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Background/Aims: We aimed to develop a deep learning model for the prediction 
of the risk of advanced colorectal neoplasia (ACRN) in asymptomatic adults, based 
on which colorectal cancer screening could be customized.
Methods: We collected data on 26 clinical and laboratory parameters, including 
age, sex, smoking status, body mass index, complete blood count, blood chemistry, 
and tumor marker, from 70,336 first-time colonoscopy screening recipients. For 
reference, we used a logistic regression (LR) model with nine variables manually 
selected from the 26 variables. A deep neural network (DNN) model was developed 
using all 26 variables. The area under the receiver operating characteristic curve 
(AUC), sensitivity, and specificity of the models were compared in a randomly split 
validation group.
Results: In comparison with the LR model (AUC, 0.724; 95% confidence interval 
[CI], 0.684 to 0.765), the DNN model (AUC, 0.760; 95% CI, 0.724 to 0.795) demon-
strated significantly improved performance with respect to the prediction of 
ACRN (p < 0.001). At a sensitivity of 90%, the specificity significantly increased 
with the application of the DNN model (41.0%) in comparison with the LR model 
(26.5%) (p < 0.001), indicating that the colonoscopy workload required to detect the 
same number of ACRNs could be reduced by 20%.
Conclusions: The application of DNN to big clinical data could significantly 
improve the prediction of ACRNs in comparison with the LR model, potentially 
realizing further customization by utilizing large quantities and various types of 
biomedical information.
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Application of deep learning to predict advanced 
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INTRODUCTION

Colorectal cancer (CRC) is the third most common 
cancer worldwide and is more prevalent in developed 
countries [1]. Screening for CRC, which is recommended 
for the average risk population of 50 years and above, 

has been shown to reduce CRC-related mortality [2,3]. 
However, the effectiveness of this approach is affected 
by low adherence and inefficiency [4]. A large number 
of high-risk individuals have never been screened or 
have undergone non-invasive tests, resulting in wast-
ed resources. Meanwhile, colonoscopy conducted on 
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low-risk individuals results in a low yield and leads to 
unnecessary complications. The customization of the 
screening based on the risk of CRC among the average 
risk population may improve the screening efficiency 
and adherence [5]. Several risk-prediction algorithms 
based on logistic regression (LR) models have been de-
veloped to identify individuals at high risk of advanced 
colorectal neoplasia (ACRN), for which colonoscopy may 
be most suitable [5-10]. However, these models demon-
strated limited performance with low sensitivity and 
high false-positive rates, which may be due to the lim-
ited amount of information used in the model, limited 
performance of the LR method, or both.

Recently, deep learning has emerged as an alternative 
approach based on the accumulation of big data, advanc-
es in computational power, and improved algorithms 
[11]. It has outperformed previous machine learning 
techniques in various domains, including medicine [12]. 
Deep learning has shown expert-level accuracy in the 
diagnosis of skin cancer [13], diabetic retinopathy [14,15], 
lymph node metastasis of breast cancer [16], and colorec-
tal adenoma during colonoscopy [17,18]. Clinical data are 
rapidly being obtained worldwide, and several laboratory 
parameters are reported to be associated with the risk of 
CRC [19]. However, a previous attempt that used an LR 
method to incorporate laboratory data into a risk model 
for identifying individuals at high risk of ACRN was not 
successful, with only minimal performance improve-
ments being realized [10]. Deep learning may offer better 
prediction models for ACRN by utilizing big clinical data 
more efficiently than previous LR models.

Therefore, this study aimed to develop and validate 
a deep learning model for the prediction of the risk of 
ACRN in asymptomatic adults, and compare the devel-
oped model with an existing LR model with respect to 
CRC screening.

METHODS

Study population
This cross-sectional study was approved by the Insti-
tutional Review Board of Kangbuk Samsung Hospital 
(IRB No. 2017-07-024). The requirement for informed 
consent was exempted because only anonymized data 
were used.

We considered consecutive asymptomatic adults who 
underwent colonoscopy screening during health check-
ups at the Kangbuk Samsung Hospital Health Screening 
Center, Seoul, Korea, between January 2003 and Decem-
ber 2012. Exclusion criteria included previous colorectal 
examinations, such as barium enema, sigmoidoscopy, 
or colonoscopy, a history of CRC or other malignan-
cies, a history of inflammatory bowel disease, a history 
of colorectal surgery, incomplete colonoscopy due to 
failed cecal intubation or inadequate bowel cleansing, 
and missing clinical data. The overall study population 
considered in the analysis was randomly split into de-
velopment and validation groups in the ratio of 4:1.

Dataset
From the health checkup results of the participants, 
26 clinical and laboratory parameters were selected as 
input variables as well as colonoscopy data for the out-
come variable.

As previously described [10,20], information on demo-
graphics, such as age, sex, and life style factors, was de-
termined using standardized, self-administered ques-
tionnaires. For individuals with a family history of CRC, 
only first-degree relatives were considered, regardless of 
age. Trained nurses measured the physical parameters. 
According to the recommendation for Asians, a body 
mass index (BMI) ≥ 25 kg/m2 was used to indicate obesity 
[21]. From the blood samples obtained after 10 hours of 
fasting, a range of laboratory parameters were measured.

In our screening program, some participants un-
derwent a fecal immunochemical test (FIT) as well as 
colonoscopy [22]. A one-time stool sample was collected 
within 3 days before colonoscopy in a buffered sampling 
tube (Eiken Chemical Company, Tokyo, Japan) and sent 
to the laboratory on the day of the health examination. 
Fecal hemoglobin was quantified using an OC-SENSOR 
DIANA (Eiken Chemical Company) as ngHb/mL. A posi-
tive cut-off value of 100 ngHb/mL was considered equi-
valent to 20 μgHb/g feces.

Colonoscopy was conducted by 13 board-certified 
endoscopists using Evis Lucera CV-260 colonoscopes 
(Olympus Medical Systems, Tokyo, Japan). Colons were 
prepared with 4 L of polyethylene glycol solution. The 
endoscopists measured the sizes of all polyps, and then 
either performed a biopsy or removed them. Gastroin-
testinal pathologists evaluated histological specimens. 

www.kjim.org


847

Yang HJ, et al. Deep learning for CRC screening

www.kjim.orghttps://doi.org/10.3904/kjim.2020.020

ACRN was classified as colorectal carcinoma or advanced 
adenoma. Advanced adenoma was defined as any adeno-
ma ≥ 1 cm in size, or one that has a villous component or 
high-grade dysplasia [10].

Conventional machine learning methods
We first fitted an LR model to the development group 
for comparison (Supplementary Table 1) [10]. In a previ-
ous report, nine variables were manually selected from 
among 26 variables for this model as follows: age (< 50, 
50 to 60, 60 to 70 vs. ≥ 70 years), sex, smoking status 
(none/past vs. current), family history of CRC, BMI (< 25 
kg/m2 vs. ≥ 25 kg/m2), serum levels of fasting glucose (< 
100 mg/L vs. ≥ 100 mg/L or diabetes), low-density lipo-
protein-cholesterol (LDL-C; < 100 mg/L vs. ≥ 100 mg/L), 
and carcinoembryonic antigen (CEA; < 5 and 5 to 10 ng/
mL vs. ≥ 10 ng/mL).

For ad-hoc analyses, we fitted another LR model that 
included all 26 variables. We further tested three con-
ventional machine learning methods: support vector 
machine (SVM), random forest (RF), and extreme gra-
dient boosting (XGBoost) for 26 variables [23,24].

Development of deep neural networks
For deep learning, we used a feedforward neural net-
work [25] as the deep neural network (DNN) structure, 
and Keras (version 2.2.4) [26] in Python (version 2.7.6.) as 
the deep learning framework. As illustrated in the Fig. 
1A, we initially developed the DNN model using the 
same nine variables as that used in the LR model to de-
termine whether deep learning could predict ACRN bet-
ter than the LR method when the same information was 
provided. The main DNN model was developed using 
all 26 variables in the dataset as input nodes to clarify 
whether deep learning could overcome the limitations 
of the LR model, such as the compromise in prediction 
performance when a large number of covariates are con-
sidered. Moreover, all continuous variables were stan-
dardized for feature scaling [27]. For hyperparameter 
tuning, a 5-fold cross-validation was conducted (Fig. 1B) 
[28]. Consequently, the DNN with nine variables was set 
to have two hidden layers with 26 nodes for each layer, 
and the DNN with 26 variables was set to have two hid-
den layers with 10 nodes for each layer (Supplementary 
Table 2). Adam was used as an optimization algorithm 
with learning rate = 0.001, β1 = 0.9, and β2 = 0.999, as 

Figure 1. Deep learning model development process. (A) 
Conventional logistic regression process, deep neural net-
work (DNN) model development, and conventional machine 
learning methods. (B) Cross-validation of DNN models. (C) 
Flow of the study population. SVM, support vector machine; 
RF, random forest; XGBoost, extreme gradient boosting; 
AUC, area under the receiver operating characteristic curve; 
CRC, colorectal cancer; IBD, inflammatory bowel disease.
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proposed by Kingma and Ba [29]. The DNNs also ap-
plied the Xavier initializer [30] to initialize the weights 
of hidden units and the sigmoid activation function [31] 
in each layer. Binary cross-entropy was used to define a 
loss function [32]. We trained each model for 1,000 iter-
ations using the dataset of the development group. The 
output value generated from the trained networks indi-
cated the probability of each input case having ACRN, 
wherein the output ranged between 0 (low probability) 
and 1 (high probability).

Statistical analysis
The primary analysis involved the comparison of the 
performance of the DNN model with that of the LR 
model for the prediction of ACRN in the validation 
group. The models were compared with respect to their 
area under the curve (AUC) of the receiver operating 
characteristic (ROC) curve using the DeLong test [33].

In a previous study on the LR model, the AUC was 
0.68, and the prevalence of ACRN was 1.4% [10]. It was 
assumed that the detection of at least a 0.05 increment 
in the AUC in the DNN models would be clinically sig-
nificant; therefore, it was estimated that at least 13,064 
individuals would be required to detect this difference 
with 80% power, 5% significance level, and strong cor-
relations (correlation coefficient, 0.7) between the mod-
els, both in the positive and negative cases [34].

From the perspective of CRC screening, model perfor-
mances were also compared with respect to their sensi-
tivity and specificity at three points with high sensitivity 
(80%, 90%, and 95%) on the ROC curve, which would 
be important for screening programs. At each point, 
the specificity and reduction in the number of colonos-
copies needed to detect one ACRN (NNScope) for each 
method were estimated.

As ad-hoc analyses, we compared the LR and DNN 
models according to the number of included variables 
(nine vs. 26). SVM, RF, and XGBoost models as well as 
DNN were also compared with the LR model that in-
cluded 26 variables as a reference. Furthermore, the 
performance of FIT and a combined FIT and clinical 
score, wherein colonoscopy is recommended for either 
individuals with positive FIT or a high-risk group in a 
clinical scoring model [10,35], were compared with the 
DNN model.

To address the black-box issue, which refers to the in-

ability to learn how a DNN model predicts ACRNs [12], 
we compared the subjects that were predicted by both 
the LR and DNN models to have ACRN, those that were 
predicted only by the LR model, and those that were 
predicted only by the DNN model at the point of 90% 
sensitivity. Statistical analyses were performed using the 
R statistical programming environment, version 3.3.2 (R 
Development Core Team, Vienna, Austria; http://ww-
w.R-project.org). Furthermore, all p values were two-sid-
ed, and p < 0.05 was considered statistically significant.

RESULTS

Demographic and clinical characteristics of study 
population
During the study period, 121,794 individuals were 
screened. After excluding 51,458 individuals for reasons 
depicted in Fig. 1C, 70,336 individuals were included in 
the development group (n = 56,269) and validation group 
(n = 14,067). The mean age ± standard deviation (SD) of 
the overall study population was 41.6 ± 8.3 years, 69.4% 
(48,810/70,336) were male, and ACRN was detected in 1.4% 
(960/70,336) of the participants. The proportion of sub-
jects aged 50 years or older was 15.1% (10,620/70,336), of 
which 3.9% (414/10,620) had ACRN. There were no signif-
icant differences between the demographics and clinical 
characteristics of the development and validation groups 
(Table 1). Although the differences in the serum glucose 
levels and high-sensitivity C-reactive protein (hsCRP) 
levels were statistically significant because of the large 
sample size, the actual difference had little clinical signif-
icance (development group vs. validation group: mean ± 
SD of glucose, 93.5 ± 14.6 mg/dL vs. 93.9 ± 15.5 mg/dL, p < 
0.007; median [range] of hsCRP, 0.1 [0.0 to 0.1] mg/L vs. 0.1 
[0.0 to 0.1] mg/L, p = 0.038).

Performance of DNN model 
The ROC curves of the LR and DNN models in the val-
idation group are illustrated in Fig. 2. When compared 
with the LR model (AUC, 0.724; 95% confidence inter-
val [CI], 0.684 to 0.765), the DNN model exhibited sig-
nificantly improved performance (AUC, 0.760; 95% CI, 
0.724 to 0.795; p = 0.009). The superiority of the DNN 
model over the LR model was prominent at the points 
with high sensitivity (≥ 80%) on the ROC curve. The 
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performances of the prediction models with respect to 
CRC screening are presented in Table 2. At a sensitivity 
of 90%, with respect to detecting ACRNs, the specificity 
significantly increased with the application of the DNN 
model (41.0%) in comparison with the LR model (26.5%, 
p < 0.001). The DNN model could reduce the colonosco-

py workload estimated by the NNScope that is required 
to detect the same number of ACRNs as the LR model by 
19.9%. At other points with sensitivities of 80% and 95%, 
the DNN model demonstrated a slightly attenuated but 
still significant benefit over the LR model with a 13.8% 
and 8.4% reduced colonoscopy workload, respectively 

Table 1. Demographics and clinical characteristics of the study participants

Characteristic
Development group

(n = 56,269)
Validation group

(n = 14,067)
p value

Age, yr 41.6 ± 8.3 41.6 ± 8.4 0.920

Male sex 39,063 (69.4) 9,747 (69.3) 0.761

Current smoker 15,930 (28.3) 4,044 (28.8) 0.303

Alcohol consumption, time/wk 2 (1–3) 2 (1–3) 0.660

Regular exercise ≥ 4 times/wk 30,666 (54.5) 7,661 (54.5) 0.935

Family history of CRC 2,202 (3.9) 566 (4.0) 0.547

Hypertension 9,386 (16.7) 2,307 (16.4) 0.424

Diabetes 2,827 (5.0) 708 (5.0) 0.965

BMI, kg/m2 23.8 ± 3.1 23.8 ± 3.1 0.360

Waist circumference, cm 83.2 ± 8.7 83.1 ± 8.6 0.393

Systolic BP, mmHg 113.3 ± 13.1 113.2 ± 13.0 0.453

Diastolic BP, mmHg 72.6 ± 9.6 72.5 ± 9.5 0.589

Glucose, mg/dL 93.5 ± 14.6 93.9 ± 15.5 0.007

HbA1c, % 5.7 ± 0.5 5.7 ± 0.5 0.981

Total cholesterol, mg/dL 199.8 ± 34.7 199.7 ± 34.7 0.638

HDL-C, mg/dL 55.1 ± 13.8 55.1 ± 13.8 0.601

Triglyceride, mg/dL 95 (67–141) 96 (67–141) 0.920

LDL-C, mg/dL 124.9 ± 32.0 124.9 ± 31.9 0.875

Insulin, μU/mL 4.5 (2.8–7.1) 4.6 (2.8–7.1) 0.946

hsCRP, mg/L 0.1 (0.0–0.1) 0.1 (0.0–0.1) 0.038

WBC, × 103/mm3 6.2 ± 1.7 6.2 ± 1.6 0.740

RBC, × 106/mm3 4.9 ± 0.4 4.9 ± 0.4 0.417

Hemoglobin, g/dL 14.9 ± 1.5 14.9 ± 1.5 0.642

Hematocrit, % 43.7 ± 4.0 43.7 ± 3.9 0.586

Platelet, × 103/mm3 248.2 ± 52.8 248.2 ± 52.5 0.990

Ferritin, ng/mL 139.6 (66.0–225.2) 139.1 (64.8–221.9) 0.142

CEA, ng/mL 1.4 (1.0–2.0) 1.4 (1.0–2.0) 0.683

ACRN 775 (1.4) 185 (1.3) 0.570

ACRN for age ≥ 50 yr 328/8,459 (3.9) 86/2,161 (4.0) 0.827

Values are presented as mean ± SD, number (%), or median (interquartile range).
CRC, colorectal cancer; BMI, body mass index; BP, blood pressure; HbA1c, hemoglobin A1c; HDL-C, high-density lipoprotein 
cholesterol; LDL-C, low-density lipoprotein cholesterol; hsCRP, high-sensitivity C-reactive protein; WBC, white blood cell; 
RBC, red blood cell; CEA, carcinoembryonic antigen; ACRN, advanced colorectal neoplasia.
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(both p < 0.001). 
We further evaluated the prediction performance of 

the DNN model. First, we compared the LR and DNN 
models according to the number of variables (Fig. 3A). 
In comparison with the original LR model with nine 
variables (AUC, 0.724; 95% CI, 0.684 to 0.765), the LR 

model with 26 variables did not demonstrate any sig-
nificant improvement in the performance (AUC, 0.734; 
95% CI, 0.695 to 0.773). This value was lower than that 
for the DNN model with nine variables (AUC, 0.748; 95% 
CI, 0.711 to 0.784). Second, we compared SVM, RF, XG-
Boost, and DNN with the LR model with 26 variables 
for reference (Fig. 3B and Supplementary Table 3). In 
the validation group, only the DNN model exhibited a 
significantly better prediction performance than that of 
the LR model (p = 0.036). The SVM (AUC, 0.603; 95% CI, 
0.556 to 0.649) and RF (AUC, 0.672; 95% CI, 0.632 to 0.712) 
exhibited a significantly lower prediction performance. 
The XGBoost exhibited a prediction performance as 
high (AUC, 0.760; 95% CI, 0.725 to 0.795) as that of the 
DNN model although it was not significantly better than 
that of the LR model (p = 0.064). Third, the performance 
of the DNN model was compared with that of FIT and 
the combined FIT and clinical score (Fig. 3C and Sup-
plementary Table 4). The FIT results were available in 
19.6% (2,751/14,067) of the validation group, and FIT was 
found to be positive in 2.9% (79/2,751). The sensitivity for 
ACRN was 27.3% and specificity was 97.4%. At the same 
sensitivity, the specificity of the DNN model was signifi-
cantly lower at 90.5% (p < 0.001). The sensitivity of the 
combined FIT and clinical score was 42.4% and speci-
ficity was 90.7%. At the same sensitivity, the specificity 
of the DNN model was also significantly lower at 81.0% 
(p < 0.001). 

Table 2. Performance of DNN model at points of high sensitivity of detecting advanced neoplasia in colorectal cancer screening

Screening strategy
Sensitivity,  

%
Specificity,  

%
No. of  

colonoscopy
ACRNs  

detected, n
NNScope, 

n
Reduction of 
NNScope, %

p value  
(vs. LR)

Target sensitivity 80

LR 78.9 51.7 6,855 146 47.0 Reference Reference

DNN 79.5 58.2 5,948 147 40.5 13.8 < 0.001

Target sensitivity 90

LR 89.2 26.5 10,364 165 62.8 Reference Reference

DNN 89.7 41.0 8,356 166 50.3 19.9 < 0.001

Target sensitivity 95

LR 92.4 14.5 12,041 171 70.4 Reference Reference

DNN 94.6 19.9 11,293 175 64.5 8.4 < 0.001

DNN, deep neural network; ACRN, advanced colorectal neoplasia; NNScope, number needed to colonoscope to detect one 
ACRN; LR, logistic regression.

Figure 2. Receiver operating characteristic curve and area 
under the receiver operating characteristic curve (AUC) of 
the prediction models for advanced colorectal neoplasia. LR, 
logistic regression; DNN, deep neural network; CI, confi-
dence interval. 
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Characteristics of the subjects with ACRNs detected 
by DNNs
At the target sensitivity of 90%, the actual number of 
subjects with ACRNs detected by the LR and DNN mod-
els were 165 and 166, respectively (Table 2). Most of them 
(n = 158) were detected using both the LR and DNN mod-
els. Meanwhile, seven subjects were detected using only 
the LR model, and eight using only the DNN model. To 
explore the additional features that could be captured 
by the DNN model, the three groups of subjects were 
compared based on their characteristics (Table 3). The 
participants with ACRNs who were predicted only by the 
DNN model were more likely to be women, had a lower 

BMI, higher serum levels of hsCRP, and lower levels of 
ferritin than those with ACRNs who were missed by the 
DNN model. When compared with those detected by 
both models, the subjects detected either by the LR or 
DNN model were younger and had lower serum levels 
of triglycerides.

DISCUSSION

In this study, using a dataset of more than 70,000 sub-
jects involving 26 clinical parameters, the DNN model 
exhibited better performance in the prediction of ACRN 
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Figure 3. Receiver operating characteristic curve and area 
under the receiver operating characteristic curve (AUC) of 
various prediction models for advanced colorectal neoplasia. 
(A) Logistic regression (LR) and deep neural network (DNN) 
models with 9 and 26 variables. (B) LR, support vector ma-
chine (SVM), random forest (RF), extreme gradient boosting 
(XGBoost), and DNN models using 26 variables. (C) DNN 
model compared with fecal immunochemical testing (FIT) 
and combined FIT and clinical risk score. CI, confidence 
interval.
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in comparison with the conventional LR model. The 
value of AUC reached 0.76, which is higher than that of 
that of any other clinical prediction models or scores 
employed to predict ACRNs [5-10]. Importantly, this 
performance was achieved by the inclusion of 26 clin-
ical and laboratory parameters, indicating the potential 
for the DNN to be expanded to include more data, even 
from other sources, such as transcriptomics and me-

tabolomics information from blood, stool, tissue sam-
ples, or even imaging data. From the perspective of CRC 
screening, it was estimated that the use of our model 
could realize a reduction of 20% of the NNScope to de-
tect the same number of ACRNs as the LR model.

The overall compliance of CRC screening remains 
suboptimal [4]. The improved awareness of person-
al risk of CRC may be helpful in increasing screening 

Table 3. Comparison of subjects with advanced colorectal neoplasia (ACRN) according to detection models

Characteristic
ACRNs detected both  

by LR and DNN 
(n = 157)

ACRNs detected only  
by LR model

(n = 7)

ACRNs detected only  
by DNN model

 (n = 8)
p value      

Age, yr 51.5 ± 10.4 32.4 ± 4.8 43.4 ± 3.2 0.001

Male sex 138 (87.34) 7 (100.0) 2 (25.0) < 0.001

Current smoker 65 (41.1) 2 (28.6) 3 (37.5) 0.791

Alcohol consumption, time/wk 2 (1–3) 1 (0–2) 1.5 (1–2.5) 0.214  

Regular exercise ≥ 4 times/wk 88 (55.7) 4 (57.4) 3 (37.5) 0.597

Family history of CRC 9 (5.7) 0 (0) 0 (0) 0.637

Hypertension 35 (22.2) 0 (0) 2 (25.0) 0.364

Diabetes 18 (11.4) 0 (0) 0 (0) 0.385

BMI, kg/m2 24.6 ± 2.8 25.4 ± 5.1 22.1 ± 2.1 0.031

Waist circumference, cm 86.7 ± 7.4 86.4 ± 11.2 78.1 ± 4.8 0.100

Systolic BP, mmHg 113.7 ± 12.5 93.0 ± 5.2 108.5 ± 13.8 0.106

Diastolic BP, mmHg 72.6 ± 9.6 60.8 ± 5.0 70.1 ± 10.4 0.241

Glucose, mg/dL 99.2 ± 16.8 91.3 ± 11.4 86.8 ± 8.0 0.053

HbA1c, % 5.9 ± 0.6 5.5 ± 0.1 5.5 ± 0.2 0.065

Total cholesterol, mg/dL 209.8 ± 34.6 197.9 ± 28.8 172.8 ± 26.6 0.593

HDL-C, mg/dL 50.9 ± 12.3 50.6 ± 11.4 60.3 ± 16.4 0.510

Triglyceride, mg/dL 125 (93–191) 100 (67–152) 67 (52–92.5) 0.004

LDL-C, mg/dL 134.7 ± 32.8 133.0 ± 27.9 100.0 ± 25.8 0.645

Insulin, μU/mL 5.5 (3.3–7.8) 7.3 (2.5–10.6) 3.5 (1.5–3.9) 0.088

hsCRP, mg/L 0.1 (0.0–0.1) 0.0 (0.0–0.1) 0.1 (0.0–0.1) 0.031

WBC, × 103/mm3 6.9 ± 2.0 5.4 ± 0.8 7.4 ± 1.6 0.046

RBC, × 106/mm3 4.9 ± 0.4 5.1 ± 0.2 4.4 ± 0.3 0.110

Hemoglobin, g/dL 15.4 ± 1.3 15.8 ± 0.6 13.9 ± 1.3 0.134

Hematocrit, % 45.2 ± 3.4 45.7 ± 2.3 41.3 ± 2.8 0.424

Platelet, × 103/mm3 252.9 ± 58.1 223.9 ± 54.3 270.4 ± 38.8 0.433

Ferritin, ng/mL 154.2 (98.6–216.3) 203.8 (140.9–326.8) 81.9 (34.9–116.2) 0.034

CEA, ng/mL 1.8 (1.2–2.5) 1.2 (1.1–1.5) 1.7 (1.1–2.8) 0.295

Values are presented as mean ± SD, number (%), or median (interquartile range).
LR, logistic regression; DNN, deep neural network; BMI, body mass index; BP, blood pressure; HbA1c, hemoglobin A1c; 
HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; hsCRP, high-sensitivity C-reactive 
protein; WBC, white blood cell; RBC, red blood cell; CEA, carcinoembryonic antigen. 
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uptake [36]. However, previously reported clinical risk 
models did not demonstrate good discriminative pow-
er with maximum AUC or C-statistics ≤ 0.72 [5-9], and 
neither did the LR model with laboratory parameters, 
which was used as a reference in the current study [10]. 
In this study, the LR model with 26 variables exhibited a 
slight nonsignificant improvement in the AUC in com-
parison with the LR model with nine variables, from 
0.72 to 0.73. In LR methods, the additional inclusion of 
a large number of covariates may not lead to a substan-
tial improvement in the model performance because 
of multiple collinearities or interactions [37]. However, 
the application of DNN significantly improved the AUC 
from 0.72 of the LR model to 0.76 for the DNN model. 
This implies that the interactions between the risk fac-
tors for ACRNs may be too complex and nonlinear to be 
reflected by the LR models, whereas DNNs may be able 
to capture the complex associations caused by the in-
clusion of large numbers of input parameters/nodes [11]. 
The DNN has a multilayer architecture of input, hidden, 
and output layers. Each node of a hidden layer is com-
puted as a function, which is usually nonlinear, of in-
put nodes or previous hidden nodes that have their own 
weights. During each training example, the network is 
trained by updating the weights of the nodes through 
the backpropagation process. This multilayered struc-
ture of nonlinear functions and fine-tuned weights is 
capable of learning more complicated data structures. 
This is particularly important in modern times because 
of the substantial increase in the amount of biomedical 
information [12]. Furthermore, unlike the LR methods, 
a DNN can include various types of data as inputs, such 
as imaging data, fecal microbiome data, and electronic 
health record data [12]. In summary, we presented an en-
hanced performance DNN prediction model for ACRN, 
which may be able to improve adherence to CRC screen-
ing, indicating the possibility for further improvement 
by utilizing large quantities and various types of bio-
medical information.

It was estimated that colonoscopy resources are not 
sufficient, and tend to be overused in CRC screening 
[38,39]. Efficient screening can be achieved if ACRNs 
can be predicted with high specificity at a point of high 
sensitivity, which is associated with a lower colonosco-
py workload being required for screening. In our study, 
the DNN model improved specificity by ≥ 80% of the 

sensitivity on the ROC curve. While ensuring that the 
number of ACRNs detected is not lesser than that de-
tected by the LR model, the DNN model could reduce 
the NNScope by 20% in comparison with the LR mod-
el. Given the low marginal cost in the development of 
deep learning algorithms, our results imply that deep 
learning may promote a more efficient utilization of 
CRC screening resources without compromising health 
outcomes.

Our DNN model demonstrated significantly inferior 
specificity in comparison with FIT and the combined 
FIT and clinical score at the sensitivity points of 27% 
and 42%, respectively. However, FIT is limited by its low 
sensitivity unless the cut-off level is adjusted. In con-
trast, our model has the advantage of high specificity at 
the point of high sensitivity and the cut-off level can be 
chosen according to the available colonoscopy resources 
in individual societies. 

Among the conventional machine learning methods, 
XGBoost exhibited a performance similar to that of the 
DNN model. XGBoost is an advanced implementation 
of the gradient boosting algorithm that is optimized for 
speed and performance [24]. Our results suggest that 
XGBoost could also potentially improve the prediction 
of ACRN in CRC screening. However, further study may 
be required to evaluate the role of XGBoost in the con-
text of CRC screening, as this was not the focus of our 
study. 

In this study, we observed several limitations of our 
deep learning model. First, although the DNN model 
detected more ACRNs than the LR model did, it is un-
known as how the model actually functions. This black-
box issue is important in clinical interpretations in 
terms of specifying why a specific individual was catego-
rized as having a high risk of ACRN [12]. To address this 
issue, we reverse-engineered the DNN model, wherein 
the subjects with ACRNs who were detected both by the 
DNN and LR models, only by the LR model, and only 
by the DNN model were compared based on their clin-
ical characteristics. The results demonstrated that the 
three groups differed substantially with respect to age, 
sex, BMI, triglycerides, white blood cell count, and fer-
ritin. This implies that the DNN may result in a more 
accurate prediction by reducing the impact of conven-
tional risk factors, in particular, sex and BMI. Second, 
we adopted a complete case analysis using deep learning 
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similar to the LR method. Thus, our model considered 
26 parameters, including serum glucose, LDL-C, and 
CEA, which are not directly applicable to other current 
CRC screening programs because not all these data are 
usually available in asymptomatic adults. However, it is 
not cost-effective to conduct laboratory analyses only for 
CRC screening. In the present study, we did not evalu-
ate the potential for predicting ACRN or the degree of 
accuracy when only some of the parameters are given. 
Moreover, although we suggested the possibility of in-
cluding various types of data, such as fecal microbiome 
data, such data were not available in our database. Thus, 
we could not demonstrate the feasibility of a model with 
‘omics’ data. The answers to these questions are left to 
future research. Third, our model did not specify the 
time at which or the number of times that the prediction 
of ACRN could be applied. Theoretically, these models 
could be applied at a specific age, such as 40 or 50 years. 
Nevertheless, the age-specificity of these theoretical 
models need to be evaluated in further studies before 
their application to CRC screening in real practice.

In conclusion, the application of the DNN model to 
big clinical data significantly improved the prediction of 
ACRNs in comparison with the conventional LR model. 
This demonstrates the potential for realizing further per-
formance improvements by utilizing large quantities and 
various types of biomedical information. This deep learn-
ing platform may accelerate the adoption of customized 
CRC screening based on the predicted risk of ACRN.
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Supplementary Table 1. Multiple logistic regression model fitted in the development group 

Covariate β coefficient Odds ratio 95% CI p value

Age group, yr < 0.001

< 50 1 1

≥ 50, < 60 1.242 3.46 2.91–4.12

≥ 60, < 70 1.864 6.45 5.17–8.06

≥ 70 2.298 9.95 6.33–15.6

Male sex 0.451 1.57 1.32–1.87 0.001

Current smoker 0.279 1.32 1.14–1.54 0.001

Family history of CRC 0.050 1.05 0.76–1.46 0.765

BMI (≥ 25 kg/m2) 0.266 1.30 1.12–1.51 0.001

Glucose (≥ 100 mg/dL or diabetes) 0.179 1.20 1.02–1.40 0.025

LDL-C (≥ 100 mg/dL) 0.177 1.19 0.99–1.45 0.069

CEA group, ng/mL 0.001

< 5 1 1

≥ 5, < 10 0.867 2.38 1.59–3.56

≥ 10 2.174 8.79 3.47–22.31

Constant –5.405 0.00 0.00–0.01 < 0.001

CI, confidence interval; CRC, colorectal cancer; BMI, body mass index; LDL-C, low-density lipoprotein cholesterol; CEA, carc-
inoembryonic antigen.
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Supplementary Table 2. Comparison of performances of deep neural network models with different values of hyperparameters 

Model  
 no.

Hidden  
layer,

n

Node at  
layer #1,

n

Node at  
layer #2,

n

Node at  
layer #3,

n

Node at  
layer #4,

n

AUC in 
 CV set 1

AUC in  
CV set 2

AUC in  
CV set 3

AUC in  
CV set 4

AUC in  
CV set 5

Average  
AUC

Deep neural network with nine variables

1 2 26 26 - - 0.753 0.730 0.733 0.718 0.731 0.7330

2 2 25 20 - - 0.753 0.730 0.732 0.720 0.730 0.7330

3 2 25 25 - - 0.753 0.729 0.733 0.720 0.730 0.7330

4 3 26 26 26 - 0.750 0.732 0.734 0.718 0.728 0.7324

5 3 24 24 20 - 0.752 0.732 0.734 0.720 0.724 0.7324

6 3 25 25 25 - 0.752 0.732 0.733 0.720 0.724 0.7322

7 3 25 20 10 - 0.752 0.733 0.733 0.720 0.723 0.7322

8 3 20 10 5 - 0.751 0.729 0.734 0.720 0.727 0.7322

9 2 28 28 - - 0.751 0.730 0.733 0.717 0.729 0.7320

10 3 20 12 3 - 0.750 0.732 0.732 0.719 0.727 0.7320

11 2 30 30 - - 0.751 0.730 0.731 0.718 0.729 0.7318

12 4 26 26 26 26 0.751 0.731 0.734 0.718 0.723 0.7314

13 2 18 8 - - 0.751 0.729 0.731 0.715 0.731 0.7314

14 3 20 15 5 - 0.750 0.730 0.731 0.720 0.725 0.7312

15 3 20 11 4 - 0.751 0.730 0.731 0.720 0.722 0.7308

16 3 20 13 2 - 0.752 0.729 0.723 0.720 0.730 0.7308

17 3 30 20 10 - 0.750 0.732 0.732 0.719 0.720 0.7306

18 2 16 8 - - 0.750 0.729 0.726 0.717 0.730 0.7304

19 2 10 2 - - 0.752 0.728 0.724 0.715 0.732 0.7302

20 2 12 4 - - 0.750 0.728 0.726 0.716 0.731 0.7302

21 4 25 25 25 25 0.748 0.730 0.734 0.718 0.720 0.7300

22 2 14 6 - - 0.751 0.729 0.727 0.715 0.725 0.7294

23 2 20 10 - - 0.737 0.734 0.714 0.725 0.722 0.7264

Deep neural network with 26 variables

1 2 10 10 - - 0.742 0.740 0.719 0.730 0.727 0.7316

2 3 20 20 20 - 0.745 0.737 0.718 0.723 0.722 0.729

3 2 15 15 - - 0.746 0.738 0.720 0.724 0.716 0.7288

4 2 20 20 - - 0.745 0.738 0.723 0.725 0.713 0.7288

5 2 25 25 - - 0.745 0.739 0.718 0.722 0.720 0.7288

6 3 25 25 25 - 0.749 0.733 0.718 0.726 0.716 0.7284

7 3 22 22 22 - 0.743 0.736 0.722 0.722 0.719 0.7284

8 3 35 35 35 - 0.748 0.736 0.718 0.722 0.715 0.7278

9 4 50 40 30 10 0.740 0.734 0.718 0.721 0.722 0.7270

10 2 40 40 - - 0.742 0.739 0.723 0.723 0.708 0.7270

11 3 45 45 45 - 0.745 0.733 0.720 0.721 0.715 0.7268

12 4 30 30 30 30 0.738 0.734 0.714 0.725 0.722 0.7266

13 4 30 30 30 30 0.738 0.734 0.714 0.725 0.722 0.7266

14 3 55 55 55 - 0.741 0.736 0.718 0.720 0.717 0.7264

15 4 25 25 25 25 0.739 0.733 0.715 0.725 0.720 0.7264
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Model  
 no.

Hidden  
layer,

n

Node at  
layer #1,

n

Node at  
layer #2,

n

Node at  
layer #3,

n

Node at  
layer #4,

n

AUC in 
 CV set 1

AUC in  
CV set 2

AUC in  
CV set 3

AUC in  
CV set 4

AUC in  
CV set 5

Average  
AUC

16 3 10 10 10 - 0.739 0.742 0.713 0.717 0.720 0.7262

17 4 20 20 20 20 0.739 0.735 0.716 0.723 0.718 0.7262

18 3 65 65 65 - 0.741 0.736 0.716 0.720 0.717 0.7260

19 4 40 40 40 40 0.736 0.734 0.714 0.728 0.717 0.7258

20 4 45 45 45 45 0.74 0.732 0.716 0.719 0.719 0.7252

21 4 35 35 35 35 0.739 0.732 0.716 0.722 0.716 0.7250

22 4 60 40 20 5 0.739 0.731 0.714 0.720 0.719 0.7246

23 4 40 30 20 10 0.740 0.731 0.714 0.722 0.715 0.7244

All deep neural networks presented in the table used the sigmoid functions, the Xavier initializer, and the Adam optimizer 
with 1,000 epochs of the same dataset of the development group for each model. 
AUC, area under the receiver operating characteristic curve; CV, cross-validation.

Supplementary Table 2.Continued
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Supplementary Table 3. Performance of conventional machine learning methods as well as DNN model compared with LR 
with 26 variables in the prediction of advanced neoplasia

Prediction model AUC (95% CI) p value

LR with 26 variables 0.734 (0.695–0.773) Reference

SVM 0.603 (0.556–0.649) < 0.001

RF 0.672 (0.632–0.712) 0.001

XGBoost 0.760 (0.725–0.795) 0.064

DNN 0.760 (0.724–0.795) 0.036

DNN, deep neural network; LR, logistic regression; AUC, area under the receiver operating characteristic curve; CI, confidence 
interval; SVM, support vector machine; RF, random forest; XGBoost, extreme gradient boosting.
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Supplementary Table 4. Performance of DNN model compared with FIT at points of low sensitivity of detecting advanced 
neoplasia

Screening strategy
Sensitivity,  

%
Specificity, 

%
No. of  

colonoscopy
ACRNs  

detected, n
NNScope,  

n
p value

Target sensitivity 27.3

DNN 27.3 90.5 266 9 29.6 Reference

FIT 27.3 97.4 79 9 8.8 < 0.001

Target sensitivity 42.4

DNN 39.4 81.0 529 13 40.7 Reference

Combined FIT and clinical score 42.4 90.7 267 14 19.1 < 0.001

DNN, deep neural network; FIT, fecal immunochemical test; ACRN, advanced colorectal neoplasia; NNScope, number needed 
to colonoscope to detect one advanced colorectal neoplasia.

www.kjim.org

