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Abstract

Several types of size-based models have been developed to model the size spectra of

marine communities, in which abundance scales strongly with body size, using continuous

differential equations. In this study, we develop a size-structured matrix model, which can

be seen as a discretization of the Mckendrick-von Foerster equation, to simulate the dynam-

ics of marine communities. The developed model uses a series of simple body size power

functions to describe the basic processes of predator–prey interactions, reproduction,

metabolism, and non-predation mortality based on the principle of mass balance. Linear

size spectra with slopes of approximately –1 are successfully reproduced by this model.

Several examples of numerical simulations are provided to demonstrate the model’s behav-

ior. Size spectra with cut-offs and/or waves are also found for certain parameter values. The

matrix model is flexible and can be freely manipulated by users to answer different questions

and is executed over a shorter numerical calculation running time than continuous models.

Introduction

Since the pioneering work by Sheldon et al. [1], the marine community size spectrum, i.e., the

distribution of abundance or biomass against individuals’ body size on a log–log scale, has

attracted significant interest from the scientific community. Classifying individuals over the

size range from bacteria to whales into different size groups regardless of taxonomy results in a

linear size spectrum with a slope of approximately –1 in unexploited communities [1, 2]. The

slopes and intercepts of these size spectra have been proposed as useful indicators in revealing

the nature of ecosystems and the effects of anthropogenic perturbation on the structure of

marine communities [3].

Several types of size-based models have been developed to reproduce linear size spectra,

explain their remarkable regularities, and explore the related ecosystem dynamics [4–8]. Such

models are also widely used to investigate the impacts of environmental changes [9, 10] and

fishing [11–13] on marine communities. Such models have been used to suggest that different

types of behaviors can theoretically emerge at various size spectra. Using a jump-growth

model in which predation is represented as a Markov process, Datta et al. [14] demonstrated

that the size spectrum can switch from a linear to a wave-like shape when predators feed over a

relatively narrow size range of prey.
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In these studies, the balance between mortality, growth, reproduction, metabolism, etc. at

all body sizes is formalized by using the Mckendrick-von Foerster partial differential equation

[15]. Partial differential equation models (PDE models) enable the incorporation of detailed

processes with various parametric functions. Although the R package “mizer” developed by

Scott et al. [8] has been widely used for implementing size-based models, it may not always be

easy or convenient for users to couple processes such as environmental stochasticity to PDE

models in obtaining fits to the real situations of specific marine communities [16]. Matrix

models can be more easily manipulated than PDE models in modeling such processes because

they use simple discrete states [16]. Matrix algorithms can also be executed within shorter run-

ning times than continuous models with numerous loop iterations. Because real data are

always recorded in discrete form, matrix models can be calibrated and validated with real data

points.

In marine ecosystems, body size correlates with various biological and physiological pro-

cesses; for example, the vital rates at the individual level, including encounter rate, swimming

speed, reproduction rate, metabolic rate, and natural mortality rate, all ubiquitously scale allo-

metrically with body size [7, 17–20]. Such processes are considered to be the main drivers that

affect the dynamics of abundance and, because they can be described by simple power law

functions of body size, they can be easily incorporated into a matrix model. Models such as the

Leslie matrix model [21] have been used in population ecology to predict population growth

and the age composition of the population. These models can provide clues for the construc-

tion of a size-structured matrix model for marine communities. Motivated by this background,

the main goal of this study was to develop a simple and widely applicable size-structured

matrix model that can easily be modified and extended to suit different applications in flexibly

investigating community- and population-level dynamics.

In the following, we first present matrices corresponding to the basic processes of commu-

nity dynamics to construct a unified matrix model. We then provide several numerical simula-

tion examples in which the values of the model parameters are varied separately in a range

around their reference values. The effects of fishing on stationary size spectra are then pre-

dicted under various fishing scenarios. Finally, we discuss the model structure and behavior of

the observed size spectra and provide some modifications of the model for future applications.

Materials and methods

Size-structured community dynamics

Consider a size-structured community (e.g., marine community) in which larger organisms

prey on smaller organisms (in this paper, we do not discriminate the identities of species). We

begin construction of the matrix model by discretizing individuals with different body masses

into k equally-spaced logarithmic size classes. The community structure is represented as a col-

umn vector n(t) = (n1(t),n2(t),. . .,nk(t))T, where the superscript T denotes vector or matrix

transposition. Each value in the vector represents the number of individuals per unit volume

measured in ind./m-3 within the class at time t (for brevity, in the following we omit writing (t)
for the individual size classes). Let m = (m1,m2,. . .,mk)

T be the column vector describing the

body masses of individuals in each size class. The body mass axis is discretized using a mass

ratio of successive size classes δ: mi+1 = miδ, where i = 1,2,. . .,k. In our model, the community

is divided into two groups: the background resources’ group, which has body masses m1 and

produces the only input to the community; and the consumers’ group, which has body masses

belonging to [m2,mk].

The model, presented graphically in Fig 1, shows four processes that affect the number of

individuals in each size class per unit time Δt. The dynamics of community size structure can
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be described in terms of these basic processes of predator–prey interaction, reproduction,

metabolism, and non-predation mortality. As described below, the model presented here relies

on empirical knowledge (e.g., allometric relationships) between body mass (m) and the rates

or quantities of organism physiological phenomena (y) according to simple power functions

y = amb, where a is a coefficient and b is a scaling exponent. Our model is designed based on a

mass balance in the community (i.e., no biomass is wasted). Because materials such as dead

animals, fecal pellets, and metabolites from consumers constitute the assimilable inorganic

and organic nutrients needed for phytoplankton growth, we assume that all egested materials

(i.e., undigested materials, metabolites, carrion, etc.) are assimilated to form new resources

through microbial degradation such that a simple modeling of the dynamics of resources is

possible. To maintain the mass balance, an imaginary size class k+1 is introduced to remove

the increased biomass in size class k induced by predation.

Fig 1. Graphic representation of the size-structured matrix model. Nodes represent size classes; larger circles depict larger body mass. Background resources are

assumed to occupy only the first size class and consumers to range from the second to the kth size class. Thin arrows indicate flow of matter and energy expressed in

mass (E, C, F, W) or number of individuals (P, D, Y) between size classes through each process per unit time Δt, while thick arrows indicate transfer of individuals (G, B,

L) between size classes owing to increase or decrease in body mass. Individuals can grow or move down no more than a single size class per unit time Δt. (a) Predator–

prey interactions: in a predation process, several individuals Pi,j in prey size class j are eaten by individuals in predator size class i. Undigested materials Ei are egested

and recycled to resources in size class 1. After feeding, a certain fraction of individuals Gi in predator size class i grow to the next size class i+1 owing to mass increase.

For individuals in the largest size class k in this community, we assume that no predation occurs (i.e., Pi,k is zero for all i). Instead, we assume that all individuals growing

from size class k into an imaginary larger and empty size class k+1 out of this community die and the carrion Ck+1 is recycled to resources. (b) Reproduction: the first

size class of the consumers’ group (i.e., size class 2) is represented as the starting point of consumers as eggs or larvae. Males and females reproduce at the same

reproduction rate Fi, producing eggs into size class 2 (females) and excretive matters (semen) recycled to resources (males). As a consequence, a certain fraction of

individuals Bi in parent size class i decrease their body mass and are transferred to the next-lower size class i–1. (c) Metabolism: individuals within size classes 2 to k
produce metabolites that are recycled to resources at a rate Wi, with a certain fraction Li transferred into the next-lower size class owing to loss in body mass. (d) Non-

predation and fishing mortality: several individuals Di die owing to natural (non-predation) mortality; meanwhile, their carrion is recycled to resources. Fishing removes

some individuals Yi from each size class i. These catches are consumed by humans and eventually reintegrated into the recycling process and back into the ecosystem as

nutrients to resources. In our model, they are recycled in size class 1 while maintaining the mass balance.

https://doi.org/10.1371/journal.pone.0198415.g001
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Assuming that the basic processes in Fig 1 are independent of each other, the column vector

n(t+Δt) representing the community structure at time t+Δt is given by

nðt þ DtÞ ¼ nðtÞ þ DnP þ DnR þ DnQ þ DnU ð1Þ

where ΔnP, ΔnR, ΔnQ, and ΔnU are column vectors (DnP ¼ ðDnP
1
;DnP

2
; . . . ;DnP

kÞ
T
,

DnR ¼ ðDnR
1
;DnR

2
; . . . ;DnR

k Þ
T
, DnQ ¼ ðDnQ

1 ;DnQ
2 ; . . . ;DnQ

k Þ
T
, and

DnU ¼ ðDnU
1
;DnU

2
; . . . ;DnU

k Þ
T
) describing shifts in the number of individuals within each size

class as a result of predator–prey interactions (P), reproduction (R), metabolism (Q), and non-

predation, and fishing mortality (U), respectively.

The matrix model

Predator–prey interactions. In each predation event, we assume that predators have a

preferred predator–prey mass ratio (PPMR) based on the rule “bigger ones eat smaller ones”

[22]. A size selectivity matrix S by a predator in size class i on a prey in size class j composed of

size preferences φi,j (i>j) and zeros is described as follows:

S ¼

0 0 0 � � � 0

φ
2;1

0 0 � � � 0

φ
3;1

φ
3;2

0 � � � 0

..

. ..
. . .

. . .
. ..

.

φk;1 φk;2 φk;3 � � � 0

0

B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
A

ð2Þ

where φi,j is given by a function that follows a lognormal distribution on the ratio of body mas-

ses of predator and prey, mi and mj, respectively [22]. Although resources are only placed at

the first size class [m1] in our model, we assume that they also extend to an imaginary size

range [m−s,m0] (which is divided into logarithmically equally spaced s+1 size classes, and

m0<m1) in calculating φi,j to ensure that small consumers can feed on preferred prey smaller

than m1. In this case, both small and large consumers have sufficiently wide ranges of potential

prey size. If we assume that the biomass within each imaginary resource size class is equal (i.e.,
the resource spectrum is characterized by a constant slope –1), then we can calculate φi,1 as the

sum of φi,x over all integers x in the range [–s, 1]. Thus,

φi;j ¼

exp � ln
bimj

mi

� �2

=2s2

" #

if j > 1

X1

x¼� s
exp � ln

bimx

mi

� �2

=2s2

" #

if j ¼ 1

ð3Þ

8
>>>>><

>>>>>:

where βi is the most preferred PPMR for a predator individual in size class i given by umt
i , indi-

cating that if τ is equal to 0, then βi is a constant value; otherwise, βi scales allometrically with

mi, and σ is the width (standard deviation) of this function, determining the range of prey sizes

that a predator individual prefers. (For the list of parameter definitions, see Table 1.)

Suppose that the volume of water searched by a predator per unit time Δt is expressed as an

allometric function of predator body mass γmpΔt [25] and that the encounter rate of each

predator individual to prey in size class j is also proportional to the number of individuals in

prey size class j. Then, the total number of individuals in a prey size class j eaten by predators
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(∑iPi,j) per unit time Δt can be expressed as

DnP� predation ¼

X

i
Pi;1

X

i
Pi;2

..

.

X

i
Pi;k� 1

X

i
Pi;k

0

B
B
B
B
B
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B
B
@
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A

¼ NSTVnDt

¼

0 n1gm
p
2φ2;1

� � � n1gm
p
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p
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p
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p
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..
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Dtð4Þ

where N = diag(n), ST is the transpose of matrix S, and V ¼ diagðgmp
1; gm

p
2; . . . ; gmp

kÞ, describ-

ing the search rate of each predator individual in size class i. Note that the elements on the

Table 1. Parameter values used in the basic model simulation case.

Parameter Definition value Source

γ Factor of searching rate 600 m-3 yr-1 g-p [23]

p Exponent of searching rate 0.75 [13]

υ Factor of preferred PPMR 100 [22]

Τ Exponent of preferred PPMR 0 [22]

σ Width of size preference 1.3 [22]

v Factor of standard metabolic rate 2.4 yr-1 g1-q [13]

q Exponent of standard metabolic rate a 0.75 [24]

μ0 Factor of non-predation mortality 0.6 yr-1 g-d [11]

d Exponent of non-predation mortality 0.25 [19]

ks Factor of carrying capacity a 0.0015 Modified from [4]

f Exponent of carrying capacity b 1.15 Modified from [4]

c Factor of reproduction rate c 10 yr-1 g1-r Estimates from [6]

r Exponent of reproduction rate d 0.75

α Sex ratio e 0.5 Arbitrary

e Assimilation efficiency f 0.6 [13]

q0 Catchability coefficient 0.1 Arbitrary

Δt Time step g 0.001 yrs

δ Mass ratio of successive size classes 1.5

aAdjusted from the factor of natural mortality rate in [4] to output a linear size spectrum.
bAdjusted from the exponent of natural mortality rate in [4] to output a linear size spectrum.
cEstimated from the fraction of the assimilated energy allocated to reproduction.
dWe use the value r = p = q = 0.75 assuming that the reproduction rate is proportional to the searching rate and the standard metabolic rate.
eThe proportion of females (sex ratio) is assumed to be constant across all size classes, i.e., α1 = α2 = � � � = αk.
fIndividuals in each size class i are assumed to have the same assimilation efficiency, i.e., e1 = e2 = � � � = ek.
gIt should be ensured that the probability of each individual growing up to its next size class can be no larger than one in each time step.

https://doi.org/10.1371/journal.pone.0198415.t001
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diagonal matrix N represent the number of prey individuals in each size class, whereas the

entries of n represent the number of predator individuals.

On the other hand, the total biomass of individuals assimilated by predators in size class i
with an assimilation efficiency ei (ei∑jmjPi,j) per unit time Δt is calculated as

e1

X

j
mjP1;j

e2

X

j
mjP2;j

e3

X

j
mjP3;j

..

.

ek
X

j
mjPk;j
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B
@
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C
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A
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A

Dtð5Þ

where E = diag(e1,e2,. . .,ek), whose entry ei describes the assimilation efficiency of individuals in

each predator size class i and M = diag(m) represents the prey body mass. Note that, in this case,

the diagonal matrix N represents the number of predator individuals, while the vector n represents

the number of prey individuals, which is different from the case of Eq (4). The first entry of the

product ENVSMn becomes zero, which means that resources conceptually do not prey on others.

Increases in the body mass of predators in size class i owing to assimilation of prey can

cause a certain number of predator individuals Gi to grow to the next size class i+1. According

to the discretization of the McKendrick-von Foerster equation (see S1 File), we assume that

Gi = ei∑jmjpi,j/(mi+1 − mi), which means that the number of individuals transferred to size class

i+1 is calculated by dividing the total biomass assimilated in size class i by the difference in

individual masses between the neighboring size classes i and i+1. Then,

G1

G2

G3

..

.

Gk
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B
@
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A
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0 0 0 � � � 0

e2n2gm
p
2φ2;1

m1

m3 � m2

0 0 � � � 0

e3n3gm
p
3φ3;1

m1

m4 � m3

e3n3gm
p
3φ3;2

m2

m4 � m3

0 � � � 0

..

. ..
. . .

. . .
.

0

eknkgm
p
kφk;1m1
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Dtð6Þ

where matrix ΔM+ = diag(m2 − m1,m3 – m2,. . .,mk+1 − mk) describes the mass difference between

the upper (i.e., subscript “+”) size class i+1 and size class i, and DM� 1

þ
is the inverse of matrix ΔM+.
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According to the growth process per unit time Δt in Fig 1A, Gi−1 individuals from size class

i–1 enter size class i, while Gi individuals in size class i leave size class i, resulting in a net

change in the number of individuals in each size class i given of Gi−1 – Gi. Additionally, there is

an increase in the number of individuals in size class 1 corresponding to the recycling of car-

rion Ck+1 from imaginary size class k+1, which is given by Ck+1/m1 (or Gkmk+1/m1). As the

dimension of Ck+1 is mass per unit time, division by m1 converts the mass into the number of

resources. Thus, shifts in the number of individuals (ΔnG) caused by growth and the recycling

of carrion from size class k+1 per unit time Δt are expressed as follows:

DnG ¼ ðTg þ TcÞDM� 1

þ
ENVSMnDt ð7Þ

where

Tg ¼

� 1 0 0 � � � 0

1 � 1 0 � � � 0

0 1 � 1 � � � 0

..

. ..
. . .

. . .
. ..

.

0 0 0 � � � � 1

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

ð8Þ

is a transfer matrix, with entries –1 on the diagonal and 1 on the subdiagonal, for transferring

Gi to the next size class, and

Tc ¼

0 0 0 � � �
mkþ1

m1

0 0 0 � � � 0

0 0 0 � � � 0

..

. ..
. . .

. . .
. ..

.

0 0 0 � � � 0

0

B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
A

ð9Þ

is a matrix to transfer carrion from size class k+1 to be recycled in size class 1.

In addition to the assimilated biomass in Eq (5), the total undigested (unassimilated) mate-

rials Ei per unit time Δt of each size class i is given by (1−ei)∑jmjPi,j. This can be equivalently

written in matrix form as (I−E)NVSMn, where I is a unit matrix with ones on the diagonal

and zeros elsewhere. For the recycling of these undigested materials into resources, a new tran-

sition matrix T1 to size class 1 is introduced:

DnE ¼ T1M� 1

1
ðI � EÞNVSMnDt ð10Þ

where ΔnE denotes the increase in the number of resources caused by recycling of undigested

(unassimilated) materials per unit time Δt,

T1 ¼

1 1 1 � � � 1

0 0 0 � � � 0

0 0 0 � � � 0

..

. ..
. ..

. . .
. ..

.

0 0 0 0 0

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

; ð11Þ

and M� 1

1
is the inverse of matrix M1 = diag(m1,m1,. . .,m1). Multiplying (I−E)NVSMn by M� 1

1
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converts Ei in Fig 1A, whose dimension is mass per unit time, into number of resources; multi-

plication by T1 then transfers all undigested materials from each size class i to size class 1.

In conclusion, by combining Eqs (4), (7) and (10), we obtain ΔnP as the shift in numbers

obtained from the predator–prey interaction process per unit time Δt:

DnP ¼ � DnP� predation þ DnG þ DnE

¼ ð� NSTVþ ððTg þ TcÞDM� 1

þ
Eþ T1M� 1

1
ðI � EÞÞNVSMÞnDt

ð12Þ

Reproduction. As depicted in Fig 1B, reproduction occurs only in the size range [m3,mk].

We assume that the mean proportions of females and males in each size class i are αi and 1−αi,
respectively. The reproduction rate Fi is given by cmi

rDt, where c is the total biomass of eggs

produced by unit weight and r is the scaling exponent, which does not differ between sexes.

Newborn individuals (eggs or larvae) are placed in size class 2 and excretive matter (semen)

is recycled into size class 1 as newly input resources, thereby causing an increase in the num-

bers of individuals in size classes 1 and 2 as follows

DnF ¼ ðT1M� 1

1
ðI � AÞ þ T2M� 1

2
AÞRnDt ð13Þ

where A = diag(α1,α2,. . .,αk) is a sex ratio matrix, R ¼ diagð0; 0; cmr
3
; . . . ; cmr

kÞ is the repro-

duction rate matrix, T2 is a new matrix for transferring eggs into size class 2, where

T2 ¼

0 0 0 � � � 0

1 1 1 � � � 1

0 0 0 � � � 0

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � 0

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

; ð14Þ

and M� 1

2
is the inverse of matrix M2 = diag(m2,m2,. . .,m2).

Assuming that Bi individuals per unit time Δt are transferred from size class i to the next-

lower size class i–1 owing to mass decrease by reproduction and is calculated using

cmr
i ni=ðmi � mi� 1Þ. The loss in the number of individuals in size class i as a result of transfer to

size class i–1 and the gain in the number of individuals in size class i as a result of transfer

from size class i+1 lead to a net change −Bi+Bi+1 in the number of individuals in each size class

i be given by

DnB ¼ TT
g DM� 1

�
RnDt ð15Þ

where ΔnB denotes the shift in the number of individuals as a result of this process and DM� 1

�

is the inverse of matrix ΔM_ = diag(m1−m0,m2−m1,. . .,mk−mk−1) (where m0 = 0) that describes

the mass difference between size class i and the lower (hence, the subscript “−”) size class i–1.

Therefore, the column vector ΔnR is given by adding Eqs (13) and (15):

DnR ¼ DnF þ DnB

¼ ðT1M� 1

1
ðI � AÞ þ T2M� 1

2
Aþ TT

g DM� 1

�
ÞRnDt

ð16Þ

Metabolism. Individuals must pay metabolic costs to maintain body structure and activ-

ity. Standard metabolic rate is recognized as an allometric function of body mass: vmqΔt [24].

As shown in Fig 1C, the model of metabolism is similar to that of reproduction. Although
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resources do metabolize, the metabolites are eventually recycled back to their own size class,

resulting in no variation in the number of individuals. Therefore, for simplicity only the meta-

bolic costs of the consumers’ group are considered in our model. Recycling of these metabo-

lites leads to an increase in the number of individuals in size class 1 as follows:

DnW ¼ T1M� 1

1
QnDt ð17Þ

where Q ¼ diagð0; vmq
2; . . . ; vmq

kÞ is the metabolic rate matrix whose diagonal elements vmq
i

are the metabolic rates Wi of the individuals in size class i.
If we assume that number of individuals transferred from size class i to the next-lower size

class i–1 is given by Li ¼ vmq
i ni=ðmi � mi� 1Þ, then the net change −Li+Li+1 in the number of

individuals in each size class i per unit time Δt is given by

DnL ¼ TT
g DM� 1

�
QnDt ð18Þ

where ΔnL denotes the shift in the number of individuals as a result of this process.

Therefore, the resulting column vector ΔnQ is the sum of Eqs (17) and (18):

DnQ ¼ DnW þ DnL

¼ ðT1M� 1

1
þ TT

g DM� 1

�
ÞQnDt

ð19Þ

Non-predation and fishing mortalities. The causes of non-predation mortality include

disease, competition, senescence, and other natural factors. McCoy and Gillooly [19] stated

that instantaneous natural mortality rate scales allometrically with body mass as μ0m−d. How-

ever, the predation mortality for the largest individuals in our model is zero, while non-preda-

tion mortality is also naturally very low, resulting in an excessive accumulation of individuals.

Increasing or decreasing the mortality of top-predators can cause a top-down cascade that

leads to a change in the size distribution of their prey individuals and produces a wave-like bio-

mass spectrum [26].

To obtain a linear size spectrum, we modulate the mortality of large individuals by intro-

ducing a density-dependent mortality as in Benoı̂t and Rochet [4] but with the density-depen-

dent mortality increasing with the ratio between the number of individuals and the carrying

capacity. We assume that the carrying capacity is size-based and given by ksm−f, where ks is the

carrying capacity factor indicating the maximum number of individuals that the community

can support per unit mass and f is the scaling exponent. Consequently, the non-predation

mortality of each individual in size class i becomes niz0m� zi , where z0 = μ0/ks and z = d−f.
Thus, the decreased number of individuals Di owing to non-predation mortality (ΔnD−loss)

in each size class i per unit time Δt is

DnD� loss ¼ NDnDt ð20Þ

where the product ND ¼ diagð0;n2z0m� z2
; . . . ; nkz0m� zk Þ, whose diagonal element niz0m� zi

gives the non-predation mortality rate of each individual in size class i.
The recycling of carrion from each size class i yields new production (ΔnD−recycle) in size

class 1:

DnD� recycle ¼ T1M� 1

1
NDMnDt ð21Þ

where the entries of the product NDMn give the biomass of the carrion of each size class i.
Fishing can affect community structures in marine ecosystems. Several community size

spectrum models and trait-based size spectrum models have been used to investigate the effect
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of fishing [4, 11–13], and fishing mortality can be easily included in this matrix model to

examine the effects of different fishing patterns on the size spectrum. Similar to the process of

non-predation mortality, the decrease in the number of individuals as a result of fishing is

given as

DnY � remove ¼ HnDt ð22Þ

where H = diag(h1,h2,. . .,hk) is the fishing mortality rate matrix, whose diagonal element

gives the fishing mortality rate of each individual in size class i. The recycling of these

catches (ΔnY−recycle) through human consumption into size class 1, as depicted in Fig 1D, is

then expressed as

DnY � recycle ¼ T1M� 1

1
HMnDt ð23Þ

Finally, combining Eqs (20), (21), (22) and (23), we obtain:

DnU ¼ � DnD� loss þ DnD� recycle � DnY � remove þ DnY � recycle

¼ ð� ND � Hþ T1M� 1

1
ðNDþHÞMÞnDt

ð24Þ

Unified size-structured matrix model. The overall matrix model for expressing size-

structured community dynamics can be obtained by adding Eqs (12), (16), (19) and (24):

nðt þ DtÞ ¼ nðtÞ þ DnP þ DnR þ DnQ þ DnU

¼ nðtÞ � ðNSTV � ðTg þ TcÞDM� 1

þ
ENVSM þ NDþH

� T1M� 1

1
ððI � EÞNVSM þ ðI � AÞRþQþ ðNDþHÞMÞ

� T2M� 1

2
AR � TT

g DM� 1

�
ðRþQÞÞnðtÞDt

ð25Þ

Parameter settings for numerical simulation

The egg size of marine fish is fairly constant among species and lies predominantly within a nar-

row range around 1 mg [27]. Thus, we set the mass of the first consumer size class as m2 = 0.001

g. To obtain a smooth line, we use a small value for the mass ratio of successive size classes, δ.

The size range of imaginary resources [m−s,m0] is also discretized using the ratio δ: mx+1 = mxδ,

where x = −s, −s + 1. . .,0. This range roughly extends from m−s = 1.36×10−10 g to m0 = 4.44×10−4

g, which also covers very small phytoplankton cells [28]. To cover the size range of large adult

fish in the ocean, the size axis is discretized over 50 size classes ranging from m1 = 6.67×10−4 g to

mk = 2.83×105 g. We assume that the total biomass of the community is 0.5 g/m-3 and run the

model starting from an initial condition ni ¼ 0:01m� 1
i until it reaches a stationary state for each

numerical simulation. The simulations are performed in Matlab (see code in S2 File). The

steady-state conditions for size spectra are achieved within a 40-year model run (i.e., Eq (25)). It

has been determined that the results do not depend on the initial number of individuals within

each size class.

The other parameter values used in the basic model simulation case are listed in Table 1.

Most of the parameter values are based on previously published size-based models. Parameters

such as the exponents of the searching and reproduction rates are given as 3/4 based on the

fact that metabolic rate scales to the 3/4 power of body size. The value of the reproduction rate

factor c is set such that the ratio between the reproduction and assimilation rates falls within

the reference range [6]. The values of factor ks and the exponent f of the carrying capacity are

derived from modified values of z0 and z in Benoı̂t and Rochet [4].
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Increasing the mass ratio δ of successive size classes leads to a decrease in the number of

size classes; if the number is reduced by half, then it is necessary to increase the number of

individuals in each size class to twice the number of individuals in the basic case to keep the

total biomass in the community constant. In this case, the carrying capacity factor ks should

also be doubled to support the abundance of individuals. As shown in S1 Fig, varying the value

of δ does not significantly change the size spectrum. Only the egg size class (i.e., size class 2)

and its adjacent size classes depart slightly from the linear size spectrum because the total

energy allocated to reproduction from consumers decreases with increasing value of δ. The

size spectra obtained with different values of time step Δt are exactly the same (S1 Fig), imply-

ing that the time step does not change the dynamics of size spectra. A mass ratio δ of successive

size classes larger than 1.5 will allow the model to run at a daily or a larger time step (S1 Fig).

Size-dependency of rates in each process

Using the parameter values in Table 1 results in a mass-specific growth and reproduction rates

that decrease with body mass with slopes close to –1/4 (S2 Fig) on a log–log scale. The log–log

plot of predation mortality rate versus body size is nearly linear, with a slope close to –1/4

within the size range between 10−3 and 103 g. For individuals larger than 103 g, predation mor-

tality decreases sharply with body size owing to the decline in predator individuals (S2 Fig).

The logs of non-predation mortality rate and body size show a nearly linear relationship, with

higher and lower mortality rates for smaller and larger individuals, respectively, although with

a slope that is slightly shallower than –1/4 (S2 Fig). This may be caused by carrying capacity

effects.

Results

Steady state

Using the reference values of the parameters in Table 1 results in a linear size spectrum with a

slope of approximately –1, which is consistent with values reported in empirical studies [4, 6]

(Fig 2).

Examples of numerical simulation

In the application shown in Fig 2, we simulated the size spectrum with the constant preferred

PPMR βi given in Table 1. However, field data show that there is a great variability in βi with

predator mass [29, 30]. Therefore, the effect of varied βi (¼ umt
i ) was investigated for τ 6¼ 0.

For a plausible range of τ (−0.2� τ� 0.2), the size spectra are essentially identical to the basic

case spectrum (Fig 3A). An extreme range of τ (−0.9�τ�0.9), which apparently exceeds the

plausible range obtainable in an actual situation, was also examined to obtain a clear contrast

in terms of the effect of τ. For υ = 105 and τ = −0.9, for which βi ranges from approximately

5×107 for small predators of mass 10−3 g to approximately 1.0 for the largest predators of mass

3×105 g, static waves appear along the size spectrum (Fig 3B). By contrast, for υ = 105 and τ =

0.9, for which βi increases with predator body mass and ranges from approximately 2×102 for

small predators of 10−3 g to approximately 8×109 for the largest predators, the resulting size

spectrum shows a slightly steeper slope (Fig 3B). Under various combinations of υ and τ, the

wavelengths of the size spectra vary (S3 Fig). For all cases the slopes range from approximately

–0.98 to –1.16 but are close to that of the basic case shown in Fig 2 (ca. –1). Thus, except for

the wavelengths along the size spectrum, PPMR does not significantly affect the size spectrum.

Reduction in the value of c or r in the reproductive rate cmr
i leads to a decrease in reproduc-

tive allocation and an eventual accumulation of large individuals, which in turn can cause the
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population of their most preferred prey to decrease through predation as a top-down effect,

resulting in the alternate propagation of opposed effects to smaller size ranges. As a result,

waves propagate through the size spectrum (S4 Fig). Size spectra with static waves emerge

when the system reaches equilibrium conditions (Fig 3C and 3D). The wavelength depends on

PPMR [31], with observed wavelengths approximately equal to or less than 2log10βi on a log–

log scale (Fig 3C and 3D). Conversely, increasing the value of c or r leads to a decrease in the

number of large individuals and a cut-off of the size spectrum (Fig 3C and 3D), which arises

because large individuals convert more energy into reproduction, leaving less energy available

for growth.

The standard metabolic rate vmq is smaller than both the predation and reproduction rates

and therefore might have a weak effect on the size spectrum. To show how the size spectrum

can be affected by the standard metabolic rate, we set the factor v at different levels for compar-

ison. For low values of v (Fig 3E), the standard metabolic rate of each individual in size class i
is very small, and therefore changing the exponent q has no apparent effect on the size spec-

trum. For large values of v, however, varying q changes the shape of the size spectrum (Fig 3F).

A size spectrum with static waves with wavelengths less than 2log10βi appears when q decreases

from the reference value 0.75 to a value of 0.25. Before reaching an equilibrium state, waves

travel from small to large individuals (S4 Fig). An increase in q produces a size spectrum with

a cut-off in the range of large body masses.

Effect of fishing on the size spectrum

Two types of fishing patterns were compared: (i) an unbalanced fishing pattern in which indi-

viduals larger than 104 g are caught with a constant fishing mortality q0F0, where q0 is the

catchability coefficient and F0 is the fishing intensity coefficient; and (ii) a balanced fishing pat-

tern in which individuals larger than 10 g are caught in proportion to their natural

Fig 2. Linear size spectrum. Simulated size spectrum at steady state (dotted line) using reference parameters in

Table 1 and a regression line as a function of log body size (solid line; log10[abundance] = −0.9959×log10[body mass]

− 2.006).

https://doi.org/10.1371/journal.pone.0198415.g002
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productivity determined by the metabolic size-scaling rules [18, 32], i.e., the fishing mortality

rate for individuals in this size range is given by q0F0m� 0:25
i . The fishing mortality rate matrices

corresponding to fishing patterns (i) and (ii) are given by H1 = diag(0,. . .,0, q0F0,. . .,q0F0) and

H2 ¼ diagð0; . . . ; 0; q0F0m� 0:25
i ; . . . ; q0F0m� 0:25

k Þ, respectively (S5 Fig).

The unbalanced fishing pattern results in a more severe cut-off when the fishing intensity

coefficient F0 increases from 5 yr-1 to 50 yr-1; by contrast, the balanced fishing pattern does not

result in a cut-off of the spectrum even when the fishing intensity coefficient increases (Fig 4).

Fig 3. Simulated size spectra at equilibrium with different parameter values. Simulated size spectra using (a) plausible combinations of the factor υ and exponent

τ of PPMR, (b) extreme combinations of υ and τ, different values of (c) the reproduction rate factor c, (d) reproduction rate exponent r, (e) metabolic rate exponent q
with a small metabolic rate factor v, and (f) exponent q with a large factor v. The vertical dotted lines mark wave troughs or peaks and the horizontal distance between

two adjacent vertical dotted lines is the wavelength. The horizontal arrows indicate the length of 2log10βi.

https://doi.org/10.1371/journal.pone.0198415.g003

Fig 4. Predicted impacts of fishing. Effects of unbalanced and balanced fishing on the size spectrum at different fishing intensity coefficient levels: (a) F0 = 5 yr−1, (b)

F0 = 10 yr−1, (c) F0 = 30 yr−1, and (d) F0 = 50 yr−1.

https://doi.org/10.1371/journal.pone.0198415.g004
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Yields from the balanced fishing pattern are much higher than those of the unbalanced fishing

pattern (S6 Fig).

Discussion

We developed a size-structured matrix model to express community dynamics in which each

process is modeled by simple body size power functions. The model can be seen as a discretiza-

tion of the Mckendrick-von Foerster partial differential equation that produces a diffusion of

growth, i.e., during each time step, several individuals grow up to the next-higher size class

while other individuals remain in the same size class. Thus, the basic difference between our

matrix model and the continuous Mckendrick-von Foerster equation lies in its ability to incor-

porate growth variation in individuals within a size class; in a real process, this diffusion is

appropriate because individuals with the same size in a given population often differ in growth

rate [33]. The main advantage of our model lies in its flexibility in modeling each process. In

addition, the model can be run on a daily or larger time step Δt by increasing the mass ratio δ
of successive size classes. In this case, the running time for numerical simulations required by

our matrix model will be much shorter than that of PDE models as a result of the reduced

number of size classes and loop iterations.

Boundary conditions imposed in upper and lower size classes can affect the shapes of size

spectra. For the upper boundary, the introduction of senescence mortality in previous models

[14, 34–36] led to a sharp increase in the mortality of large individuals. As a result, large size

classes depart from the linear size spectrum, resulting in a downwardly curved stationary size

spectrum and the emergence of a cut-off. However, field data support the assertion that natural

mortality for organisms is negatively correlated with body mass [19, 37]. We therefore adopt

an allometric natural mortality rate against body mass [11] based on empirical information.

Our model is developed with a type I functional response, which can produce an unlimited

growth of predators and an unrealistic increase in the number of these individuals. Introduc-

ing a density-dependent effect to the allometric natural mortality rate can help control the

increase in predator individuals, thereby improving the stability of size spectra.

For the lower boundary, the growth and reproduction of background resources based on

the processes of nutrient uptake and photosynthesis are not explicitly modeled in our study;

nevertheless, our model can successfully reproduce linear size spectra with slopes close to –1

(Fig 2). The size spectrum produced by the basic case does not depart from a linear shape for

nearly all size classes, possibly because we introduced an imaginary size range to allow con-

sumers to have a common food availability level.

Under the mass balance assumption, variation in the biomass (and abundance) of back-

ground resources is controlled by the difference between the rates of recycling of biomass

egested from consumers and consumption of resource biomass by predators. In our model,

the community can reach equilibrium conditions even under extreme parameter values,

although size spectra with cut-offs and/or static waves are frequently observed in such cases

(Fig 3). If the biomass of resources is assumed to be constant [14, 31], infinite oscillations

occur when the non-predation mortality rate is set to zero, while only transient oscillations

emerge in this case under the mass balance assumption (S7 Fig). Under the constant resource

assumption, there are some cases in which the total biomass of the community will continue to

decrease, eventually leading to a collapse of the community under some extreme parameter

value assumptions, e.g., r = 0.25 (S8 Fig). Owing to the mass balance assumption, the effect of

extreme parameter values on the size spectrum can be alleviated. If model parameters are var-

ied over reasonable ranges, similar results can still be obtained (S8 Fig). However, because car-

bon is exchanged and recycled throughout the biosphere and the mass balance in a local
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community might not always be retained, it will be important to examine the consequences of

various types of assumptions on background resources in future studies that explore the

dynamics of real marine communities.

Maury et al. [6] found that their model produces unstable oscillations when the reproduc-

tive investment of females is extremely low. Increasing the value βi of the most preferred

PPMR or decreasing the feeding kernel width σ can also make the size spectrum unstable and

generate traveling waves (e.g., [31]). Unlike these previous studies, neither infinite oscillations

nor traveling waves appeared in our study. In addition to the mass balance assumption dis-

cussed above, this may be because of the presence of growth diffusion in our model, which can

help stabilize the size spectrum [14].

Thiebaux and Dickie [38] mathematically modeled a predator biomass spectrum with a

parabolic dome and predicted that the related prey biomass spectrum would also become a

parabola as a result of energy transfer between trophic levels, which explained their corre-

sponding wave-like size spectra. Our results suggest that such waves are caused by the accumu-

lation of large individuals, as a top-down cascade can be stimulated by an increase in the

number of predators with mass mk in the largest size class suppressing their prey individuals

with mass mk/βk, which in turn releases individuals with mass mk=b
2

k from predation. This

should result in a wavelength approximately equal to 2log10βi on a log–log scale; however, our

results primarily produced wavelengths less than 2log10βi. This may have been caused by

growth rates that differed between predators and their preferred prey: in this case, because

small individuals travel faster than large individuals along the size spectrum, the distance

between the peak of one wave and the next-lower trough would become smaller than PPMR.

Wave-like size spectra have also been observed in nature. For example, Gaedke [39]

reported wave-like oscillations in the seasonal distribution of the biomass of individuals rang-

ing from bacteria to crustaceans. These results imply that a simple linear size spectrum will not

be sufficient to describe the dynamics of actual marine communities. Wave-like oscillations

also need to be recognized as important indicators of ecosystems, and if simple linear regres-

sion analysis alone is relied upon, the presence of cut-offs and/or waves might result in inade-

quate slope estimates. The shape of a size spectrum should therefore be looked at closely in

revealing the impacts of human activities and environmental changes.

To show the applicability of our model, a short example concerning the fishing effects on a

marine community was enumerated (see the last part of Results). The present matrix model

can be easily expanded to enable investigation of the effects of various other situations, e.g., sto-

chastic or periodic environmental changes such as water temperature and productivity, which

vary with season [40]. Other processes such as seasonal reproduction and long-term environ-

mental changes can also be coupled to the model to investigate the response of marine com-

munity size spectra at large scales.

The model can be easily modified to take species identity into consideration and include

population demography. To achieve this, we can replace the column vector n(t) with a new

column vector, e.g., n(sp.1)(t) to represent the structure of species 1. For instance, in the preda-

tor–prey interaction process the total number of individuals of species 1 in each size class

eaten by predators of other species h (h ¼ 1; 2; . . . ; ‘) per unit time Δt can be expressed as
Xh¼‘

h¼1
Nðsp:hÞS

Tθðsp:h;1ÞVn ðsp:1Þ, where N(sp.h) is the abundance matrix of species h and θ(sp.h,1) is a

matrix representing the interaction strength between species h and 1. The elements in the

interaction strength matrix can be freely varied for application to several cases, e.g., in which

species’ prey preferences vary by prey species and size. Likewise, species-specific reproduction

can be modeled by setting the maturation and maximum sizes in each species’ abundance vec-

tor (e.g., n(sp.1)(t) = (n(sp.1)1(t), n(sp.1)2(t),. . ., n(sp.1)mature(t),. . ., n(sp.1)maximum(t))T). The
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reproduction rate for each species can then be given by AR(sp.h)n(sp.h), where R(sp.h) is a repro-

duction rate matrix of species h whose elements are modified to place the maturation, maxi-

mum, and offspring sizes within the proper size classes for the species. Other investigations

on, for instance, the impacts of various fishing patterns for different species on marine com-

munities can also be conducted through similar structural modifications of the present model.

Consequently, a three-dimensional matrix model formed by three coordinate axes, “body

mass” (x), “species” (y), and “abundance” (z), is envisioned.

An important goal for future work is to apply the model to real ecosystem. To produce rea-

sonable results, the model and parameter values in the present study can be calibrated for dif-

ferent ecosystem types based on recorded data related to the vital rates, life histories, and

behaviors of individuals within a specific community. Determining appropriate lower and

upper boundary conditions will be especially important in calibrating the model to reproduce

real-world dynamics. Real size distribution of communities obtained from research vessel data

and other sources should be compared with the simulation results derived from the calibrated

model through the use of sets of sufficiently powerful statistical measures.

Conclusion

In this paper, we demonstrated the construction of a community matrix model with several

body size power functions from individual-level processes. The model can produce stable size

spectra under various conditions. Growth diffusion, which plays a role in stabilizing size spec-

tra, is allowed in our model. When parameter values change, the model produces static waves

at equilibrium states as a result of top-down cascades or cut-offs at large size ranges caused by

reduction in energy allocated to growth or high fishing mortality.

The matrix algorithms developed in this study can reduce the computational time needed

to calculate size spectra. Increasing the mass ratio of successive size classes enables a daily or

larger time step without affecting the results. As a result of its flexibility, the model can be easily

extended or modified to explore community- or population-level dynamics.

Supporting information

S1 Fig. Influence of mass ratio and time step on the size spectrum at steady state. Normal-

ized size spectra, in which the abundance is divided by the logarithmic width of each size class,

at steady states for different values of (a) mass ratio δ of successive size classes and (b) time

step Δt.
(TIF)

S2 Fig. Size-dependent relationships used to parameterize the model. (a) Decrease in mass-

specific growth, reproduction, and metabolic rates with increasing size. (b) Decrease in preda-

tion mortality, and non-predation mortality rates with increasing size.

(TIF)

S3 Fig. Effects of varying PPMR on the size spectrum. Simulated size spectra at steady state

for different combinations of factor υ and exponent τ of PPMR.

(TIF)

S4 Fig. Examples of transient oscillations prior to reaching equilibrium. When (a) the

reproduction rate factor c is set to 0.1 and (b) the metabolic rate factor v and exponent q are set

to 5 and 0.25, respectively, the model produces transient oscillations until the system reaches a

stationary state. Dotted lines represent the waves propagating through the spectrum, while

solid lines represent the stationary states (i.e., static waves).

(TIF)
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S5 Fig. Fishing mortality. Relationship between body mass and fishing mortality for four dif-

ferent fishing intensity coefficients F0 under unbalanced and balanced fishing patterns.

(TIF)

S6 Fig. Yields from the two fishing patterns under different fishing intensity coefficients.

(TIF)

S7 Fig. Comparison of equilibrium and non-equilibrium states. When the non-predation

mortality rate factor μ0 is set to zero, (a) static waves appear under mass balance consumption,

while (b) traveling waves emerge under constant resource assumption. Solid line represents

the steady state and dotted lines represent waves that change over time.

(TIF)

S8 Fig. Examples of simulated size spectra with a constant background resource. Different

values of (a) the reproduction rate factor c, (b) the reproduction rate exponent r, (c) the meta-

bolic rate exponent q with a small metabolic rate factor v, and (d) the exponent q with a large

factor v are used for simulations. Solid lines represent size spectra obtained from running the

system to steady state, while dotted lines represent collapsed communities that will never reach

equilibrium.

(TIF)

S1 File. Calculating the number of individuals Gi and Bi.

(DOCX)

S2 File. Matlab code.

(DOCX)
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