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ABSTRACT

Proteins recognize a specific DNA sequence not
only through direct contact (direct readout) with
base pairs but also through sequence-dependent
conformation and/or flexibility of DNA (indirect
readout). However, it is difficult to assess the con-
tribution of indirect readout to the sequence speci-
ficity. What is needed is a straightforward method
for quantifying its contributions to specificity. Using
Bayesian statistics, we derived the probability of a
particular sequence for a given DNA structure from
the trajectories of molecular dynamics (MD) simula-
tions of DNAs containing all possible tetramer
sequences. Then, we quantified the specificity of
indirect readout based on the information entropy
associated with the probability. We tested this
method with known structures of protein–DNA
complexes. This method enabled us to correctly
predict those regions where experiments suggested
the involvement of indirect readout. The results also
indicated new regions where the indirect readout
mechanism makes major contributions to the
recognition. The present method can be used to
estimate the contribution of indirect readout
without approximations to the distributions in the
conformational ensembles of DNA, and would
serve as a powerful tool to study the mechanism
of protein–DNA recognition.

INTRODUCTION

DNA-binding proteins play important roles in transcrip-
tion, DNA replication, translation and ligation. Although
some of these proteins bind to DNAs in a non-specific
manner, most of them bind to specific regions of their
target DNAs. Proteins recognize specific DNA sequences
either through direct interactions between amino acids
and base pairs, i.e. ‘direct readout’, or through
sequence-dependent conformation and/or flexibility of
DNA, i.e. ‘indirect readout’ (1). Hereafter, we will use
the term ‘indirect readout’ to indicate only the readout
through sequence-dependent conformation and/or flexibil-
ity of DNA, and the readout through water-mediated
contacts is not included.
Experiments have indicated the existence of the indirect

readout. In some protein–DNA complexes, changes in the
binding affinity through the replacement of the DNA
bases could not be fully explained by the changes in the
direct protein–DNA interactions (1–5). However, it is
rather difficult to measure the contribution of indirect
readout to the binding affinity separately from other
factors. Therefore, there have been few experimental
results that could quantify the contribution of indirect
readout.
In our previous studies (6–9), we derived the probability

distribution functions (PDFs) of the base-pair step param-
eters (shift, slide, rise, tilt, roll and twist) from conform-
ational ensembles obtained either from known structural
data (6) or from molecular dynamics (MD) simulations
(7–9). Since the PDFs were derived for all possible dimer
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or tetramer sequences, they represent sequence-dependent
conformational propensities of the DNAs. In the case of
knowledge-base approach using the known structural data
(6), we could only consider the dimer sequences and had
to use a harmonic approximation to calculate the potential
of mean force for the sequence-dependent conformations
from the PDF due to the limitation of available structural
data. On the other hand, we also used the trajectories
of MD simulations to calculate the PDF (7,8). In this
case, we can consider tetramer sequences to examine
longer-range effects. We first used the harmonic approxi-
mation for the derivation of the potential of mean
force (7,8). However, we found that some PDFs exhibit
non-Gaussian behavior. Therefore, we calculated the con-
formational energy of the central base-pair step within
each tetramer sequence by taking the logarithm of
the PDF value of its sequence at the step parameters (9).
To test how well the PDFs can describe the experimentally
observed sequence dependence of the step parameters,
the conformational energies of various known B-DNA
structures were compared with those calculated by
threading non-native sequences into the structures. The
results revealed that our method performed better at
discriminating the native sequence from the others than
the previous methods where the distribution of the step
parameters was approximated with a Gaussian function
(7–9). Although the PDFs can provide an intuitive
measure of the conformational preference of DNA in
terms of the energy profile, there are still some difficulties
with this method. The energy goes to infinity when the
probability goes to zero. To avoid such a divergence, the
PDF was set to a small positive constant value when it was
less than the value (9). To compare the sequence
specificities among different conformations, we used the
Z-scores of the conformational energies of the native
sequences calculated from the distributions of the
energies of all possible sequences (9). This introduces an
unnecessary assumption that the distribution of the energy
follows a normal distribution. It is therefore desirable to
devise a more straightforward method of evaluating the
sequence specificity of the DNA conformation and for
identifying the potential regions that are recognized by
proteins through the indirect readout mechanism.
Here, we propose a new method for this purpose.

Instead of calculating the potential of mean force from
the PDF, we convert the PDF into the probability of a
sequence, given a step conformation, by using Bayes’
theorem. When the probabilities of all sequences are
equal for a given step conformation, this conformation
is not sequence specific and the indirect readout does
not make any contribution to the recognition. On the
other hand, when the probability of a sequence is equal
to 1 and those of the other sequences are 0 (i.e. the step
conformation is only observed for a specific sequence), the
conformation is completely sequence specific and the
sequence can be recognized through indirect readout.
Such a bias in the probabilities of the sequence can
be quantified with the information entropy (10). The
information entropy is superior to Z-score in that the
information entropy does not require the assumption
of normal distribution as Z-score does. Thus, the

probability-/entropy-based approach is more straight-
forward than the energy-based approach.

Using the probability and information entropy, we
predicted the potential regions in DNAs recognized
through the indirect readout mechanism and assessed
how well the native DNA sequence fits to the given step
conformation. We compared the predicted results with
experimental data. In addition, the information entropy
has the advantage in that it can be decomposed into con-
tributions from parts of the sequence. Taking this advan-
tage, we evaluated the effect of the step conformation on
the variety of the bases neighboring to the central dimer
sequence by comparing the results from the dimer- and
tetramer-based analyses.

MATERIALS AND METHODS

Probability of a sequence given step parameters

Using Bayes’ theorem, we can derive the probability of
finding sequence s, given step parameters ? (shift, slide,
rise, tilt, roll and twist), P(sj?) (hereafter referred to as
PST), from the PDF, the probability of the step parameter
?, given the sequence s, P(?js), as,

P s ?jð Þ ¼
P ? sjð ÞP sð Þ

P ?ð Þ
¼

P ? sjð ÞP sð ÞP
s
P ? sjð ÞP sð Þ

, ð1Þ

where P(s) is the prior probability of the sequence s. The
native sequences are expected to have large PST values
when they are applied to known protein–DNA complex
or free DNA structures. The distribution of the PST also
provides important information about the specificity,
because it originates from the unevenness of the PST.
Therefore, we shall introduce a measure of unevenness
to quantify the specificity.

Information entropy for given step parameters

Using the PST, we can calculate the probability of each
possible sequence for a given step of a DNA structure.
When a sequence s= s0 gives P(s0j?)=1 and the others
give P(sj?)=0 for a given step parameter ?, this step
conformation only accepts sequence s0. This indicates
that the step conformation is highly sequence specific
and the sequence is unambiguously ‘readout’ solely from
the conformation. On the other hand, when the sequence
and the step conformation are independent, i.e.
P(sj?)=P(s), or equivalently, P(?js)=P(?), indirect
readout at this site does not work at all. Therefore, the
sequence specificity, i.e. unevenness of the PST, can be
adequately described by the information entropy (10)
relative to the independent case, which has been often
used for measuring sequence conservation (11). Given a
step parameter ?= hj, the ‘specificity score’ I for a set
of all possible sequences is defined by

I ¼
X

s

P s ? ¼ �j
��� �

log2
P s ? ¼ �j

��� �

P sð Þ
: ð2Þ
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The score I is 0 when the sequence is independent of the
step conformation and it increases as the specificity
increases.

As mentioned in ‘Results and Discussion’ section, the
conformational ensembles from the MD simulations
of each tetramer sequence were not enough for reliable
estimation of PST. Thus, we have reduced the original
tetramer sequence space into dimer AGTC sequence
space and dimer and tetramer RY [purines (R) and
pyrimidines (Y)] sequence spaces, in order to increase
the number of conformations in each of ensembles per
sequence. A tetramer sequence can be decomposed into
two parts (e.g. the central dimer sequence and the
flanking sequence) and the corresponding information
entropies and specificity scores can be calculated. In
general, when the sequence is decomposed into two
parts (s= s1s2), the specificity score of the whole
sequence, I12, is expressed as:

I12¼
P
s1

P
s2

P s1 ?¼�j
��� �

P s2js1,?¼ �j
� �

log2
P s1 ?¼�jjð ÞP s2 s1,?¼�jjð Þ

P s1ð ÞP s2 s1jð Þ

¼
P
s1

P s1 ?¼ �j
��� �

log2
P s1 ?¼�jjð Þ

P s1ð Þ

+
P
s1

P s1 ?¼ �j
��� �P

s2

P s2 s1,?¼ �j
��� �

log2
P s2 s1,?¼�jjð Þ

P s2 s1jð Þ

¼ I1+�I,

ð3Þ

where I1 is the marginal relative entropy of the
sub-sequence, s1 and �I is the conditional relative
entropy of the residual sequence, s2, given s1. �I is a
measure of the restriction on the residual sequence
imposed by the step conformation and the sub-sequence.
Note that even a 1-nt ‘sequence’ can be decomposed into
two parts: one representing the size of the base (R or Y)
and another representing the number of hydrogen bonds
in Watson–Crick-type base pairing (two or three). For
example, tetramer sequence AGTC is expressed as
R2R3Y2Y3, which can be decomposed into s1=RRYY
and s2=2323. This decomposition allows us to calculate
the entropy in the RY sequence space; the PSTs in the
RY space are obtained by summing the original PSTs
over s2.

Test dataset

First, we downloaded the coordinates of 52 protein–DNA
complex structures listed and discussed in Gromiha’s
article (6) from Protein Data Bank (12). Then, we
excluded the structures containing non-canonical bases
(1DP7), nicks or bulges in the nucleotide strands (1BER,
1SVC, 1GDT, 1IHF and 6CRO). Consequently, we
obtained 46 protein–DNA complex structures. After
overhangs of unpaired nucleotides were removed, 619
tetramers were extracted from the structures, allowing
overlap. The step parameters were calculated for the
central base-pair steps of the tetramers by using the
3DNA program (13). The denominators of Equation (1),
P(?), were very small (<4� 10�6) for some tetramers; we
excluded these tetramers and obtained a dataset composed
of 588 tetramers.

In comparison, the numbers of the direct and
water-mediated hydrogen bonds between the protein and
DNA bases were counted for each DNA base pair by
using the LIGPLOT program (14). For the thymine
bases, the hydrophobic contacts at the methyl group
were also counted when the protein carbon atoms were
within 3.9 Å from the carbon atom of the methyl group.
The number of direct contacts is the sum of the direct
hydrogen bonds and hydrophobic contacts.

Conformational ensemble of DNA

In this work, we used, as an example, the conformational
ensembles of DNAs generated by 10-ns MD simulations
for B-DNA dodecamers containing the 136 kinds of
unique tetramer sequences at its center (50–CGCG–
n1n2n3n4 –CGCG–30; ni is A, T, G, or C) [see (6,9) for
details]. The ensembles contain 9000 structures derived
from each simulation. The 1-ns MD simulation took
�5 h on two Intel X5670 (2.93GHz) chips.

Inference of PSTs and specificity scores

Performing an MD simulation corresponds to collecting
samples from the population in the conformational space.
Since the PDFs, P(?js), in Equation (1) are the
probabilities of the step parameter ? in the populations
that are not a priori known, we inferred them from the sets
of the samples using Bayesian statistics. We consider the
probability distribution of x=P(?js). When the step
parameter ? was observed n(?js) times during the MD
simulation producing N(s) samples, the probability
distribution of x can be expressed as,

P xjn ?jsð Þð Þ ¼ P n ?jsð Þ xjð ÞP xð Þ=P n ?jsð Þð Þ : ð4Þ

The likelihood function, P(n(?js)jx), was given by the
binomial distribution,

P n ?jsð Þjxð Þ ¼
N sð Þ!

n ?jsð Þ! N sð Þ�n ?jsð Þ½ �!
xn ? sjð Þ 1� xð Þ

N sð Þ�n ? sjð Þ : ð5Þ

Assuming uniform distribution for P(x) and substituting
Equation (5) into Equation (4), we obtain,

P xjn ?jsð Þð Þ ¼
xn ? sjð Þ 1�xð Þ

N sð Þ�n ? sjð Þ

B n ? sjð Þ+1,N sð Þ�n ? sjð Þ+1ð Þ
, ð6Þ

where B(�,�) is a normalization factor, which can be
calculated with the beta function. We drew 1000 samples
from the posterior distribution for each sequence and
calculated the averages and the standard deviations of
the PSTs and the specificity scores using the samples.

RESULTS AND DISCUSSION

Probabilities of native sequences and specificity scores
from known protein–DNA complex structures

In order to apply the present method, we first considered
the 588 tetramers derived from 46 known protein–DNA
complex structures, and calculated the PST, information
entropy and specificity scores using Equations (1)–(3),
based on the PDF derived from the 10-ns MD simula-
tions. In the calculations, we assumed that P(s) is the
same for all sequences. We first checked the statistical
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errors of the PST and information entropy according to
the procedure described in ‘Materials and Methods’
section. The ensembles of 9000 conformations from each
of the 136 simulations were not large enough to estimate
the PST and information entropy with statistical signifi-
cance. Thus, we reduced the sequence space from
tetramer, or increased the size of ensembles. We con-
sidered dimer sequences within the 46 protein–DNA
complex structures, where larger ensembles per sequence
can be used to calculate the above quantities. We also
considered a reduced space composed of purine (R) and
pyrimidine (Y). In this RY space, we can examine the
tetramer effect on the specificity. Hereafter, we denote
PSTs in dimeric AGTC, dimeric RY and tetrameric RY
sequence spaces by P({AGTC}2j?), P({RY}2j?) and
P({RY}4j?) or by PST({AGTC}2), PST({RY}2),
PST({RY}4). Similarly, the specificity scores calculated
in dimeric AGTC, dimeric RY and tetrameric RY
sequence spaces are denoted by I({AGTC}2), I({RY}2),
I({RY}4). The maximum values of the scores are 4, 2
and 4 bits, respectively.
For the sake of comparison with the contribution of the

direct readout to the recognition specificity in a rather
qualitative manner, we calculated the numbers of the
direct and water-mediated contacts with protein atoms
for each base pair from the protein–DNA complex struc-
tures. All the data were tabulated in Supplementary
Tables S1 and S2.
Figure 1 shows the scatter plots of PSTnative [P(sj?)

with the native sequence for s] against I for all the
dimers in the AGTC space and for all the tetramers in
the RY space from the 46 protein–DNA complex struc-
tures. Many points fell into the bottom-left region with
small I and PSTnative values; their steps may be outside
the recognition regions, or otherwise the indirect readout
plays less important role than the direct readout at those
positions. A significant number of points are located in the
top-right region with large I and PSTnative values and there
is a correlation between these values; i.e. their native
sequences are adapted to their step conformations. On
the other hand, a significant number of points are clus-
tered in the bottom-right region with large I and small
PSTnative values; this is apparently contradictory,
because the native sequences are unfavorable for these
step conformations even though these conformations are
highly specific to certain sequences. However, a number of
possible reasons for this contradiction can be raised. One
possibility is the effect of the interactions with the
proteins. In many of these cases, direct or water-mediated
contacts with the proteins are observed at the bases of
their two central nucleotides, indicating that the sequences
are mainly recognized through the direct readout mechan-
ism. The second possibility is the effect of the interaction
with the additives of the crystallization solution or the
effect of the crystal packing. However, for some points,
there are no obvious indications that contacts at the bases
alter their step conformation. Therefore, there is another
possibility that the replacement with the sequence with a
larger PST increases the affinity to the target protein. Of
course, it is also possible that the contradiction is caused
by the reduction of sequence space or the sampling errors

of the MD simulations. It is therefore necessary to
improve the accuracy of the PDFs by extending the
simulation time and/or by using more efficient sampling
algorithms before making a reliable prediction for the
tetramers with small PSTnative values.

Although the contact with the protein may deform the
structure of the DNA, the deformed structure is not
always ill-suited to the native sequence. In fact, for 416
out of 588 points direct or water-mediated contacts with
the proteins were observed at their two central base pairs.
This is reasonable because the direct and indirect readouts
come from different origins: the former comes from inter-
molecular interactions with the protein whereas the latter
comes from intramolecular interactions within the DNA
structure. Therefore, the same nucleotide can contribute
to both the direct- and the indirect-readout mechanisms.
This is probably the reason why it has been difficult to
quantify the contributions of the direct and indirect
readouts separately in experiments. With the present
method, we can highlight any nucleotide that contributes

Figure 1. Scatter plot of PSTnative [P(sj?) with the native sequence
for s] against I calculated in dimeric ATGC space (a) and in tetrameric
RY space (b). Triangles correspond to the tetramer sequence steps for
which experimental data obtained by base mutations suggested the
involvement of the indirect readout. The labeled points (‘a’ to ‘c’) are
the examples discussed in the manuscript.
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to the indirect readout even if it is involved in the direct
interactions with the protein.

Comparison with experimental observations

To date, mutation results are available for seven locations
in four protein–DNA complexes, which were suggested
to be important for the indirect readout. As shown in
Figure 1 (labeled ‘a’ to ‘c’), the calculated I and
PSTnative values for these data fell in the middle region
in the plot. This suggests that the indirect readout may
play some role in the sequence recognition by these
proteins. Below, we make some detailed comparisons of
our data with the experimental observations for a to c
showing higher PSTnative values.

The Steps a, b and c in Figure 1 are derived from the
crystal structure of homing endonuclease I-PpoI in
complex with DNA (PDB ID: 1A74) (15). Figure 2 plots
the PSTnative, I, and number of contacts against the DNA
sequence. The Step ‘a’ is located at the center of the DNA
and corresponds to the cleavage site of the endonuclease.
The DNA bends here, with a large roll parameter of 11.2�

at the central base-pair step. The native sequence of this
region is TTAA. The PSTnative is the largest among the
PSTs of all possible dimer sequences in the AGTC and RY
spaces (TA and YR are the native sequences) and of all
possible tetramer sequences in the RY space (YYRR is the
native sequence). The specificity scores are also larger
compared to those in the adjacent steps, indicating that
the conformation is specific to the native sequence. An
experiment has consistently shown that the native
sequence is strongly preferred at this position (95% pref-
erence to T for the first position of the tetramer sequence,
100% to T for the second, 95% to A for the third and
100% to A for the fourth) (16). Since direct contacts
between the protein and the DNA are mainly formed
outside this tetramer (15,17), the native sequence contrib-
utes to the binding through the indirect readout mechan-
ism, by enabling the DNA to bend and fit the shape of
the protein surface.

The Steps b and c are located near the Step a.
Wittmayer et al. reported that the cleavage by the
enzyme, i.e. the affinity to the enzyme, was completely
abolished by the substitution of C for A at Step b. The
efficiency of the cleavage was reduced to 70–90% of the
wild-type when G was substituted for T at Step c (3).
These substitutions reduced the PSTs to nearly zero in
both cases. Since the base pairs at these positions do not
directly interact with the protein (Figure 2), our results
clarify that the observed change in affinity is due to the
reduction of the fitness of the sequence to the structure
that is favorable to bind to the protein, indicating that
these positions are also involved in the indirect readout
mechanism.

Lu et al. suggested that B to A deformations of DNA in
this complex is important for the recognition (18). The
large PST and the specificity scores of Steps a, b and c
are correspondent to the large deformation at the TCT/
AGA trinucleotides, which they pointed out the structural
junctions of A/B deformation. Thus, the deformability of

DNA at these positions may play important role in the
indirect readout.

Comparison of specificity scores between different
sequence spaces

When the sequence can be decomposed into two parts, we
can calculate the marginal entropy of the sub-sequence
and the conditional entropy of the residual sequence,
given the sub-sequence. Based on these values, we
determined to what extent the step conformation restricts
the variety of the sequence. Figure 3a and b show scatter
plots of differences between I({AGTC}2) and I({RY}2)
(�I1) and between I({RY}4) and I({RY}2) (�I2) against
I({RY}2), respectively. In the plot of �I1, of 96 points with
I({AGTC}2)> 1, 78 showed larger I({RY}2) than �I1,
being located below the diagonal line representing
�I1= I({RY}2). In these cases, transversions (exchanges
between purines and pyrimidines) more severely affect the
indirect readout mechanism than transitions (exchanges
between A and G and between T and C) do. Similarly,
in the plot of �I2, of 62 points with I({RY}4)> 1, 61
showed larger I({RY}2) than �I2. This indicates that the

Figure 2. Schematic representation of the crystal structure of homing
endonuclease I-PpoI in complex with DNA (PDB ID: 1A74) (top).
Plots of PSTnative [PSTnative({ATGC}4): solid line, PSTnative({RY}2):
dashed line, PSTnative({RY}4): dotted line], specificity scores
[I({ATGC}2): solid line, I({RY}2): dashed line, I({RY}4): dotted line],
number of contacts (direct: solid line with plus marks, water-mediated:
dashed line with x marks) versus DNA sequence (bottom). Positions of
Steps a, b and c are indicated with boxes in the sequence, and positions
of their central base-pair steps are indicated with gray dashed lines in
the structure image and in the plots.
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variety of the sequence of the central base-pair step is
more strongly limited by the step conformation than
that of the flanking sequence.

Limitations and prospects

The present method enables us to assess how the sequence
adapts to a particular DNA conformation and quantify
the specificity of indirect readout in terms of information
entropy. We converted the probability of step conform-
ations (PDF) in the sequence space directly into the prob-
ability of a sequence, given a step conformation (PST),
by using Bayes’ theorem. The PDF can be derived from
conformational ensembles either obtained from known
structural data or generated by MD simulations. Thus,
the real application of the present method relies on
the quality of conformational ensembles available.
Unfortunately, it is the availability of conformational
ensembles that is actually limiting the application. We
attempted to use the trajectories of 10-ns MD simulations

for DNA dodecamers containing 136 kinds of unique
tetramer sequences (each simulation produced an
ensemble of 9000 conformations). However, this amount
of ensembles in 6D conformational space did not satisfy
the statistical test for the probability (posterior distribu-
tion) of a sequence given a step conformation. Thus, we
have reduced the sequence space into the dimer space or
RY space so that we have a larger ensemble per sequence.
This reduction in sequence space may result in the loss
of some information, and the calculated probability of
sequence and information entropy may provide only a
low-resolution picture of the whole problem.

Another issue in the MD simulation is whether the
simulation time is long enough to produce an equilibrium
ensemble of conformations or not. We assume that the
ensemble derived from the 10-ns MD simulations is a
random sample extracted from a true population. If the
structure is trapped in particular conformations or stay in
some local minima surrounded by energy barriers during
the 10-ns MD simulation, the trajectory will produce un-
reliable count n(?js) assigned to the conformation.
In order to check how well an ensemble from a 10-ns
MD simulation reflects the population, we carried out a
100-ns simulation for a DNA containing AGCC. Then, we
evaluated the probability (P-value) that the count derived
from the 10-ns simulation was equal to or less than
n(?jAGCC), by using the probability P(?jAGCC)
derived from the 100-ns simulation. As a result, the
P-values were >5% for 94% of step conformations in
the protein–DNA complexes, indicating that the differ-
ence between the ensembles from 10- and 100-ns simula-
tions is not statistically significant for most of step
conformations. We could present such comparison for
one sequence, as the simulation is very time-consuming.
However, in order to apply the present method to general
problems, we need to carry out longer simulations for all
the tetramer sequences. Such larger ensembles would
enable us to obtain more reliable probability and informa-
tion entropy, so that we can examine longer-range effect
and assess the role of indirect readout in protein–DNA
recognition.

CONCLUSIONS

We have developed a method to evaluate the contribution
of indirect readout to the protein–DNA recognition. We
used Bayes’ theorem to derive the probability of having a
particular sequence for a given DNA structure directly
from an ensemble of structures with various sequences,
which can be obtained from known structures of DNA
or the trajectories of MD simulations of DNA. We also
quantified the sequence specificity for a given DNA struc-
ture based on the information entropy. The method
enabled us to identify the potential regions in a protein–
DNA complex that have high specificity of indirect
readout, and to evaluate how well the actual sequences
fit to the structure. The advantage of the present method
is that it does not need to use approximations and assump-
tions to the distribution of the conformational ensemble,
and that the longer-range effect on the specificity can be

Figure 3. Scatter plots of �I1= I({ATGC}4) – I({RY}2) (a) and of
�I2= I({RY}4) – I({RY}2) (b) against I({RY}2). Diagonal dotted lines
represent �I1= I({RY}2) and �I2= I({RY}2). Dotted lines downward
to the right represent I({ATGC}4)=1 and I({RY}4)=1.
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examined. The application of the present method to
available experimental data is successful to some extent
in explaining the mutation effect on the binding affinity.
The present method can also predict new regions which
are involved in the recognition through the indirect
readout mechanism, even if experimental analysis is diffi-
cult, and would serve as a powerful tool to study the
mechanism of protein–DNA recognition.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–2.
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