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Abstract
A series of models of malaria-mosquito-human interactions using the Lumped Age-Class technique
of Gurney & Nisbet are developed. The models explicitly include sub-adult mosquito dynamics and
assume that population regulation occurs at the larval stage. A challenge for modelling mosquito
dynamics in continuous time is that the insect has discrete life-history stages (egg, larva, pupa &
adult), the sub-adult stages of relatively fixed duration, which are subject to very different
demographic rates. The Lumped Age-Class technique provides a natural way to treat this type of
population structure. The resulting model, phrased as a system of delay-differential equations, is
only slightly harder to analyse than traditional ordinary differential equations and much easier than
the alternative partial differential equation approach. The Lumped Age-Class technique also allows
the natural treatment of the relatively fixed time delay between the mosquito ingesting Plasmodium
and it becoming infective. Three models are developed to illustrate the application of this approach:
one including just the mosquito dynamics, the second including Plasmodium but no human dynamics,
and the third including the interaction of the malaria pathogen and the human population (though
only in a simple classical Ross-Macdonald manner). A range of epidemiological quantities used in
studying malaria such as the vectorial capacity, the entomological inoculation rate and the basic
reproductive number (R0) are derived, and examples given of the analysis and simulation of model
dynamics. Assumptions and extensions are discussed. It is suggested that this modelling framework
may be a natural and useful tool for exploring a variety of issues in malaria-vector epidemiology,
especially in circumstances where a dynamic representation of mosquito recruitment is required.

Background
The malaria pathogen can be combated either in its
human host or mosquito vector and both strategies have
received enormous attention over the years. The interac-
tion between Anopheles and Plasmodium is complex and
non-linear, even when the further complexities of mos-
quito-human interactions are omitted, and population
biology models have proved important in understanding
the quantitative epidemiology of the association. One

strand of work has used computer simulation models to
produce highly detailed descriptions of the interaction,
which also normally include meteorological drivers [e.g.
[1,2]]. Another strand, that dates back to the pioneering
work of Ross [3] & McDonald [4], models the interaction
using much simpler sets of equations that sacrifice detail
for mathematical tractability and analytical insight. This
second school of modelling has recently been reviewed in
this journal by Smith & McKenzie [5].
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The standard technique for developing relative simple
mathematical descriptions of mosquito-Plasmodium inter-
actions is to model the system as a set of ordinary differ-
ential equations (ODEs). This is an immensely powerful
approach, and has led to many insights into the factors
that affect malaria prevalence and control [4,6-10]. How-
ever, there are aspects of the life-cycle of the mosquito and
Plasmodium that are difficult to incorporate within an
ODE framework. First, the life history of the vector is
divided into four stages – egg, larva, pupa and adult – with
very different demographic parameters. Mortality rates are
highly likely to be stage specific, especially as adult and
juvenile stages occupy very different micro-environments,
while only the adults reproduce. The life cycle also means
that there is a time-delay between reproduction and
recruitment to the adult population. Second, mosquitoes
that take up the malaria pathogen (the exposed class) do
not immediately become infectious; there is a time delay
during which the gametocytes fuse, form oocysts, and the
sporozoites mature and migrate to the salivary glands. The
time lags associated with mosquito development and spo-
rozoite maturation are not straightforward to model using
ODEs.

These problems have been overcome or circumvented in a
number of different ways. For mosquito development the
normal practice is to ignore the juvenile stages and to
assume that adult mosquitoes emerge at a constant rate
[6] or at a rate that varies cyclically with the seasons
[7,9,11]. It is generally thought that mosquito popula-
tions are regulated by processes operating on the juvenile
stages, which might justify this assumption. However, it is
not possible to analyse fully the impact of processes that
affect juvenile recruitment such as larval habitat modifica-
tion with this type of model.

A variety of approaches have been taken to model sporo-
zoite maturation. In the simplest mosquitoes are divided
into susceptible and infectious classes (an SI model) and
the exposed class is either ignored or incorporated only
implicitly as a mortality term reducing the flow of individ-
uals from the susceptible to infectious classes [4,5]. Next
an explicit exposed class can be included (giving an SEI
model), but maturation out of the stage is assumed to be
a linear function of the density of exposed. This intro-
duces a time delay, but as individuals are "at risk" of
maturing into the infectious stage immediately they
become exposed, it only poorly replicates the relative
fixed development time observed in real infections. A
much better approach is to introduce multiple exposed
stages through which each individual has to transit before
it can become infectious [7]. The residence times in the
exposed stage is then Gamma distributed and if the mean

length is TE then the variance is /n which can be made

arbitrarily small by increasing the number of stages, n.
This much more realistic representation of the delay does
though come with the disadvantage of having to deal with
a much larger system of ODEs, for example Smith et al. [7]
used n = 64. A rather different approach, used as much for
data analysis as for population modelling, is to discretise
the problem. This may be done by writing down recur-
rence equations for the density of mosquitoes that have
been in the exposed stage for different number of days, or
the time step may not be a day but the length of the gono-
trophic cycle [12-14]. Discretisation is also how sporo-
zoite maturation is modelled in large simulation studies.
Macdonald [4,6] used delay-differential equations
(DDEs) to describe adult mosquito stages (a similar
approach is used below) and to derive different epidemi-
ological quantities (see also the recently-published ref
[15] concerning mosquito-dengue interactions)

Variation in demographic parameters and infection status
with time can both be considered problems in age-struc-
tured population dynamics where one needs to character-
ise a population not only by a series of single-variable
quantities (i.e. the number of individuals at time t in class
x) but by a series of double- or even multiple-variable
quantities (i.e. the number of individuals of age a and/or
duration of infection b at time t in class x). The mathemat-
ically natural way to approach such problems is to use sys-
tems of partial differential equations (PDEs) [16].
However, the analysis of non-linear PDEs is both analyti-
cally and numerically challenging, and these methods
have rarely been applied in vector population biology.

The Lumped Age-Class technique is an approach that
combines some of the advantages of the ODE and PDE
approaches. It assumes that the life cycle of an organism is
divided into stages during which its demographic param-
eters can be assumed to remain constant (as in the ODE
models above), but it also assumes that individuals
remain within developmental stages for fixed or mini-
mum periods of time (as in PDE models). This latter
assumption means that developmental lags can be incor-
porated in a much more natural way. There are two costs
of this added realism. First, the models have to be phrased
as systems of delay-differential equations (DDEs) that are
slightly harder to manipulate than ODEs but substantially
easier than PDEs. Second, a number of extra equations
need to be written down to describe the rate of change of
survival through certain developmental stages, though
typically this number is quite small. The Lumped Age-
Class technique was invented by Gurney & Nisbet [17-19]
and initially applied to understanding age-structured
interactions in insect intraspecific competition. Since then
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it has proved particular valuable in studying interactions
between insects and their parasitoids [20-24] and patho-
gens [25,26]. The concentration on insect systems is no
coincidence as the division of the life cycle of holometab-
olous species into eggs, larvae (and within this stage into
instars), pupae and adults with very different demo-
graphic parameters renders them very appropriate for this
approach.

In this paper a Lumped Age-Class model is developed for
a mosquito population that transmits malaria. The pri-
mary aim is to develop a flexible model that can be
applied to a variety of problems, and to demonstrate the
utility of this approach for vector-borne diseases. Concen-
trating on the population dynamics of the mosquito, a
more detailed description of the juvenile stages than is
normal is incorporated, as well as a fixed period for spo-
rozoite maturation. In contrast, only very simple assump-
tions about the dynamics of malaria in humans are made,
though the Discussion explores how this might be made
more realistic. In the next section a series of three models
of increasing complexity are described with their assump-
tions listed. In the following section the classic epidemio-
logical quantities used in studying malaria such as the
vectorial capacity, the entomological inoculation rate and
the basic reproductive number (R0) are derived. In the
penultimate section examples of using the model to study
dynamics are given and the paper finishes with a Discus-
sion. It is stressed that the aim of this article is chiefly to
introduce this modelling technique to studies of malaria
epidemiology rather than to model a specific mosquito-
Plasmodium interaction.

Methods (Model development)
Consider the simplified mosquito life cycle in Figure 1
(some of the assumptions are relaxed later). It is assumed
throughout that all population measures refer to densities
of female mosquitoes unless specifically stated. The
immature period is divided into eggs, larvae and pupae
whose densities at time t are denoted by the letters O(t),
L(t) and P(t) respectively (O for eggs or ova is used as E is
required for exposed adults). Adult mosquitoes may be
uninfected and susceptible; exposed and carrying Plasmo-
dium but not yet capable of malaria transmission; or car-
rying the Plasmodium and fully infectious; these three
stages will be denoted S(t), E(t) and I(t) in line with stand-
ard epidemiological terminology. It is assumed that the
duration of the egg, larval, pupal and exposed adult stages
are fixed and last Ti days (i ∈ {O, L, P}). All stages suffer
potential different levels of density independent mortality
at rates µi d-1 (i ∈ {O, L, P, S, E, I}) and the variables θi =
exp-TiµI are introduced to denote the probability of surviv-
ing density independent mortality during stage i. In addi-
tion it is assumed that larvae experience density
dependent mortality at a rate given by the function

g(L(t)). Adult mosquitoes lay female eggs at a rate λi d-1 (i
∈ {S, E, I}) that may vary with infection status; suscepti-
ble adults feed on humans at a rate a and pick up Plasmo-
dium at a rate c from the fraction x(t) of humans that are
infectious at time t. Note the simplifying assumption that
adults feed and oviposit concurrently; the issue of explic-
itly incorporating the gonotrophic cycle is returned to in
the Discussion. It is also assumed that all demographic
parameters are constant within a class: thus there is the
possibility of stage-specific but not age-specific adult mor-
tality.

Model 1, Mosquito with no Plasmodium
A basic model describing the mosquito dynamics alone
(that is without the exposed and infectious adult stages)
can be specified by two "balance equations" for the num-
bers of individuals entering and leaving the larval and
adult stages and a third equation for the rate of change of
survival through the larval stage.

The numbers of larval mosquito are affected by four proc-
esses: (i) they increase as eggs hatch and they decrease as
(ii) individuals mature into pupae, (iii) die because of
density-independent mortality, and (iv) die because of
density-dependent mortality. The number of eggs hatch-

Schematic model of a stage-structured mosquito population that can transmit malariaFigure 1
Schematic model of a stage-structured mosquito population 
that can transmit malaria. The mosquito life cycle is divided 
into egg, larval, pupal and adult female stages, the latter being 
subdivided into susceptible, exposed and infectious classes. In 
the models developed here stage-specific density-independ-
ent mortality is assumed to act on all stages, while the 
expected size of the mosquito population is determined by 
density-dependent processes operating in the larval stage. All 
adult classes can reproduce, though not necessarily at the 
same rate.
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ing (i) is the product of the density of ovipositing females
TO days ago, their per capita fecundity, and the probability
of living through the egg stage (θO). To calculate the num-
bers pupating (ii) first define the probability of living
through the larval stage as θLωL(t) where the first and sec-
ond terms represent density independent and dependent
mortality respectively. The second is a function of time as
it depends on possibly varying larval density and an exact
expression for this quantity is given below. The number of
larvae pupating is thus the total eggs laid TO + TL days ago
multiplied by the probability of surviving both the egg
and larval stages. The numbers of larvae succumbing to
density-independent mortality per unit time (iii) is L(t) µL
and the numbers removed by density-dependent mortal-
ity (iv) is L(t) g(L(t)). The balance equation for larval den-
sities, which contains four terms corresponding to the
four processes described above, is

Now consider the numbers of adult, susceptible mosqui-
toes. As Plasmodium infection is not yet included the den-
sity of adults is affected by only two processes; maturation
from the pupal stage and density independent mortality.
The former equals the number of eggs laid TO + TL + TP
days ago multiplied by the probability of surviving the
three immature stages. The latter is simply µs S(t). The bal-
ance equation is thus

To complete the specification of the system without Plas-
modium an explicit representation of the probability of
surviving density-dependent mortality during the larval
stage is needed

This expression sums the risk of surviving a mortality haz-
ard that may change over the duration of the larval stage
as the numbers of larvae vary (τ is a dummy integration
variable). Differentiating this expression a further DDE is
obtained,

completing the set of three equations needed to specify
Model 1, the system in the absence of Plasmodium.

Model 2, Mosquito with Plasmodium
Now introduce the Plasmodium in the way sketched in Fig-
ure 1. Exposed and infected mosquitoes are allowed to
reproduce, though not necessarily at the same rate as sus-
ceptible insects, so terms in Model 1 involving λS S(.) are
replaced by λS S(.) + λE E(.) + λI S(.). Into the susceptible
adult balance equation a term – a c x(t)S(t) is introduced
which represents the mosquitoes that feed on infected
humans and pick up the malaria parasite. In this model it
is assumed that that the dynamics of malaria in its human
host can be ignored and the fraction of infected people
remains constant at x.

This same term of course represents input into the
exposed stage, from which there are two losses, density-
independent mortality at rate µE and maturation into the
infectious stage. This latter quantity is simply the recruit-
ment to the exposed stage TE days ago multiplied by the
probability of living through the stage. The transfer out of
the exposed stage is the recruitment to the infectious stage
from which there is a single loss term representing den-
sity-independent mortality at rate µI.

Putting this all together a system of five DDEs is obtained,

It will sometimes be useful to study the dynamics of the
total number of adult mosquitoes: N(t) = S(t) + E(t) + I(t);
summing eqns 2b, 2d & 2e,

dL t

dt
S t T S t T T t L t g L t LS O O S O L O L L L

( )
( ) ( ) ( ) ( ) ( ( )) (= − − − − − −λ θ λ θ θ ω µ tt).

(1a)

dS t

dt
S t T T T t T S tS O L P O L L P P S

( )
( ) ( ) ( ).= − − − − −λ θ θ ω θ µ

(1b)

ω τ τL t T

t
t g L d

L
( ) exp ( ( )) .= −



−∫  

d t

dt
t g L t T g L tL

L L
ω ω( )

( ) ( ( )) ( ( )) ,= − −[ ] (1c)

dL t

dt
S t T E t T I t T

S t T T E

S O E O I O O

S O L E

( )
( ) ( ) ( )

( )

= − + − + −[ ]
− − − +

λ λ λ θ

λ λ (( ) ( ) ( )

( ) ( ( )) ( )
,

t T T I t T T t

L t g L t L t
O L I O L O L L

L

− − + − −[ ]
− −

λ θ θ ω
µ

(2a)

dS t

dt
S t T T T E t T T T I t T T TS O L P E O L P I O L P

( )
( ) ( ) ( )= − − − + − − − + − − −[ ] ×λ λ λ

θθ θ ω θ µO L L P P St T S t acxS t( ) ( ) ( )
,

− − −

(2b)

d t

dt
t g L t T g L tL

L L
ω ω( )

( ) ( ( )) ( ( )) ,= − −[ ] (2c)

dE t

dt
acxS t acxS t T E tE E E

( )
( ) ( ) ( ),= − − −θ µ (2d)

dI t

dt
acxS t T I tE E I

( )
( ) ( ).= − −θ µ (2e)

dN t

dt
S t T T T E t T T T I t T T TS O L P E O L P I O L P

( )
( ) ( ) ( )= − − − + − − − + − − −[ ] ×λ λ λ

θθ θ ω θ µ µ µO L L P P S E It T S t E t I t( ) ( ) ( ) ( )− − + +[ ]
(2f)
Page 4 of 13
(page number not for citation purposes)



Malaria Journal 2007, 6:98 http://www.malariajournal.com/content/6/1/98
Model 3, Mosquito with Plasmodium and a simplified 
human stage
As discussed above, no pretence is made here to model
with any great realism the dynamics of the pathogen in its
human stage. However, it is shown how in principle the
dynamics of the vector and definitive host can be coupled.

The representation of the mosquito dynamics is identical
to that in model 2 except that x is replaced by x(t) in eqns.
2c-f because the fraction of humans infected now changes
over time (these equations will not be written down again
but referred to in the context of this model as eqns. 3a-f).
It is assumed that the fraction of people infected increases
as mosquitoes attack humans at a rate a and successfully
infect them with probability b. The simplest assumption is
that humans immediately become capable of transmitting
malaria and recover at a constant rate r. This leads to the
equation

where H is the total number or density of humans,
assumed to be a constant. But time delays associated with
the gap between infection and harbouring transmissible
gametocytes (suppose this last Tα days), and between the
onset of infectiousness and clearance of the disease by the
immune system (define this as lasting Tβ days), can also
be included. If no human mortality is assumed then

Mosquito density dependence
Models 1 – 3 are now fully specified with the exception of
the function describing mosquito density dependence.
Here the very simplest assumption, linear competition, is
assumed

g(L(t)) = γL(t). (4)

This is equivalent to assuming Lotka-Volterra competition
in classical ecological theory, though the time lags in the
system make the behaviour of the model more akin to its
discrete-time equivalent, the Ricker process [27].

Note that L(t) is the density of female mosquitoes whilst
all reasonable models of larval competition would
assume males and females have the same or at least a sim-
ilar effect. To keep things simple an equal sex ratio is
assumed, as well as equal male and female contributions
to competition (so that the number of mosquitoes influ-
encing mortality through competition is 2 L(t)), and the
multiplier 2 is subsumed within the parameter γ.

Analysis: statics
It is argued that the main function of the models devel-
oped here is to study the dynamics of mosquito popula-
tions, and their response to potential perturbations.
Nevertheless it is important to demonstrate the link with
some of the classical static quantities that have been used
by vector entomologists which is what is done in this sec-
tion.

Model 1, Mosquito with no Plasmodium
First ask whether the mosquito population can invade a
habitat (or equivalently what mortality needs to be
imposed on the vector before it is driven to extinction). At
these threshold population levels negligible density-
dependent mortality (ωL → 1) can be assumed and hence
fecundity must be sufficiently high to offset the different
density-independent mortality factors. From eqn. 1b,
population growth rates are only positive when

which has a very simple interpretation. The numerator in
eqn. 5 is the rate of production of adult mosquitoes –
fecundity multiplied by the different probabilities of sur-
viving the three juvenile stages – while 1/µS is expected
adult lifespan. The expression thus states the obvious fact
that for a population to persist each female mosquito
must at least replace itself, or that the number of adult
female offspring (Λ) produced per female must be great
than one. Substituting θi = Exp[-Tiµi] for the different juve-
nile stages in eqn. 5 shows how the different stage dura-
tions and mortality components combine to determine
population persistence. It can also be used to explore the
effects of artificially increasing different mortality factors
as part of a control programme.

At equilibrium the density dependent mortality must be
sufficient to reduce the effective adult female offspring
production to one. Thus it must impose a mortality such
that the probability of survival is 1/Λ which allows us to
calculate the equilibrium larval density (L*)

With the linear competition assumption L* = ln Λ/γ TL.

Of course, it is the density of adult mosquitoes that more
concerns vector biologists, and this is simply calculated
from eqn. 1a
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though this is less amenable to a simple interpretation.

Model 2, Mosquito with Plasmodium
Equilibria
Consider first how the inclusion of three different classes
of adult mosquitoes affects the persistence conditions and
equilibria derived in the preceding section. From eqn.2f it
is straightforward to show that persistence requires

where  is the average fecundity of an adult mosquito,

 = λS Pr(S) + λI Pr(I) + λE Pr(E),

and Pr(i) denotes the proportion of adults in stage i. The
average adult mortality, , is calculated in the same way.

From eqn. 2d and 2e the ratio of adults in the three stages
is

from which the three fractions can be calculated. The
equilibrium density of larvae remain the same but using

the new definition of , while the total density of adults
is

Again, the numbers in each adult class can be calculated
using eqn. 8.

It is often useful to write down a term for the numbers of
adult mosquitoes emerging per unit time, ε(t); from eqns.
2b & 9,

ε(t) = ωL(t - TP) N (t - TO - TL - TP).

At equilibrium, ε* = N*, the numbers emerging equal

the numbers dying.

Epidemiological statics
A series of quantities frequently used in the mosquito lit-
erature can now be derived and compared to the forms
given by Smith & McKenzie (2004) in their review of mos-
quito epidemiological statics and dynamics (see in partic-
ular their Table 2; note that they include a parameter to

describe the fraction of mosquitoes that feed on non-
human hosts which here is subsumed in the feeding rate,
a).

The sporozoite rate is the fraction of mosquitoes that are
infectious to humans, and is easily derived from the ratios
in eqn. 8,

If constant adult mortality is assumed then the term in
square brackets in the denominator disappears and the
classical form is obtained (Smith & McKenzie 2004).

The Lifetime Transmission Potential is the number of
cases of malaria a mosquito can be expected to transmit
during its complete lifetime. It is the product of the prob-
ability of becoming infectious, the average number of
times an infectious mosquito will feed, and the efficiency
of transmission from mosquito to human. The probabil-
ity that a newly emerged female becomes infected before
it dies is acx/(acx+µS) and the probability it goes on to sur-
vive the exposed period is θE. Once infectious it will live
for on average 1/µI days during which time it will feed at
rate a transmitting the infection with probability b.
Putting this together

which reduces to the form in Smith & Mckenzie (2004)
when mortality is constant throughout the adult stage.

The Entomological Inoculation Rate is the number of
potentially infectious bites received per human per day. It
is simply the total rate of feeding by infectious mosqui-
toes, aI(t), divided by the number of humans, H, which is
assumed to be constant. At equilibrium the number of
infectious mosquitoes is the total number of adult mos-
quitoes (N*) multiplied by the sporozoite rate. Thus

which reduces to the form in Smith & McKenzie (2004)
when mortality is constant throughout the adult stage.
[Smith & McKenzie also derive the EIR as the product of
the emergence rate of mosquitoes and the Lifetime Trans-
mission Potential. This is equivalent when mortality is
uniform throughout the adult stage (as they assumed) but
not with variable mortality when the probability an indi-
vidual becomes infectious is not the same as the fraction
of infectious individuals.]
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The Vectorial Capacity can be defined [28] as the total
number of potentially infectious bites that arise when a
single infected human is introduced for one day into a sys-
tem where Plasmodium is currently absent. If it is assumed
that mosquito densities are at equilibrium then the
number of bites that that individual will suffer is aN*/H
of which c will lead to successful infection. The probabil-
ity that a successfully infected individual will survive the
exposed period is θE after which it will live for on average
for 1/µI days during which time it will feed at rate a. Thus

In studying how adult mortality influences the EIR and VC
it is normal to treat the ratio of mosquitoes to humans
(N*/H) as a constant. But because the complete mosquito
life cycle is explicitly modelled it is also possible (though
it is not done here) to explore how adult mortality indi-
rectly influences EIR through its effects on N*.

Model 3, Mosquito with Plasmodium and a simplified 
human stage
Epidemiological statics
Including the dynamics of Plasmodium in humans allows
the basic epidemiological number R0 to be calculated.
This is the number of secondary infections that arise from
a single initial infection in an otherwise disease-free sys-
tem. The calculation is similar to that for Vectorial Capac-
ity but now instead of allowing the introduced human to
be fed on for a single day it is assumed that it is attacked
throughout its infectious period of 1/r days (or Tβ days for
eqn. 3g). Actual rather than just potentially infectious
bites are now of interest, and so the efficiency of transmis-
sion from mosquitoes to humans, b, must also be
included. Thus

where N* = S* is the equilibrium number of mosquitoes
when the infection is assumed to be vanishingly rare. This
form of R0 (but with constant recruitment to the adult
stage) was first derived by Macdonald [4].

Equilibrium densities

At equilibrium, mosquitoes recruit to the adult stage at a
constant rate that exactly balances adult mortality
( N*). Assume first that this is a constant unaffected by

the ratio of susceptible, exposed and infectious mosqui-
toes; this is the normal assumption in MacDonald-type
models. The equilibrium number of infectious mosqui-
toes (and those of other classes if required) and propor-
tion infected humans can be calculated from eqn. 8.

But if the assumption of constant N* is relaxed then
changes in the parameters, and in particular the relative
mortality rates experienced by different categories of adult
mosquito, will affect equilibrium densities both directly
through the mortality terms in eqn. 11 but also indirectly
through N* and R0.

If all adult mosquito classes experience the same levels of
mortality (µI), and if the exposed period is so short that θE
is effectively one, then eqn. 11 simplifies to

which is the standard solution to the coupled MacDonald
equation [5,6].

Analysis: dynamics
The dynamics of the population models developed in this
paper can be studied in two ways. First, they can be solved
numerically using relatively straightforward modifica-
tions of software designed to solve systems of ordinary
differential equations [29-31]. Such investigation shows
the full range of equilibrium and non-equilibrium behav-
iour. Second they can be subject to local stability analysis
which reveals the boundaries between stable and unstable
regions of parameter space. However, unlike many sys-
tems of ordinary differential equations, it is seldom possi-
ble to obtain analytical stability boundaries and these
have to be solved numerically. Because of the time delays
in the system, non-equilibrium behaviour is usually oscil-
latory, and it is also possible to calculate the period of the
oscillations, at least in the vicinity of the stability bound-
ary.

The dynamics of the three models developed here is now
explored, though it is again pointed out that the chief aim
is to demonstrate the possible uses of this modelling
approach, rather than to produce new results in mos-
quito-malaria population biology. Table 1 gives the basic
parameter set used in numerical simulations; it is based
on the biological studies referred to in the table, but
should not be considered a definitive description of any
particular mosquito-Plasmodium interaction.
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Model 1, Mosquito with no Plasmodium
Begin by exploring the dynamics of the simplest model
without Plasmodium. This consists of a single-species pop-
ulation with overlapping generations and density-
dependent mortality that acts in a delayed manner; the
delay arises because there is a gap in time between density
dependent mortality acting at the larval stage and any
reduction in the rate at which eggs are produced which
occurs only when the cohort of larvae reached maturity.
Standard results from theoretical ecology [27,32] predict
that a population with this type of dynamics may show a
deterministically stable equilibrium, or show cyclic or
more complex dynamic behaviours (possibly including
chaos). Figure 2a shows that for the parameters in Table 1
a stable equilibrium is predicted, though were fecundity
to be higher and developmental time delays greater than
the system can show cyclic dynamics (Figure 2b).

Further insight into what determines the population
dynamic behaviour can be gained from local stability
analysis, a standard technique in dynamics that deter-
mines whether small perturbations from equilibrium die
away or grow [27]. The presence of time lags makes the
analysis a little more complicated. The Appendix shows
how local stability analysis leads to an expression f(η, P)
= 0 where η is a dummy variable and P is a vector of
parameters from the population model. In general f(η, P)
has an infinite number of roots in η and the system is sta-
ble in those regions of parameter space where the real
parts of all roots are negative. At the stability boundary the
real parts equal zero and the magnitude of any associated
imaginary part is proportional to the period of the
damped or divergent oscillations in the vicinity of the sta-
bility boundary.

Whether the population converges on a stable equilib-
rium or shows population cycles is determined chiefly by
three classes of parameter. Processes that tend to increase
the mosquito population growth rate either by increasing
fecundity (higher λS) or reducing sub-adult mortality
(lower µO, µL or µP) make cyclic population dynamics
more likely. Processes that reduce the time lag in the
response of the population to density dependence
(shorter TO, TL or TP for constant through stage mortality)
make cycles less likely. Finally the effect of adult mortality
(µS) is more complex: higher mortality leads to reduced
fecundity which tends to promote stability. However, a
short-lived adult stage is destabilising because it can lead
to a pulse or cohort of larvae that experiences high levels
of mortality giving rise to a low number of adults when
the cohort matures. This, in its turn, produces a relatively
small cohort that experiences low levels of mortality lead-
ing to a large number of adults. A longer adult stage causes
cohorts to mix and for the effects of relatively small and
large cohorts to be averaged out. In general the destabilis-
ing effect of increased adult mortality is stronger than the
stabilising. Figure 3 illustrates how λS, TP and µS combine
together to determine the stability boundary. The strength
of density dependence in this formalism (γ) does not
influence dynamics, though this will not be true in general
for arbitrary forms of density-dependence.

The effects of different mosquito control strategies can be
studied by assuming they affect stage-specific density-
independent mortality. Thus habitat modification or lar-
val insecticides may increase µO, µL and µP, while insecti-
cidal bed nets may increase µS. The consequences of
different interventions or combinations of interventions
on the equilibrium density of adult mosquitoes can be

Table 1: The parameter values used in the illustrative model runs. They were chiefly motivated by the studies listed on Anopheles 
gambiae s.s. in Africa, but do not attempt to model precisely any particular interaction.

Parameter Symbol Value Unit Source

Duration of egg stage TO 1 d [2]
Duration of larval stage TL 14 d [2]
Duration of pupal stage TP 1 d [2]
Duration of exposed stage TE 10 d [5]
Egg stage daily mortality µO 0.05 d-1 [43]
Larval stage daily mortality µL 0.1 d-1 [44]
Pupal stage daily mortality µP 0.05 d-1 [45]
Adult stage daily mortality µS, µE, µI 0.1 d-1 [5]
Fecundity λ 30 d-1 [2]
Density dependent parameter γ 0.001 d-1 area2

Transmission efficiency; mosquito to human b 0.5 [5]
Transmission efficiency; human to mosquito c 0.5 [5]
Human biting rate a 0.3 d-1 [5]
Human recovery rate r 0.01 d-1 [5]
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estimated from eqn. 6, while numerical solutions of eqn.
1 provide information on the rate at which any decrease
in mosquito populations is attained.

Model 2, Mosquito with Plasmodium
In this model the mosquito is infected with Plasmodium
after feeding and it is assumed that a fixed proportion of
humans carry the pathogen. There is thus no coupled
mosquito-malaria dynamics, but Plasmodium does influ-
ence the mosquito population by possibly altering adult
death rates (for example if exposed and infectious mos-
quitoes have higher mortalities, µE, µI > µS) or reduced
fecundity (λE, λI <λS). It is unlikely that the effects of Plas-
modium on mosquito dynamics will be large, but local sta-
bility analysis shows that where they increase average
adult mortality they will tend to be destabilising, and
where they decrease average fecundity they tend to be sta-
bilising.

Model 3, Mosquito with Plasmodium and a simplified 
human stage
Here the fraction of infected humans is a dynamic variable
coupled with the mosquito-Plasmodium interaction. The

model can be used to explore the dynamics of disease
spread in vector and human, as well as the potential
effects of different control strategies. Figure 4 provides an
illustration of the latter. A mosquito/Plasmodium interac-
tion is assumed to be at equilibrium for the default
parameters in Table 1. These parameters give rise to R0 =
2.57 and as this is greater than one the interaction is per-
sistent. At the time indicated in the figure two different
control strategies are imposed; one that increases daily lar-
val mortality to 0.4 and the other that increases the daily
mortality of exposed and infected adults to 0.17. For these
parameter values R0 is no longer greater than one and the
infection cannot persist. The model shows how quickly
the numbers of infectious mosquitoes fall after the two
different control strategies are implemented. Figure 5
summarises how imposing increasing mortality on differ-
ent mosquito life history stages can influence disease per-
sistence through R0.

Though more complex, and probably not of great applied
interest, local stability analysis can also be carried out on
Model 3. The results differ slightly from Model 2 because
now the Plasmodium affects mosquito dynamics both
through their direct effect on mortality and fecundity
parameters (µE, µI, λE, λI) but also indirectly through
changing the fraction of infected humans. An increase in
adult mortality due to infection with malaria has less of a
destabilising influence when the dynamics of the infec-
tion in the human population are included, because
higher mortality rates of infectious mosquitoes leads to

Stability analysis of Model 2: the curves (each representing different values of adult mortality as indicated on the figure) separate regions in "fecundity-pupal period space" of stable population dynamics (below the line) and cyclical population dynamics (above the line)Figure 3
Stability analysis of Model 2: the curves (each representing 
different values of adult mortality as indicated on the figure) 
separate regions in "fecundity-pupal period space" of stable 
population dynamics (below the line) and cyclical population 
dynamics (above the line). The points A and B are the param-
eter values used in the two simulations with the same labels 
in Figure 2.
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lower densities of infectious mosquitoes, which reduces
the proportion of infectious humans which leads to a fur-
ther decrease in the density of infectious mosquitoes.

Discussion
Mathematical models in population biology can be
broadly characterised as strategic or tactical [33]. Strategic
models seek to give broad answers to general questions: in
the present context to address issues such as whether vec-
tor control efforts should target the adult or juvenile mos-
quito life stages, or whether genetic manipulation to
create a partially refractory vector could lead to the extinc-
tion of the disease. Tactical models on the other hand seek
to resolve much more specific issues, for example in the
current context whether Anopheles gambiae s.s. popula-
tions at a particular locality and time of year can be con-
trolled by insecticide-impregnated bednets. Both
approaches have strengths and weaknesses and each have
distinct roles in understanding population dynamics and
designing control measures. With strategic models there is
a trade-off between simplicity (which normally equates
with analytical tractability) and oversimplification (which
implies biological unrealism).

The models developed here are strategic models, but
phrased in a way that it is argued allows greater biological
realism to be added for a relatively modest increase in
complexity. The models can be studied analytically,
though the switch to delay-differential equations makes
this somewhat harder, while traditional and very well
understood classical models in epidemiology and popula-
tion ecology can be obtained as limiting cases. The single
most useful aspect of this formalism is that the relatively

fixed time delays in the system that occur as the mosquito
moved through the egg, larval and pupal stage, and as the
Plasmodium matures in the adult insect, can be entered in
a transparent and natural way.

Many models of malaria-mosquito interactions do not
explicitly treat the larval stages but instead assume a con-
stant or cyclic rate of recruitment to the adult stage. One
reason for this is the argument originally due to Ross [3]
that interventions against the adult insect are far more effi-
cient at reducing biting rates compared with larval inter-
ventions. This has led in recent years to a concentration of
effort in treating malaria as a human disease and attacking
the adult mosquito using impregnated bed-nets and by
spraying in and around houses. If the primary aim of the
vector component of this strategy is to prevent the Anoph-
eles living long enough to transmit malaria then a detailed
representation of recruitment to the adult stage is of less
importance. A second justification is the ecological argu-
ment that if mosquito population size is determined by
density-dependent processes acting at the larval stage,
then adult recruitment will be relatively constant or show
a simple relationship to meteorological drivers.

There are at least two arguments for renewed interest in
larval mosquito dynamics. First, a number of authors have
argued recently that the goals of programmes such as Roll
Back Malaria can best be met by an integrated approach
combining treatment of humans and interventions
against both adult and larval vectors [for a review see ref
[34], and references cited therein]. They point in particu-
lar to the major successes in eradicating A. gambiae s.l.
from Brazil and Egypt in the pre-DDT era though com-

The effect of changing different mortality factors on R0, the basic epidemiological numberFigure 5
The effect of changing different mortality factors on R0, the 
basic epidemiological number. All parameters are as in Table 
1 except for the mortality factor or factors indicated for each 
curve. The parasite can only persist when R0 > 1, the hori-
zontal dashed line.
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ment that "our understanding of mosquito larval ecology
has scarcely advanced since the days of Ronald Ross, leav-
ing most of the questions that were raised over 50 years
ago unanswered" [34]. Of course what is primarily
required is field observations and especially experimenta-
tion, but it is hoped that the type of model developed here
can assist in understanding pre-adult dynamics and
improving intervention strategies.

There is much current excitement in potential new ways to
control vectors by driving genes through mosquito popu-
lations that either reduce mosquito fitness, or render them
incapable of transmitting malaria. This technology is still
many years from implementation, and raises a variety of
technical, safety and ethical issues [35]. Some of the
options under consideration might involve killing or ster-
ilising vectors at different parts of their life cycle using
stage-specific promoters, or expressing genes that influ-
ence longevity or lead to only partial Plasmodium trans-
mission [36]. Design, regulation or implementation of
any of these strategies is likely to require an understanding
of the interplay of mortality, both density-independent
and density-dependent, at different stages of the lifecycle,
as well as the consequences for disease dynamics. To do
this models that explicitly incorporate juvenile stages are
needed.

A series of simplifications have been made to obtain the
models described here, some of the most important of
which will be discussed. Of course simplicity per se is not
necessarily a bad thing if it leads to greater generality and
insight; the problems arise if important biological proc-
esses are omitted leading to either misleading or irrelevant
results.

The basic assumption of the Lumped Age-Class approach
is that demographic and life history parameters are con-
stant within a stage. This will always be to some extent
untrue, and in certain cases may lead to the omission of
significant biological processes. For example, the models
developed here treat all larvae as identical while it is likely
that the first and last instar suffer different mortality rates.
Assuming an average mortality rate across all larval instars
may normally be acceptable, though in other insect sys-
tems where older larvae interfere or cannibalise younger
larvae such an assumption would result in major dynam-
ical processes being overlooked [22,37]. One option that
retains the Lumped Age-Class formalism is to model lar-
val instars separately [25], though this requires two equa-
tions for each instar.

There are at least two possible ways in which assuming
constant demographic parameters within the three adult
stages may be misleading. First, it has been assumed that
insects feed (and in the case of susceptibles risk becoming
infected) and oviposit at a constant rate throughout the

adult stage. However, mosquitoes go through a gono-
trophic cycle in which adults search for a blood meal,
digest it, and then oviposit, before beginning the cycle
anew. A typical gonotrophic cycle might last three to five
days and hence an infectious mosquito will have gone
through at least two or three cycles. It is highly likely that
mortality rates differ over the feeding, digesting and ovi-
positing stages of the cycle, though while it would be nice
to include these the authors are not aware of any stage-
specific estimates of mortality rates (which is not surpris-
ing considering the huge challenges of estimating survival
rates in the field). Moreover, some interventions such as
insecticide-impregnated bed nets target mosquitoes at
specific stages of the gonotrophic cycle. An extension of
the models described here that explicitly represents the
gonotrophic cycle is currently being developed. This is
challenging because it is necessary to index infected mos-
quitoes by both the length of time since they acquired the
infection, and by their position in the gonotrophic cycle,
something that is not possible working within the basic
Lumped Age-Class approach.

The assumption of constant demographic parameters in
the adult stage will also be violated if mosquitoes senesce,
something that is particularly important to know given
the importance of longevity for disease transmission.
There is some evidence for increased mortality with age in
field mosquito populations [38], though again this is a
difficult parameter to measure. Within the Lumped Age-
Class formalism senescence can be incorporated by intro-
ducing one or more "elderly" stages, or alternatively a PDE
approach could be taken.

Constant developmental periods have been assumed for
both juvenile mosquitoes and for Plasmodium in infected
adults. It is possible to relax this assumption by assuming
a constant variance in the time taken to pass through a
stage, or to make the length of a life history stage a
dynamic variable influenced by the severity of larval com-
petition [18]. What is harder is to allow a supplementary
state variable such as fat reserves or size to be affected by
larval competition and then go on to influence an adult
trait such as longevity. Conceivably a reduction in popu-
lation size might lead to reduced larval competition and a
consequent increase in adult size and longevity. If larger
insects lived longer then paradoxically reduced mosquito
numbers might increase disease transmission. To address
such concerns a PDE or related approach will probably be
required.

As with many other strategic models of mosquito-malaria
interactions a single homogeneous population has been
assumed, with demographic parameters that do not vary
with time. Many of the same approaches that have been
used to relax these assumptions by people using other
modelling strategies can also be employed here. Thus
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parameters can be allowed to vary seasonally, and spatial
processes can be addressed by considering an array of
populations on a lattice linked by dispersal, or where
available specific spatial structure can be incorporated. All
these changes will complicate the model, and make ana-
lytical insight and results harder to obtain. At some stage
the technical complexities of solving large series of differ-
ential equations simultaneously are likely to make it bet-
ter to transfer to a more traditional simulation approach,
especially as the focus of the modelling shifts from strate-
gic to tactical questions.

Finally, it is stressed that many complexities concerning
the human host have been ignored. For example, it is
known that biting rates vary considerably across individu-
als, and that this can have significant effects on dynamics
[39,40]. The representation of the disease in humans as
simply susceptible and infected is extremely crude. In real-
ity people will have a variety of immunological responses
that may be influenced by their genotype, and also by the
genotype of pathogen they carry and whether there are
infected by one or more Plasmodium strains [9,41,42].
These complications can be incorporated when required
within this modelling framework.

Conclusion
The Lumped Age-class formalism is a useful way of mod-
elling mosquito-malaria interactions. Its chief advantage
over other methods is that it allows the natural time lags
inherent in the system to be incorporated in a straightfor-
ward and simple manner. The models are phrased as
delay-differential equations which are slightly harder to
work with than ordinary differential equations, though
not prohibitively so. Software to solve them numerically
is also widely available. Even when analytical results can-
not be obtained, classical models from epidemiology and
population ecology can be derived as limiting cases which
assists greatly in the interpretation of numerical results.
The standard static quantities in vector epidemiology, for
example vectorial capacity, entomological inoculation
rate, and R0, are all easily derived. The modelling frame-
work can be expanded to incorporate more realistic Plas-
modium-human interactions (though not pursued here). It
is suggested that this approach will be particularly useful
in studying the integration of control measures targeted at
multiple adult and juvenile stages of the vector.
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Appendix: Local Stability Analysis
Model 1 is specified by two equations (eqns. 1) in the
number of larval L(t) and S(t) mosquitoes. Define the
equilibrium numbers of larvae and adults as L* and S*
respectively and use lower case letters to denote local per-
turbations from the equilibrium state.

Proceeding as in Briggs et al. (1999) substitute eqn. A1
into eqn. 1 and linearise the system to obtain expressions
for the change in the size of the perturbation

where the linear competition function given by eqn. 4 is
assumed.

To determine whether the sets of perturbations increase or
decay, the eigenvalues of the characteristic equation need
to be determined. Because of the time lags and integrals
this is done using Laplace transforms where is η is the
dummy Laplace variable. The characteristic equation is

where the vector P is the set of parameters that may influ-
ence the stability boundaries (note that in this case it does
not include the competition parameter γ).

Equivalent but more complicated expressions can be
derived for Models 2 and 3.
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