for future time steps. (f) Experimental 
schematic of poor man’s CIM21, where we abstract and simulate the reduced dynamics since we only care 
about the solution quality instead of measuring the whole system. (g) Hardware design of CITS interfaces with 
poor man’s CIM. The VMM cores compute the Hamiltonian and the reward of the child nodes. This part can 
be paralleled and accelerated using FPGA or non-volatile memory technology. The on-chip memory stores 
the Ising spin configurations of each node, and the corresponding Hamiltonian. (h) Ising formulation of 
combinatorial optimization problems that can map the edge values to the cells in VMM cores.
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•	 MCTS only visits one path in the tree from the root to the leaf node at each time step while CITS searches 
the entire Ising tree;

•	 MCTS is usually applied to zero-sum and complete information games so each leaf node has an exact reward 
value. CITS is applied on combinatorial optimization problems in which the best optimum is not known. 
Thus, the change in Ising Hamiltonian determines the leaf value;

•	 MCTS predicts the leaf value by performing a playout with random moves to end the game whereas CITS 
evaluates the Hamiltonian of the Ising spin configurations of all child nodes and the rewards of child nodes 
are backpropagated to their parent nodes;

In CITS, a Markov chain in conventional SA or CIM is expanded to an “Ising tree”, where the future spin 
states are also taken into consideration (Fig. 1a–c). Instead of simply searching for a lower Ising Hamiltonian in 
Stone space ({−1,+1}n) using SA or in real coordinate space (Rn) based on the reduced dynamics of CIM, the 
high-level strategy of CITS leverages both primal SA and CIM heuristics in both search spaces to obtain solu-
tions of the Ising formulated problems (Fig. 1d). The dashed rectangles in Fig. 1e describes the depth and the 
breadth of our CITS algorithms. At each time step, only the most prominent node is selected for the future time 
step. Particularly, the computation speed when utilizing the measurement-feedback scheme is mainly limited by 
the communication time between analog (Fig. 1f) and digital domain (Fig. 1g). As a result, linearly scaling up 
(tree depth d and breadth b) the computation in the digital domain will require more computational resources, 
especially the amount of vector-matrix-multiplication (VMM) cores and the size of memory. However, the total 
time of each cycle will not increase too much as long as the memory can be realized on-chip, such that the com-
putation time, i.e. on FPGA, can be orders of magnitude smaller than the communication time. In this paper, we 
demonstrate that CITS tradeoffs an acceptable spatial complexity to accelerate the search to find better solutions 
to MAX-CUT problems (as compared to SA or CIM) with graph sizes ranging from 36 nodes to 230 nodes.

The rest of the paper is organized as follows. In the “Results” section, we first discuss the reduced dynamics 
of the coherent Ising tree search in terms of the Lagrange picture and relate CITS to the poor man’s CIM21. We 
also study two search schemes to show that the key parameters that determine the performance of CITS are the 
breadth and the depth of the tree. Results of the evaluation of our proposed methods on different MAX-CUT 
instances to benchmark with the primal heuristics are also presented. In the “Discussion” section, we summarize 
our proposed method and discuss the threat to the validity (since we did not formulate the exact noise in our 
simulations). Discussion about the future work beyond CITS is also presented. Finally, further details of our 
proposed methods are provided in the “Method” section.

Results
In this section, we first attempt to visualize the reduced dynamics in the Lagrange picture so as to show how CITS 
is able to explore and exploit the search space. However, since the exhaustive exploration of every search space is 
not feasible, we proposed a naive search scheme, which is presented in a later subsection. Results of the ablation 
study show that the original scheme and naive search scheme generate solutions that are similar in quality. The 
preceding subsection shows the benchmark results on different MAX-CUT instances with sizes ranging from 
36 to 230. And our algorithm details can be found in the “Methods” section.

Reduced dynamics of coherent Ising tree in the Lagrange picture.  The Ising model (Fig.  1c)) 
describes the behaviour of Ising spins and interactions between each other. The general form of the Ising Ham-
iltonian may be written as23:

sj is the state of the jth spin in the Ising model, which only has two states (spin-up or spin-down) represented 
by +1 or −1 . Jjl

(

= Jlj
)

 is the coupling coefficient between the jth and the lth spins, and represents ferromagnetic 
(antiferromagnetic) coupling if it is positive (negative)24. For any Ising formulated combinatorial optimization 
problem, the aim is to encode the problem with an Ising Hamiltonian and search for a spin configuration that 

(1)H(s1, s2, ..., sn) = −
1

2

n
∑

j

n
∑
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Jjl sjsl

Table 1.   Remarks of related works and main contribution of this work.

CIMs Remarks

DOPO14 The reduced dynamics of the degenerate optical parametric oscillators (DOPO) from the Heisenberg-Langevin equa-
tion is derived

CIM19 Coupling of 4 degenerate optical parametric oscillators with network of delay lines is achieved

MFB-CIM18 The coupled degenerate optical parametric oscillators based on measure-feedback (MFB) scheme is scaled up by 
replacing the networks of delay lines with FPGA

MFB-CIM20 The scalability of the measure-feedback based degenerate optical parametric oscillators is demonstrated up to 100,000 
nodes

Poor man’s CIM21 Size, cost and gain stability with optical opto-electronic oscillator and measurement-feedback scheme are improved

This work Based on opto-electronics oscillators and measurement feedback scheme, a tree search algorithm to gain speed up in 
terms of epoch-to-solution is designed
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minimizes the Hamiltonian4. Alternatively, the Ising spins can also be modeled as wave functions. The phase 
differences may then be used to represent spin-up (0-phase) or spin-down ( π-phase). Note that additional con-
straints are required for the phase degeneracy of Ising spins when mapping from combinatorial optimization 
problems, i.e. second harmonic injection locking25 for classical approach or down conversion14 for quantum 
approach. In our approach, we start from quantum harmonic oscillators, �ω0â

†â , and a parametric nonlinear 
(trigonometric) feedback signal from the external field is utilized to degenerate and couple the Ising spins:

where 
(

â†, â
)

 are the creation and annihilation operator, � is the Dirac constant, ω0 is the intrinsic frequency 
of the Ising spins. ωα denotes the frequency of the injected feedback signals that pump the Ising spins into two 
coherent states, ωβ denotes the frequency of the mutual coupling signals encoding the Ising Hamiltonian as 
shown in Eq. (1). � is the random diffusion term modelled as 0-mean Gaussian white noise.

The quantum-inspired algorithms excavate the potential for solving combinatorial optimization problems 
by leveraging the underlying reduced dynamics of Hamiltonian systems. Based on the Heisenberg equation, 
the motion of the annihilation operators can potentially describe an optimization pathway toward the global 
optimum. Utilizing the Langevin equation, the Hamiltonian in Eq. (2) can be translated into the Heisenberg 
picture14. A classical approach is to approximate the expectation of the Hamiltonian by ��|Ĥ|�� using the 
complex representation � = [φj] = [xj + iyj]

26. Then, the Lagrangian captures the classical approximation of 
the reduced dynamics of two quadrature components. As a result, the reduced dynamics of the Ising spins in 
the Lagrange picture becomes:

where �x , �y(= 1) are the Lagrange multiplier of the x and y components. α = (ω0/2ωα) is the feedback gain 
and β = (ω0/2ωβ) is the coupling gain. After discretizing Eq. (3) using the Euler method with �t = 1/2�ω0 , 
the reduced dynamics are mathematically equivalent to the poor man’s CIM21 if the Gaussian white noise is 
neglected. Note that, in the rest of this paper, we use a discrete version to model the reduced dynamics in sense 
of the measurement-feedback approach.

xj[t], yj[t] are the pair of canonical conjugate variables for the jth Ising spin with time derivatives of 
∂xj[t]/∂t, ∂yj[t]/∂t at the tth time step. Notably, xj[t] is mathematical equivalent to the nonlinear model (Eqs. (10) 
and (11)) used by Bohm et. al.21 except for the noise term. To exploit the nonlinear dynamics, we simulate 
uncoupled spins for 50 time steps and the results are shown in Fig. 2a–d. Figure 2a,b show the representative 
trajectories under different energy landscapes with different feedback gains. When the feedback gain is below 
the threshold, the landscape of the Hamiltonian has only one energy minimum, and the Ising spins are squeezed 
within the vacuum state. As the feedback gain increases above the threshold, the landscape of the Hamiltonian 
will have two energy minima. Eventually, the Ising spins will bifurcate into two coherent states, corresponding 
to spin-up and spin-down. The real part of the reduced dynamics of 50 Ising spins are shown in Fig. 2c, where 
xj,1 = 0 corresponds the vacuum state and xj,2 = −xj,3 correspond to the coherent states. The implication is 
described in Fig. 2d. When the feedback gain is below their threshold, the stable fixed points are at xj,1 = 0 . 
When the feedback gain is above the threshold, the fixed points at xj,1 = 0 become unstable whereas symmetric 
stable fixed points appear at xj,2 = xj,3 . Furthermore, from Eq. (4), we observe that the imaginary part of the 
reduced dynamics remains around 0 under perturbation of 0-mean Gaussian white noise. Figure 2e–h also show 
the energy landscapes and representative trajectories of the real part of the dynamics of uncoupled/coupled Ising 
spins. Similarly, when the gains are below/above the threshold, the Ising spins enter the vacuum/coherent states 
depending on whether or not they are coupled.

The evolution and expansion steps (see “Methods” section) in our CITS algorithm are based on two primal 
heuristics, CIM and SA. The intuition of cooperating these two algorithms is from the symmetric energy land-
scapes and trajectories shown in Fig. 2c, d. An observation is that when the spin xj is flipped to −xj , the reduced 
dynamics ∂(−xj)/∂t will instead be −∂xj/∂t (Eq. (3) are odd functions). Hence, the spin xj will go to the other 
stable fixed point. The blue dash line reveals that flipping the sign of the Ising spin does not affect the bistability 
of the reduced dynamics. During the evolution and expansion step, CITS can explore along the real coordinate 
space based on Eq. (4) while expanding the search space along the Stone space based on Eq. (7). As a result, CITS 
can boost CIM toward exploring multiple search spaces in the future time steps without losing the bistability. 
Figure 1c and dash lines in Fig. 1e shows the coherent Ising tree with depth d = 2 and breadth b = 2 at time step 
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t. Compared to four identical and independent trajectories in Fig. 2f, the search space coverage of a coherent 
Ising tree is even broader, which gives an intuition that CITS can help escape out of local minima.

Ablation study: complete and naive search schemes.  To evaluate the efficiency of CITS as compared 
to SA and CIM, we run the simulations for 100 epochs for each instance. First, we test on a 10-by-10 square lat-
tice with periodic dimensions. In the “Methods” section, we proposed two expansion (and exploration) schemes 
for CITS. The naive scheme only considers the search spaces (tree nodes) generated by the primal heuristic, SA. 
The complete scheme explores around the tree nodes based on the primal heuristic, CIM. In Fig. 3b, we show the 
time evolution of amplitudes corresponding to the 10-by-10 square lattice graph (Fig. 3a) of the two exploration 
schemes. Our simulations show that the initialization for CIM and CITS affect the evolution of the dynamics 
in subsequent epochs. Thus, we set the initialized points of the two methods to be the same in each run for a 
fair comparison. The impact of the initialization is beyond the scope of the proposed tree search algorithms 
and is left out of this article (In this work, we consistently assume the distribution of initialization subject to the 
noise applied to the CIM). After initialization around the unstable fixed point x1 = 0 , CITS explores the search 
space and eventually stabilizes at two symmetric fixed points x2 = −x3 representing spin-up and spin-down. 
Figure 3e,f shows the explicit spin configurations at epoch 10, 20, 30, 40 corresponding to the time evolution 
of the spin amplitudes. In the first few epochs, the spin configurations form an organized region at the middle 
right of the square lattice. After around 10 epochs, the amplitudes of Ising spins bifurcate, which gives rise to the 
coupling effect. In the naive scheme, the spin configuration at epoch 20 is sub-optimal. At epoch 30, the system 
stabilizes at the global energy minimum for the rest of the time step. In the complete scheme, the convergence 
speed is slower but it eventually reaches the ground state at epoch 40.

Although a single simulation result is insufficient for claiming one scheme is better than the other, the visu-
alization of the underlying dynamics may be able to provide some insights into the optimization process. 100 
simulations were run for both schemes to evaluate their convergence speeds. Figure 3c shows the number of 
cuts on the 10-by-10 square lattice given by the solution at each epoch. To further evaluate the performance of 
CITS, we benchmark this result with SDP, SA and simulated CIM with the setup mentioned in the “Methods” 
section. Since we are comparing the performance between annealing-based heuristic algorithms, the approximate 
solution of 184 given by SDP is used as a baseline to evaluate the epochs-to-solution and the success rate of the 

Figure 2.   Reduced dynamics of parametric nonlinear (trigonometric) oscillator: (a, b) Energy landscape and 
trajectory of uncoupled Ising spins when increasing the feedback gain from below the threshold ( α = 0.8 ) to 
above the threshold ( α = 1.3 ). (c) Time evolution of the real part of the reduced dynamics with feedback gain 
α = 0.8 (cyan) and α = 1.3 (blue), where the dash line indicates flipping the sign of the spins will not affect 
the bistability. (d) Stability analysis of the uncoupled spins. When the feedback gain is below the threshold, 
the real part of the reduced dynamics will only have one stable fixed point at x1 = 0 (gray dot and arrow). 
When the feedback gain is above the threshold, the stable fixed points at x1 = 0 become unstable (red ring 
and arrow), and there exist two symmetric stable fixed points at x2 = −x3 (red dot and arrow). (e, f) Projected 
energy landscape on real axis and trajectory of two uncoupled Ising spins when increasing the feedback gain 
from below the threshold ( α = 0.8 ) to above the threshold ( α = 1.3 ). (g, h) Projected energy landscape on 
real axis and trajectory of two coupled Ising spins when increasing the feedback gain from below the threshold 
( α = β = 0.5 ) to above the threshold ( α = β = 0.6).
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proposed CITS algorithm and its two primal heuristics, SA and simulated CIM. Each of these three algorithms 
was run 100 times with different random seed numbers. Since the performance of each run varies, we studied 
the interquartile range (IQR, range between the 25th percentile Q25 and the 75th percentile Q75 ) in Fig. 3c, where 
the solid lines represent the 50th percentile Q50 . The epochs-to-solution are also shown in Table 2 to allow us to 
quantify the performance of each method.

In the beginning, CITS and CIM are initialized at a vacuum state, and suddenly obtain a 0.5-approximation 
solution due to the diffusion term introduced by the Gaussian white noise. Notably, during the first 7 epochs, 
the increment in the number of cuts for CITS and CIM are around 10 and 5 per epoch, respectively. CITS has a 
faster convergence to an approximate solution because deeper nodes in the coherent Ising tree tend to explore 
the tree in the coming future time step and based on the energy change, CITS decides the best move among the 
search space. At the beginning of the annealing process, the spin configurations are chaotic and a random flip 
tends to lower the Ising energy. Consequently, CITS tends to accept the further time steps. For the complete 
scheme, a fine-grained local search on each node is performed. As CITS goes from the root node to one of the 
leaf nodes, its primal heuristic CIM needs to be run for d times within an epoch. Since the tree depth is 2, CITS 
achieves approximately 2 × faster convergence to the lower energy Hamiltonian as compared to CIM. Notably, 
the naive scheme only performs a coarse-grained local search on each node, where the primal heuristic CIM is 
not run to explore the surrounding search space. Intuitively, the fine-grained local search on each node provides 
more information of the Ising system, i.e. the reduced dynamics.

To evaluate the solution quality, we study the t-value ( ta,b = |µa − µb|/
√

σ 2
a /na + σb/nb  ) between CIM 

and two schemes of CITS in Fig. 3d. µa , µb are the mean values, σ 2
a  , σ 2

b  are the variations and na , nb are the sizes 

Figure 3.   Benchmark results on square lattice graphs: (a) Graph structure of grid lattice with two periodic 
dimensions (all solid lines). Circular ladder can be obtained by only choosing the vertices connected by the 
edges shown in blue and gray solid line. And Mobius ladder can be obtained by twisting the blue solid lines to 
blue dash lines in circular ladder graphs. (b) A simulation of time evolution of spin amplitude on a 10-by-10 
square lattice using two schemes (with feedback strength α = 0.25 , and coupling strength β = 0.29 ). (c) The 
number of cuts on 10-by-10 square lattice given by SA, CIM, CITS for 100 epochs. (d) The t-value between 
distributions of the number of cuts given by CIM, CITS for 100 epochs. (e) The Ising spin configuration at 
epoch 10, 20, 30 and 40, where two end of the color bar represent two stable solution of the oscillator (black for 
spin-up and white for spin-down) for naive scheme and (f) complete scheme.

Table 2.   The epochs-to-solution for 10× 10 square lattice graph when using SA, CIM and CITS of the 25th, 
50th, 75th percentile. Both global optimum (to exact solution) and near-optimal local optimum (to approx. 
solution) are evaluated.

Methods SA CIM CITS (complete) CITS (naive)

Percentile Q25 Q50 Q75 Q25 Q50 Q75 Q25 Q50 Q75 Q25 Q50 Q75

To exact sol. 79 >100 >100 19 25 33 14 22 32 13 20 38

To approx. sol. 41 67 >100 15 20 26 10 17 26 9 15 32
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of set a and set b. Observe that, at the first 4 epochs, the t-value between CITS and CIM increases significantly, 
which is consistent with the observation of “faster convergence”. We also observe that the t-value between two 
schemes in CITS is significantly smaller than the t-value between CITS and CIM. This indicates that the quality 
of the solutions generated by the naive and complete schemes in CITS are not statistically different. Thereafter, 
we may deduce that instead of fine-grained local search spaces, the breadth and the depth of the tree are the key 
contributors to the performance of CITS. Since the naive scheme saves a lot of computational complexity, the 
simulation of CITS is based on the naive scheme in the rest of this paper.

After a few epochs, the landscape of the Ising Hamiltonian becomes more complicated. In this scenario, both 
algorithms tend to be trapped in the local minima and slow down the annealing process, which takes 9/15/32 
epochs (for Q25/Q50/Q75 ) for CITS to outperform SDP and 13/20/38 epochs to reach the global optimum. For 
comparison, CIM needs 15/20/26 epochs to outperform SDP and 19/25/33 epochs to reach the global optimum, 
respectively. From Fig. 3d, we can see that 24 epochs are needed before CIM can generate solutions of comparable 
quality to CITS.

The speed of convergence of CITS depends not only on the “depth” of the coherent Ising tree but also on 
the “breadth”. A wider coherent Ising tree provides a larger search space, which potentially contains a spin 
configuration with a lower energy Hamiltonian. As mentioned in the “Introduction” section, the expansion of 
the coherent Ising tree is based on another primal heuristic SA, which is able to identify the most promising 
search spaces based on the highest flipping probability computed using Eq. (7). Hence, we also compared CITS 
with SA, where 79 epochs are needed to reach the ground state for Q25 . Note that the algorithms do not always 
outperform SDP within 100 epochs, where it takes 41/67 epochs for Q25/Q50 . The Ising spins of SA do not have 
the properties of the “vacuum state” since SA initializes the spin configuration as all spin-up (or all spin-down) 
with 0 cut in the beginning. The number of spins allowed to be flipped is limited so as to preserve the quasi-
equilibrium distribution given by the approximation and ensure that the Markov process will converge to a stable 
distribution. Nonetheless, it can outperform SDP and may possibly return a near-optimal solution in a longer 
but acceptable time scale.

Benchmarking CITS on different MAX‑CUT instances.  In this section, we test SA, CIM and CITS on 
MAX-CUT instances using square lattice, circular ladder and Mobius ladder graphs. The parameters used in the 
simulation are shown in Table 3:

Due to their parallelism, CITS and CIM simulation demonstrate strong potential in solving 10-by-10 
square lattice graphs (Fig. 3a), which are regarded as easy instances since the Ising spins do not compete with 
each other. As a result, the graphs have only two naive solutions (alternative arranged, S = (s1, s2, ..., sn) and 
(−s1,−s2, ...− sn) ) that are regular graphs. However, if the side length of the square lattices is odd, the adjacent 
Ising spins may compete with each other leading to disorder patterns different from Fig. 3b. These graphs are 
known as frustrated graphs in which their Hamiltonians usually have more than two ground states. Square 
lattice graphs with side lengths ranging from 6 to 15 are studied in this section. The left figure in Fig. 4a shows 
the epochs-to-solution toward the global minima of the best reported result, where they indicate how fast the 
heuristic algorithms can escape the local energy minima. We observe that regular graphs usually require more 
epochs to find the ground state (upper bounds of the filled area) than frustrated graphs (lower bounds of the 
filled area). The epochs-to-solution of SA scales as a polynomial function of the number of nodes and the fitting 
curve corresponding to the regular graphs has a larger higher order coefficient because they only have two global 
energy minima whereas the frustrated graphs have multiple energy minima. For CIM and CITS, the epochs-to-
solution scales linearly with the number of nodes, and the difference between fitting curves of regular graphs and 
frustrated graphs is insignificant. They also benefit from the continuous number representation of Ising spins. SA 
suffers from polynomial scaling due to the discretized representation of the Ising spin, which limits the number 
of spin flips per epoch. To gain more intuition on the slower convergence when using SA as compared to the 
two other algorithms, let us consider a derandomized and serialized version of SA: the Hopfield neural network 
(HNN)27 , which maximally switches one spin at one time. In the best-case scenario, it will require 2n2 time flips 
to solve for a 2n× 2n square lattice. Notably, CITS usually has a lower zero-order coefficient in the fitting curves 
since a deeper coherent Ising tree tends to make decisions based on future time steps. However, the depth and 
breadth are only 2 in this case and the benefit of shorter ground-state search time diminishes as the number of 
nodes is increased. Thus far, our results show that CITS has 2.52×/6.38× speedup compared to CIM/SA to find 
the ground states of the square lattice graphs. The left figure in Fig. 4b shows the success rates of each heuristic 
algorithm within 100 epochs, revealing how likely that the annealing algorithms get trapped in the local energy 
minima and return sub-optimal solutions. The success rates of CIM and CITS are similar, achieving almost 100% 
on the frustrated graphs and decreasing logarithmically on the regular graphs while remaining above 80%. Theo-
retically, SA can be expected to always find the ground state if given an infinite time and hence, its success rate is 
closely related to the epochs-to-solution. SA can achieve a 100% success rate on square lattice graphs with side 

Table 3.   The parameters used in the simulations.

Methods Temperature(T*) Feedback gain(α) Coupling gain(β) Initialization Noise

SA Eq. (9) / / All spins up /

CIM /
0.25 (lattice)0.07 (ladder) 0.29 (lattice) 0.39 (ladder)

N(0, 10−2) N(0, 10−2)

CITS Eq. (9) N(0, 10−2) 0
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lengths 7 or 9. However, the success rate decreases polynomially on the frustrated graph. Similar to the epochs-
to-solution, the success rates on regular graphs are also lower than the frustrated graphs.

In many cases, a near-optimal solution is acceptable when the time to find the exact solution is incredibly 
large. Thus, we also benchmarked these three annealing algorithms to the approximate solutions given by SDP, 
as shown in the right figures in Fig. 4a,b. SDP is able to achieve the exact solution for square lattice with the side 
length of lower than 10, and can only achieve an approximate solution for larger graphs. For CIM and CITS, the 
probability of finding near-optimal solutions are similar to those for finding exact solutions of the square lattice, 
which reveal that they are unlikely to be trapped in local minima in square lattice graphs. In this case, CITS 
achieves 2.55x speedup over CIM to find the approximate solutions. Meanwhile, SA shows a faster convergence 
speed to find approximate solutions compared to the exact solutions (which is obvious), especially for the regular 
graphs. However, it is still 6.38x slower than CITS. Since the performance of SA is limited by the speed, relaxed 
targets are more easily obtained at fewer epochs-to-solution.

In this section, we also benchmark CITS on other representative MAX-CUT instances (such as circular 
and Mobius ladder graphs) with the number of nodes ranging from 40 to 230, where some of them are regular 
graphs and some are frustrated graphs. The graph structure of the circular ladder consists of two concentric 
n-cycles and each pair of nodes are connected to each other and the adjacent nodes. Figure 3a shows that it 
can be considered as a special case of the rectangular lattice with one dimension only having a side length of 2 
and the other dimension is periodic. On the left of Fig. 4d, it is clear that among the circular ladder graphs with 
a different number of nodes, CIM and CITS can only achieve a success rate above 75% on 60 node instances. 
Moreover, as the number of nodes increases, the success probabilities will further decrease. However, CITS still 
has 0.15%/11.50% improvement to finding exact solutions compared to CIM/SA. So we adopt the first percentile 
instead of the twenty-fifth percentile results for evaluating the speed of the algorithms. The results are shown on 
the left of Fig. 4c. Compared to the results in Fig. 4a,b, circular ladders can be considered a more difficult graph 
topology for MAX-CUT problems, where the fitting curve of epochs-to-solution and success rates of CIM and 
CITS both shows exponential scaling. On average, CITS can achieve 1.97×/2.71× speedup of finding exact solu-
tions on circular ladder graphs in terms of epoch-to-solution.

The approximate solutions given by SDP are far from the exact solutions, especially when the graph size is 
large. Therefore, these targets become easier to achieve for the annealing algorithms. Moreover, SDP performs 
worse in difficult instances. On the right of Fig. 4c,d, the curves corresponding to regular graphs and frustrated 
graphs are fitted jointly. Interestingly, in Fig. 4c, the epochs-to-solution of CIM and CITS are nearly constant 
whereas SA shows linear dependence on the number of nodes. The right figure in Fig. 4d shows that the success 

Figure 4.   Benchmark results on square lattice graphs, circular ladder graphs and Mobius ladder graphs: (a) 
Epochs-to-solution of the the best reported result, and (b) success rate on square lattice graphs with different 
graph size. The targets of left sub figures are the exact solutions and of right figure are the approximate solutions 
given by SDP. (parameter used: α = 0.25,β = 0.29 ). (c, d) are evaluate on circular ladder graphs, and (e, f) are 
evaluate on Mobius ladder graphs ( α = 0.07,β = 0.39).
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rates are better because SDP performs worse on a larger size graph and gives a relaxed target. When the number of 
nodes is above 60, CIM and CITS can achieve around 100% success rate of finding approximate solutions whereas 
SA has a lower success rate and is limited by the speed. On average, CITS can achieve 3.02×/7.21× speedup as 
compared to CIM/SA and 2.40%/19.90% improvement in success rate to finding approximate solutions.

By twisting the blue dash lines in the circular ladder in Fig. 3a, the graph becomes a Mobius ladder, which is 
a cubic graph with all the adjacent and opposite nodes connected. If the number of vertices divided by 2 is odd, 
the Hamiltonian of cutting the Mobius ladder is minimized when the Ising spins are in an alternate arrangement 
of up and down along the ring. When the number of vertices divided by 2 is even instead, all the Ising spins 
are competing with the corresponding opposite spin in alternate arrangement spin configuration. The result in 
Fig. 4e,f reveals that the Mobius ladder graphs are harder to solve than the previously mentioned graphs. How-
ever, on average, CITS can achieve 3.12×/7.45× speedup as compared to CIM/SA to find approximate solutions 
and 3.42×/8.27× to find exact solutions on the Mobius ladder graph. For the success rate, CITS has 3.90%/14.60% 
improvement in finding approximate solutions and 21.35%/25.00% improvement in finding exact solutions.

Discussion
We have proposed a heuristic search algorithm for Ising formulated combinatorial optimization problem, which 
we call CITS. This algorithm is inspired by the high-level idea of MCTS, which obtains a solution by exploring 
and exploiting the search space in the feasible regions. However, for NP-optimization problems, the size of the 
feasible regions scales exponentially with the size of the problem and therefore, it becomes infeasible to exhaus-
tively explore and exploit the search space in the feasible regions. To address this issue, our (recursive-)depth 
limited search scheme aims to find the most promising feasible search spaces determined by primal heuristic 
SA. Note that our algorithm is an extension of the poor man’s CIM, which is a quantum-inspired algorithm with 
the measurement-feedback scheme. We combined the two primal heuristics by mathematically formulating the 
bistability of parametric oscillators in the Lagrange picture. In our implementation, we proposed two search 
schemes. The first scheme explores (using the primal heuristic CIM) every feasible region while expanding the 
Ising tree. The other scheme is a naive scheme that is the same as the first scheme except that the exploration 
step is removed. This reduces the computational complexity and was shown to be more computationally efficient 
in the section discussing the ablation study. Our results reveal that the advantage of CITS is due mainly to the 
breadth and the depth of the tree instead of exploring every local search space. To benchmark the performance 
of CITS as a general solver on Ising formulated problems, we evaluate its performance on MAX-CUT problems, 
where the instances have nodes ranging from 36 to 230. CITS has improvement in both epochs-to-solution and 
success rate as compared to the simulated poor man’s CIM on both square lattice graphs, circular ladder graphs, 
and Mobius ladder graphs, where CITS has maximally up to 3.42× speed up and 21.35% higher success rate.

We are aware that the quantum noise is related to the bifurcation14. It is not specified in the poor man’s CIM21, 
so we applied Gaussian white noise in our simulation. The implementation of CITS that interfaces with physical 
CIM is left out of this work. However, note that when physically implementing CIM with the measurement-
feedback scheme, the delay of each round trip is mainly dominated by the communication between FPGA and 
the optical system. Thus, it is reasonable to expect that the speed up in epochs-to-solution is similar to the speed 
up in computation time.

We may expect to obtain a certain speed up by extending CITS to other combinatorial optimization problems 
like knapsack problems and travelling salesman problems, which are more practical for real-world problems. 
These Ising formulations of these problems have been demonstrated4. Even though CIM and CITS still expect to 
obtain sub-optimal solutions in polynomial time, the complexity will be higher. Thereby, it would not be trivial 
to implement on CIM and CITS due to the fact that problems like knapsack problems or travelling salesman 
problems contain equality constraints or inequality constraints. The demonstration of more real-world practical 
problems will be left for future work.

Methods
Problem mapping and baseline.  MAX-CUT problems belong to the NP-hard class28, which means any 
NP problem can be mapped to the MAX-CUT problem in polynomial time. The description of the MAX-CUT 
problem is as follows. Given an undirected graph G = (V ,E) , partition G into two complementary graphs, G1 
and G2 , such that the number of edges between G1 and G2 is maximized. The objective function can be written as:

Comparing Eqs.  (1) and (5), we observe that maximizing CUT(s1, s2, ..., sn) is equivalent to minimizing 
H(s1, s2, ..., sn) , when Jij = 1, ∀

(

i, j
)

∈ E.
For most MAX-CUT problems, there is no guarantee that exact solutions can be found in polynomial time. 

Generally, an acceptable solution (one that outperforms some baseline) found within an acceptable time (in 
polynomial time) is sufficient. In this work, Goemans-Williamson Semidefinite programming (GW-SDP), a 
0.879-approximation algorithm for the MAX-CUT problems29, is chosen as the baseline algorithm for generating 
the targets with which to evaluate the efficiency of CITS or its primal heuristics. SDP is known as an approxima-
tion algorithm that relaxes integer linear programming problems in Eq. (5) to:

(5)CUT(s1, s2, ..., sn) =
∑

(i,j)∈E

1− sisj

2

(6)CUT(σ11, σ12, ..., σnn) =
∑

(i,j)∈E

1− σij

2
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σij = sisj ∈ {−1, 1} , represents whether two vertices are in the same subgraph or not. The constraints of SDP are: 
σii = 1 , σij = σji , and � =

[

σij
]

 is positive semidefinite. As a result, the MAX-CUT problems are transformed 
into a special case of convex programming, in which the cvx solver30 can efficiently maximize the objective 
function in Eq. (6) with the aforementioned constraints. After transformation, a Cholesky factorization may be 
performed on � = STS . A projection of S ≈ sgn[�B] via random rounding may then be utilized to approximate 
the solution. B is an n×m random matrix, where m columns represent m random planes to be projected on to 
generate approximate solutions. Finally, among all approximate solutions, the one giving the largest number of 
cuts will be selected.

Primal heuristic 1: Parallel SA.  The stochastic spin update scheme in SA is inspired by thermal annealing, 
where the probability of the spin-flip is determined by quasi-equilibrium distribution based on the Metropolis-
Hasting31 algorithm:

pi is the flipping probability of the i-th spin, Z is a normalization factor, kB is the Boltzmann constant, T is the 
annealing temperature parameter, and �Hi is the energy difference due to flipping the i-th spin. Note that the 
ergodic search of all possible spin configurations requires a 1× 2n probability transition matrix. As a result, fol-
lowing the exact Boltzmann distribution becomes difficult. Instead, a quasi-equilibrium distribution only con-
cerning the flipping probability of each spin is utilized. In this scenario, the normalization term is approximated 
as Z =

∑n
i=1 exp

(

−�Hi
kBT

)

 . Typically, the energy change in flipping the ith spin is:

To speed up the algorithm, we adopt a synchronous update by approximating Eq. (7) to pi ← T∗pi/
∑n

i pi . Note 
that the quasi-temperature parameter, T∗ , is initialized as 1 and subject to a temperature scheduling scheme32 
as follows. Increase the temperature significantly in the first few epochs to provide thermal energy to escape 
the minimum. Thereafter, the temperature is aggressively decreased in the next few epochs before slowing the 
temperature decrease to gradual decay.

Primal heuristic 2: Simulated Poor man’s CIM.  Another primal heuristic is CIM, which encodes the 
coherent Ising spin state as the phases of degenerate oscillators. With mutual injections of the signals between 
each oscillator, the CIM will oscillate in one of the approximate ground states, thereby giving near-optimal solu-
tions to the combinatorial optimization problem. The mutual injections are usually realized by the network of 
delay lines19, or approximated by measurement-feedback scheme18 where the latter is discretized by the Euler 
method. The simulation in the present work follows the poor man’s CIM21, where the time evolution of the i-th 
spin at time step t is:

xi[t] is the measurement of each Ising spin at time step t, and ξi[t] is the diffusion introduced by modelled using 
Gaussian white noise. Note that the noise for poor man’s CIM is inside the trigonometric function whereas it is 
outside for CITS. For CIM, the noise is modelled as ξ ∼ N(0, 10−2) , and the same level of noise is applied at the 
beginning for random initialization and removed at the later time steps for deterministic convergence. fi[t] is 
the feedback term injected back to each of the Ising spins:

The feedback gain, α , and coupling gain, β , remain the same for both CIM and CITS, but should be chosen 
carefully to ensure bifurcations of Ising spins. After trial-and-error, we select α/β for the 2D square lattices as 
0.25/0.29, and as 0.07/0.39 for circular ladders, Mobius ladders.

High‑level strategy: CITS Algorithm.  The flow of CITS (Fig. 5) consists of four main steps. 

1.	 Evolution: As shown in Fig. 5a, the Ising formulated graph is encoded onto the simulated CIM (or its physical 
implementation). The parametric oscillators are then allowed to interact with each other while evolving. The 
obtained (measured) result from the CIM is then used to initialize the root node of the coherent Ising tree.

2.	 Expansion (and Exploration): For all nodes in the current layer, compute the switching probability, pi , accord-
ing Eq. (7) (the primal heuristic SA). Thereafter, create b child nodes based on top-b probabilities, which 

(7)pi =
1

Z
exp

(

−
�Hi

kBT

)

(8)�Hi = −2si

n
∑

i

Jijsj

(9)�T∗(t + 1) =











1.05T∗(t), t ≤
Nepochs

4

0.95T∗(t),
Nepochs

4 < t ≤
Nepochs

2

0.99T∗(t), t >
Nepochs

2

(10)xi[t + 1] = cos2
(

fi[t]−
π

4
+ ξi[t]

)

−
1

2

(11)fi[t] = αxi[t]+ β

n
∑

j

Jijxj[t]
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will be further given to the created child nodes as the priors. Note that the i-th spin in the corresponding 
child node will take the value of the opposite number, i.e., X(k)

i = (x1, x2, ...,−xi , ..., xn) . Afterward, the child 
nodes will explore the search space using the primal heuristic CIM (Eq. (3)). A naive version to reduce the 
computational complexity is obtained by removing the exploration step. The expected reward of each node 
in both schemes may be computed by: 

 where X(k)
i  is the spin configuration corresponding to the i-th node in the d-th layer. This step is repeated 

for these child nodes if they have not reached the tree depth d;
3.	 Backpropagation: Starting from the nodes at the deepest layer, CITS samples the return, Q(k)

j  , of each node. 
The return is successively backpropagated to their parent nodes (following the blue arrow lines in Fig. 5c) 
until the root node is reached. The return of the j-th node in k-th layer is computed based on the prior p(k)j  
and the expected reward R(k)

j  , as well as the prior p(k+1)
i  and the return Q(k+1)

i  of the child nodes as: 

 where C(k)
j  is the set containing all child nodes of the j-th node in k-th layer;

4.	 Selection: Starting from the root node to a chosen layer, select the child node with the the highest return 
Q
(k)
j  successively. If the current node does not have any child node with a positive return, stop selection. The 

spin configuration of the selected child node is given to the simulated (or physical) CIM for the evolution 
in the next time step.

Data availability
The data that support the results of this study are available from the corresponding author upon reasonable 
request.
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