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Abstract

Domestication and breeding have influenced the genetic structure of plant populations due to selection for adaptation
from natural habitats to agro-ecosystems. Here, we investigate the effects of selection on the contents of 51 primary
kernel metabolites and their relationships in three Triticum turgidum L. subspecies (i.e., wild emmer, emmer, durum
wheat) that represent the major steps of tetraploid wheat domestication. We present a methodological pipeline to
identify the signature of selection for molecular phenotypic traits (e.g., metabolites and transcripts). Following the
approach, we show that a reduction in unsaturated fatty acids was associated with selection during domestication of
emmer (primary domestication). We also show that changes in the amino acid content due to selection mark the
domestication of durum wheat (secondary domestication). These effects were found to be partially independent of the
associations that unsaturated fatty acids and amino acids have with other domestication-related kernel traits. Changes in
contents of metabolites were also highlighted by alterations in the metabolic correlation networks, indicating wide
metabolic restructuring due to domestication. Finally, evidence is provided that wild and exotic germplasm can have a
relevant role for improvement of wheat quality and nutritional traits.
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Introduction
Agriculture has had an evolutionary effect on crop species by
modifying the wild progenitors to adapt them to new envi-
ronments and human needs. During crop domestication, hu-
man and agro-ecosystem demands led to the selection of
similar traits—known as the domestication syndrome—in a
range of plant species, thereby supporting the occurrence of
convergent phenotypic evolution (Gaut 2015). In seed-prop-
agated crops, important domestication-associated traits in-
clude the increase in seed size, the loss of dormancy, and seed
dispersal mechanisms as well as a reduced, or loss of, photo-
period sensitivity (Gepts and Papa 2002). For most of these
traits, quantitative trait loci (QTL) have been identified, and,
in some cases, the underlying genes have been cloned (for
reviews, see Lenser and Theißen 2013; Olsen and Wendel
2013a, 2013b). The idea that only a few traits, controlled by
major genes, describe the essence of the domestication pro-
cess has been partly abandoned. This idea was known as the

“rapid transition” model, whereby domestication was consid-
ered a process that includes only a short predomestication
cultivation of wild species, together with a relatively rapid rise
(over a few hundreds of years) of the domestication syn-
drome (Wang et al. 1999; Gepts 2014). Recent archaeological
and genetic data suggest the occurrence of a long and com-
plex temporal period of transition from gathering to cultiva-
tion of wild plants, followed by a lengthy subsequent process
of selection for adaptation to both the agro-ecosystem and
the human needs (Meyer and Purugganan 2013; Gepts 2014).

The seminal work of Wright et al. (2005) and subsequent
studies in maize (Yamasaki et al. 2005; Zheng et al. 2008;
Hufford et al. 2012; Swanson-Wagner et al. 2012), together
with the evidence available for other crops such as common
bean (Sotelo et al. 1995), finger millet (Barbeau and Hilu
1993), and sunflower (Chapman and Burke 2012), indicate
that many traits have been the target of selection, including
those associated with nutritional value and amino acid
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metabolism. Recently, Bellucci et al. (2014) reported that, in
addition to selection at target loci, domestication had a deep
impact on the architecture of expression of the whole tran-
scriptome in common bean. These findings suggest a similar
or even deeper impact of domestication on the phenotypic
expression at the metabolite level.

Seed metabolites are associated not only with nutritional
value, but also with physiological properties such as seed
maturation, desiccation, and germination (Rao et al. 2014).
Metabolite profiling appears to be relevant for the description
of the geographical structure of natural populations (Kleessen
et al. 2012), as well as for QTL identification by Genome-Wide
Association Studies in maize (Riedelsheimer et al. 2012; Wen
et al. 2014) and in rice (Chen et al. 2014). Skogerson et al.
(2010) identified 119 metabolites in maize kernels and found
that their variation was associated with genotypic variation.
Similar results were observed in a limited set of modern va-
rieties of durum wheat (Beleggia et al. 2013), which

support the conclusion that metabolite profiling can be ex-
ploited as a molecular phenotyping approach to study crop
domestication.

Tetraploid wheats, Triticum turgidum L. (2n ¼ 4x ¼ 28;
AABB genome), were domesticated in the Fertile Crescent
alongside with einkorn and barley. They offer an interesting
model to study the effects of selection associated to domes-
tication. About 12,000 years ago, emmer (T. turgidum ssp.
dicoccum) was domesticated from wild emmer (T. turgidum
ssp. dicoccoides) (Nesbitt and Samuel 1998; Tanno and
Willcox 2006). Emmer spread following human migrations
throughout Europe and Asia, and became the most impor-
tant crop in the Fertile Crescent until the early Bronze Age,
10,000 years BC (Bar-Yosef 1998). Free-threshing tetraploid
wheats (T. turgidum ssp. turgidum) subsequently originated
from emmer. This event was followed by the selection of
durum wheat (T. turgidum ssp. turgidum convar. durum), as
a crop specialized for the production of pasta, couscous, tra-
ditional/typical bread and bulgur, and its spread in the
Mediterranean region. It can be useful to consider the evolu-
tion of tetraploid wheats as consisting of a least two steps:
primary domestication, from wild emmer to emmer, and
secondary domestication, from emmer to durum wheat
(Gioia et al. 2015).

The aim of this study was to assess the phenotypic varia-
tion of primary metabolites in the kernels of three T. turgidum
populations that represent both the primary and secondary
domestication processes. This corresponds to determining
whether the primary and secondary domestication events
were associated with changes in the content of specific me-
tabolites. To this end, we tested whether selection, other than
neutral processes, might explain the changes observed in pri-
mary metabolites using the QST versus FST comparisons
(Leinonen et al. 2013). Moreover, we also sought to determine
whether the signal of selection observed at the metabolite
level can be explained by processes of indirect selection, that
is, by the correlation between metabolite content and other
“classical” kernel traits associated with the domestication syn-
drome. Additionally, we investigated whether metabolite
coabundance profiles changed over the evolutionary trajec-
tory from primary to secondary domestication, by using net-
work analysis on the metabolites of the three tetraploid
wheat populations considered.

Results

Molecular Divergence
We estimated the neutral FST by surveying 26 microsatellite
loci across a panel of tetraploid wheat consisting in 12 acces-
sion of wild emmer (T. turgidum ssp. dicoccoides), 10 acces-
sion of emmer wheat (T. turgidum ssp. dicoccum), and 15
accession of durum wheat (T. turgidum ssp. turgidum convar.
durum) (table 1). The neutral FST was estimated by excluding
loci that carried signature of divergent selection (P < 0.05).
FST estimates were obtained by considering the three taxa
simultaneously (FST ¼ 0.149, P < 10�5, excluding two loci),
between wild emmer and emmer (FST¼ 0.062, P< 10�5, no

Table 1. List of Wild and Domesticated Accessions of Triticum tur-
gidum Considered in This Study.

Taxonomic Classification Accession Country

Wild emmer
(Triticum turgidum
ssp. dicoccoides)

PI 346783 n.a.
PI 343446 Israel
PI 481539 Israel
PI 352323 Asia Minor
PI 352324 Lebanon
PI 355459 Armenia
PI 470944 Syria, Al Qunaytirah
PI 470945 Syria, Al Qunaytirah
MG 4343 n.a.
MG 4328/61 n.a.
MG 5444/235 n.a.
MG 4330/66 n.a.

Emmer (T. turgidum
ssp. dicoccum)

Farvento Italy
Lucanica Italy
Molise selection

Colli
Italy

MG 5350 Ethiopia
MG 4387 United Kingdom
MG 5473 Spain
MG 5344/1 Ethiopia
MG 5293/1 Italy
MG 5323 n.a.
MG 3521 n.a.

Durum wheat
(T. turgidum ssp.
turgidum convar. durum)

Cappelli Italy
Timilia Italy
Capeiti-8 Italy
Trinakria Italy
Appulo Italy
Creso Italy
Neodur France
Simeto Italy
Ofanto Italy
Cirillo Italy
PR22D89 Italy
Pedroso Spain
CER16 Italy
CER58 Italy
CER132 Italy

NOTE.—n.a. ¼ not available; PI ¼ accession numbers for USDA National Small
Grains Collection, Aberdeen, ID;
MG ¼ accession numbers for CNR Institute of Plant Genetics, Bari, Italy;
CER ¼ accession numbers for CREA-CER Cereal Research Centre, Foggia, Italy.
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Table 2. Mean Metabolite Level Detected in Different Tetraploid Wheat Taxa, with Hereditability and QST Estimates.

No. Metabolite Level (lg/g dry weight) Range Heritability2 (h) QST

Wild emmera Emmera Durum wheata

Amino acids (�103) 2.154 a 2.038 a 1.560 a 0.498–4.779 0.99 0.15
Organic acids (�103) 2.227 a 2.288 a 2.073 a 1.144—3.904 0.92 0.06
Polyols 155.685 a 136.703 a 128.470 a 68.951–411.151 0.97 0.09
Sugars (�103) 86.825 a 96.495 a 87.261 a 66.540–106.600 0.66 0.00
Saturated fatty acids (�103) 1.686 a 0.991 b 1.029 b 0.651–3.499 0.75 0.41
Unsaturated fatty acids (�103) 6.401 a 3.422 b 2.541 b 1.791–15.031 0.79* 0.51*
Fatty alcohols 4.841 a 3.153 a 4.995 a 0.149–12.861 0.91 0.00
Tocopherols 18.830 a 18.015 a 15.501 a 11.124–27.399 0.41 0.22
Phytosterols 506.740 a 452.748 a 442.054 a 356.352–683.84 0.70 0.25

1 Alanine 93.53 a 89.56 a 7.32 b 0.0126–233.907 1.00* 0.55*
2 Valine 41.64 a 55.42 a 9.07 b 0.047–91.834 0.99** 0.66**
3 Leucine 23.61 a 30.07 a 10.40 b 0.099–51.538 0.98 0.46
4 Proline 76.53 a 69.02 a 30.20 a 0.036–362.162 1.00 0.15
5 Isoleucine 2.124 ab 8.640 a 0.612 b 0.002–38.413 0.99 0.26
6 Glycine 45.594 a 40.911 a 34.365 a 15.887–110.764 0.98 0.12
7 Serine 30.563 ab 41.764 a 22.743 b 11.093–80.087 0.97 0.35
8 Threonine 25.834 ab 29.272 a 17.876 b 9.338–50.665 0.98 0.31
9 b-Alanine 0.157 a 1.211a 0.134 a 0–8.288 1.00 0.15
10 Asparagine 682.269 a 665.774 a 605.207 a 123.393–1,626.143 0.98 0.04
11 Arginine 0.042 a 0.290 a 0.036 a 0–2.477 0.99 0.14
12 Aspartic acid 329.798 a 372.715 a 405.380 a 123.024–803.541 0.98 0.00
13 Glutamic acid 661.924 a 570.462 a 468.735 a 130.246–1,792.413 0.99 0.13
14 c-Aminobutiric acid 32.905 ab 71.490 a 28.601 b 0.081–199.878 0.99 0.27
15 Malic acid (�103) 1.402 a 1.373 a 1.410 a 0.688–2.439 0.91 0.00
16 Citric acid 478.164 a 484.869 a 486.390 a 224.592–1,091.296 0.89 0.00
17 Quinic acid 4.214 a 6.423 a 0.941 a 0–29.071 1.00 0.17
18 Gluconic acid 342.400 a 373.813 a 209.886 a 1.003–1,074.836 0.99 0.16
19 Sorbitol/galactitol 61.050 a 52.426 a 46.313 a 10.227–338.772 0.99 0.04
20 Myo-Iinositol 87.362 a 86.367 a 86.451 a 52.678–131.536 0.89 0.01
21 Arabinose 8.488 a 8.470 a 9.508 a 0.035–29.289 0.99 0.02
22 Fructose 978.644 b 1,527.779 a 805.612 b 460.547–2,198.266 0.96* 0.57*
23 Glucose 797.125 ab 1,060.501 a 625.652 b 424.344–1,628.938 0.64 0.50
24 Sucrose (�103) 30.388 a 30.226 a 30.263 a 24.189–44.493 0.80 0.01
25 Maltose (�103) 4.189 b 4.108 b 5.450 a 2.654–7.759 0.96 0.31
26 Raffinose (�103) 53.260 a 57.363 a 49.307 a 26.022–68.533 0.80 0.00
27 Myristic acid 18.511 a 23.512 a 14.159 a 11.794–79.954 0.38 0.00
28 Pentadecanoic acid 6.659 a 7.124 a 6.519 a 4.533–27.352 0.50 0.00
29 Palmitic acid (�103) 1.509 a 0.861 b 0.897 b 0.546–3.179 0.76 0.42
30 Margaric acid 5.836 a 4.059 a 4.209 a 2.843–11.532 0.72 0.29
31 Stearic acid 88.572 a 69.011 a 68.277 a 50.068–167.587 0.67 0.27
32 Arachidic acid 12.164 a 6.605 b 4.338 b 0.637–26.032 0.81* 0.53*
33 Behenic acid 19.393 a 12.438 b 10.150 b 2.046–33.803 0.73 0.50
34 Lignoceric acid 24.745 a 18.853 b 17.753 b 14.047–39.677 0.69 0.38
35 Palmitoleic acid 10.324 a 6.723 ab 3.999 b 0.657–23.2 0.72 0.35
36 Linoleic acid (�103) 4.857 a 2.649 b 1.989 b 1.223–11.002 0.80* 0.52*
37 Oleic acid (�103) 1.432 a 0.728 b 0.526b 0.341–3.779 0.76 0.46
38 Gondoic acid 97.377 a 40.371 b 23.037 b 3.973–238.384 0.78* 0.56*
39 Stearyl alcohol 1.071 a 0.269 a 0.754 a 0.012–3.915 0.88 0.00
40 Palmityl alcohol 0.135 a 0.146 a 0.489 a 0.005–5.728 0.90 0.07
41 Heneicosyl alcohol 0.276 a 0.346 a 0.418 a 0.004–9.381 0.96 0.00
42 Lignoceryl alcohol 2.453 a 1.725 ab 1.502 b 0.158–4.595 0.81 0.33
43 Ceryl alcohol 0.390 a 1.771 a 0.993 a 0.005–9.014 0.97 0.13
44 1-Heptacosanol 0.139 a 0.134 a 0.074 a 0.001–4.031 0.94 0.00
45 Montanyl alcohol 0.022 ab 0.322 a 0.018 b 0–1.338 0.95 0.28
46 a-Tocopherol 11.234 a 11.276 a 11.343 a 7.34–16.204 0.29 0.00
47 b-Tocopherol 7.216 a 6.753 a 4.423 b 2.765–12.176 0.66 0.37
48 Campsterol 167.606 a 151.943 a 152.854 a 107.308–238.318 0.70 0.13
49 Stigmasterol 21.188 a 20.645 a 20.326 a 12.664–66.48 0.85 0.02
50 b-Sitosterol 299.080 a 267.341 ab 255.826 b 220.422–373.998 0.71 0.32
51 Stigmastanol 15.784 a 14.346 a 14.381 a 10.279–22.676 0.70 0.13

NOTE.—Different letters in the same row indicate significant differences (Tukey tests; P < 0.05).
aWild emmer ¼ Triticum turgidum L. ssp. dicoccoides; emmer ¼ T. turgidum ssp. dicoccum; durum wheat ¼ T. turgidum ssp. turgidum convar. durum.
2*P � 0.05; **P � 0.01.
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loci were excluded) and between emmer and durum wheat
(FST ¼ 0.185, P < 10�5, excluding one locus).

Metabolite Profiling
In the whole set of tetraploid wheats, in total were detected
51 polar and nonpolar metabolites from 9 compound classes:
amino acids, organic acids, polyols, sugars, saturated fatty
acids (SFAs), unsaturated fatty acids (UFAs), fatty alcohols,
tocopherols, and phytosterols and the metabolite data are
available on Dryad Digital Repository DOI:10.5061/dry-
ad.12s8s. Metabolite levels within each taxon, their heritabil-
ities, and the estimates of metabolic divergence among the
taxa are reported in table 2. Twenty-nine metabolites were
common to all studied lines and 13 were shared among taxa,
but not among all of the lines of the same taxon. In total, 42
metabolites out of 51 (82.4%) were shared by the 3 taxa.
Absence of 17.6% of the metabolites from specific lines can
be due either to a state of silencing of some metabolic steps or
to the detection limit of the profiling methods. Based on the
Tukey’s test for each of the nine compound classes, wild
emmer and emmer were significantly different in the mean
level of SFAs and UFAs. No significant differences were de-
tected between emmer and durum wheat. For individual
metabolites, wild emmer was different from emmer in eight
cases corresponding to seven fatty acids and to fructose.
Emmer differed from durum wheat in the mean level of 12

metabolites (i.e., 7 amino acids, 3 sugars and montanyl alco-
hol, b-tocopherol), all present with smaller contents in the
second. In contrast, the content of maltose was significantly
higher in durum wheat (table 2).

Heritability (h2) was high for all classes of compounds,
ranging from 0.41 for tocopherols to 0.99 for amino acids
(table 2). In addition, the heritability for single metabolite
ranged from 0.29 for a-tocopherol to�1 for alanine, proline,
and quinic acid. Based on the coefficient of additive genetic
variation (Houle 1992; Hansen et al. 2011), the measured
metabolites were highly correlated between wild emmer
and emmer (r ¼ 0.539, P < 0.0001). This was not the case
for emmer versus durum wheat (r¼�0.140, P¼ 0.326), nor
for wild emmer versus durum wheat (r¼�0.081, P¼ 0.572).
More specifically, with regard to the coefficient of additive
genetic variation in single metabolites, durum wheat showed
larger differences in comparison with wild emmer and emmer
(supplementary table S1, Supplementary Material online).

For each metabolite, the level of divergence (QST) was cal-
culated (see Materials and Methods; fig. 1) to determine
whether selection (not only neutral processes) has been at
least partially responsible for the observed differences among
taxa. For 25 metabolites the observed QST was higher than
expected under neutrality. Specifically, the strongest evidence
for selection was found for 16 and 6 metabolites in the steps
from wild to domesticated emmer and from emmer to

FIG. 1. QST distribution associated with the evolutionary steps wild emmer versus emmer (primary domestication) and emmer versus durum
wheat (secondary domestication).
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durum wheat, respectively (P< 0.05). Moreover, the evidence
for selection was found in both steps for 3 metabolites. With
the exception of c-aminobutyric acid (GABA), the metabo-
lites that significantly varied when comparing wild emmer
versus emmer were mainly those of the nonpolar fraction,
and in particular all of the SFAs, most of the UFAs, three fatty
alcohols, and b-sitosterol. Thirteen of these metabolites
showed a decrease from wild emmer to emmer, with the
exception of GABA as well as ceryl and montanyl alcohols.
On the other hand, the metabolites for which the QST was
significant in the emmer versus durum wheat comparison
were principally the amino acids and b-tocopherol, which
showed a significant decrease (table 2). Finally, the metabo-
lites for which QST was significant in both comparisons were
glucose, fructose, and oleic acid. Although for oleic acid a
decrease was noted during both evolutionary steps, the two

sugars increased from wild emmer to emmer and then de-
creased to durum wheat (table 2). Following the application
of the sequential Bonferroni correction, seven metabolites
showed a signature of selection: five during the transition
from wild emmer to emmer (i.e., fructose, gondoic acid,
behenic acid, palmitic acid, lignoceryl alcohol) and two during
the step from emmer to durum wheat (i.e., alanine and valine;
fig. 1). With the exception of lignoceryl alcohol, all these me-
tabolites showed significant differences between taxa
(Tukey–Kramer tests; table 2).

It is possible that variations in the metabolite levels be-
tween taxa could be driven by correlations with other classical
kernel phenotypic traits that were under selection during
domestication (Golan et al. 2015). To distinguish such clearly
indirect effects, seven kernel traits have been considered:
1,000 kernel weight (KW); protein content (pc); embryo
weight (EW); seed weight without embryo (i.e., endosperm
weight, ENW); embryo weight/total seed weight ratio (EW/
TW); endosperm weight/total seed weight ratio (ENW/TW);
and endosperm weight/embryo weight (ENW/EW). The
seven traits were strongly correlated among each other
(data not shown) and a principal component (PC) analysis
indicates that the three PCs can effectively summarize the
information carried by the seven variables explaining the
98.99% of the total variance (supplementary table S2,
Supplementary Material online). The first, PC1, is highly cor-
related with three original variables that mainly describe the
size of the embryo relative to that of the seed; the second,
PC2, is correlated with embryo and seed weights, while the
third, PC3, mainly describes the seed pc (supplementary table
S2, Supplementary Material online).

We next treated PC1–3 as new (latent) covariates (LC1–3)
and determined their correlation to the content of each me-
tabolite. We found that the metabolite contents were often
strongly correlated with the LCs, particularly with embryo size
and pc (supplementary table S3, Supplementary Material on
line). Based on analysis of covariance (ANCOVA), the metab-
olites were categorized into two groups: those with a nonsig-
nificant and those with a significant interaction between LCs
and taxa, denoted by nsINT and sINT. We then tested if the
two groups of metabolites show difference with respect to
the number of metabolites with significant or nonsignificant
QST. For the comparison of wild emmer versus emmer, the
number of metabolites with significant QST was statistically
higher in the sINT than the nsINT group (Fisher exact test:
two-tailed, P¼ 0.0053; supplementary fig. S1, Supplementary
Material online). Although this was not true for the compar-
ison of emmer versus durum wheat (P ¼ 0.4619), it held for
the comparison of wild emmer versus durum wheat (P ¼
0.0097). The differences for the mean QST followed the same
pattern, with P values of 0.0053, 0.6040, and 0.0008 for three
contrasts, respectively. The estimates for QST upon correcting
for indirect effects of LCs (henceforth QST1) were obtained by
repeating the ANCOVA for the metabolites for which the
interactions with the three LCs were not significant, thus
allowing to obtain the “corrected” between and within taxa
variance components to determine the QST1 values (table 3).
When the three taxa were considered simultaneously, the

Table 3. QST1 Values Calculated for all Three Taxa, for Wild Emmer
Versus Emmer, and for Emmer Versus Durum Wheat Comparisons.a

Metabolite QST1

All Three
Taxa

Wild Emmer
vs. Emmer

Emmer vs.
Durum Wheat

Organic acids 0.12 0.00 0.57*
Polyols 0.08 0.04 0.00
Sugars 0.00 0.00 0.00
Tocopherols 0.00 0.00 0.68**
Phytosterols 0.12 0.20 0.32
Alanine 0.55* 0.00 0.91***
Leucine 0.42 0.11 0.66**
Proline 0.18 0.00 0.37
Isoleucine 0.26 0.13 0.38
Glycine 0.17 0.00 0.53*
Serine 0.36 0.13 0.68**
Threonine 0.34 0.00 0.61**
b-Alanine 0.14 0.12 0.10
Aspartic acid 0.00 0.00 0.04
Glutamic acid 0.15 0.00 0.18
c-Aminobutiric acid 0.26 0.25* 0.41
Citric acid 0.00 0.06 0.00
Gluconic acid 0.19 0.00 0.31
Sorbitol/galactitol 0.00 0.00 0.00
Myo-inositol 0.11 0.38** 0.00
Arabinose 0.00 0.00 0.00
Fructose 0.62** 0.53*** 0.74***
Glucose 0.57* 0.31** 0.82***
Sucrose 0.25 0.46*** 0.00
Maltose 0.16 0.00 0.32
Raffinose 0.00 0.00 0.00
Myristic acid 0.00 0.37** 0.00
Pentadecanoic acid 0.00 0.19 0.00
Stearyl alcohol 0.01 0.00 0.00
Palmityl alcohol 0.00 0.00 0.00
1-Heptacosanol 0.00 n.d. 0.00
Montanyl alcohol 0.26 0.16 0.29
a-Tocopherol 0.00 0.00 0.93***
b-Tocopherol 0.11 0.00 0.54*
Campsterol 0.11 0.17 0.00
Stigmasterol 0.00 0.00 0.00
b-Sitosterol 0.16 0.24* 0.49*
Stigmastanol 0.08 0.13 0.00

aWild emmer ¼ Triticum turgidum L. ssp. dicoccoides; emmer ¼ T. turgidum ssp.
dicoccum; durum wheat ¼ T. turgidum ssp. turgidum convar. durum. n.d., not
detected.
*P � 0.05; **P � 0.01; ***P � 0.001.
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QST1[][] values were significant only for alanine, fructose, and
glucose; moreover, for the two sugars the correction with the
covariates produced a larger value compared with the respec-
tive QST. Based on QST1, only seven metabolites were signifi-
cantly affected by selection in the step wild emmer versus
emmer, three of which were previously identified as signifi-
cantly changed based on QST (i.e., GABA, myristic acid, b-
sitosterol). Moreover, upon correcting for indirect effects of
LCs, we found evidence for selection (based on the corrected
QST) for ten metabolites in the step emmer versus durum
wheat; for seven of these (i.e., alanine, leucine, serine, threo-
nine, fructose, glucose, b-tocopherol) we also found evidence
for selection based on the QST. All the fatty alcohols and the
UFAs (i.e., oleic, linoleic) were no longer significant once co-
variates were considered. For fructose, glucose, and b-sitos-
terol, we found evidence for selection based on both QST and
QST1 measures.

Comparative Analysis of Partial Correlations between
Metabolic Profiles across Taxa
Having analyzed the difference in metabolite contents be-
tween taxa upon correction for the LCs, we next investigated
the extent of difference between partial correlations control-
ling for the LCs (referred to correlations, see Materials and
Methods) in the three wheat populations. We found that the
number of significant positive correlations is at least 4-fold
greater than the number of significant negative correlations in
each taxon (table 4). Durum wheat had the largest number of
significant positive correlations, followed by wild emmer and
emmer; this ordering of taxa was reversed when inspecting
the number of negative correlations (table 4).

A correlation found in one taxon may not have the same
magnitude and sign in the others. Therefore, we inspected the
number of shared positive partial correlations and the corre-
spondence of their values (see Materials and Methods section
for definition). We observed that the number of metabolite
pairs that were positively correlated in emmer and durum
wheat was smallest in comparison with the other two con-
trasts (table 4). However, although wild emmer and durum
wheat shared the largest number of positive correlations, the
correspondence of their values was significantly (P < 0.05)
smaller than in the case of wild emmer and emmer. The
largest number of shared partial correlations that switched

from positive to negative value was observed for the com-
parison emmer versus durum wheat, and minor differences
among taxa were observed when considering the number of
correlations that switched from negative to positive value.
Taking into account the number of nonshared partial corre-
lations between pairs of taxa, durum wheat was closer to
emmer than to wild emmer. Based on the ratio between
the shared and nonshared partial correlations, wild emmer
and durum wheat appeared as the two most divergent taxa.

This correlation-based analysis indicates that a large fraction
of correlations are taxa specific, despite the finding of shared
partial correlations; moreover, a fraction of changes in sign of
significant partial correlations supports the claim for large
rewiring of the underlying regulatory and metabolic networks.
The data also indicate that the step leading from domesticated
emmer to durum wheat might have had a greater impact on
metabolism compared with the process responsible for the
evolution from wild to domesticated emmer. Moreover, the
observed difference in metabolic restructuring between the
two domestication events is in line with our findings based
on the coefficient of additive genetic variation, above. This is
supported by the smallest number of shared correlations, lack
of correspondence between the values of the shared correla-
tions, and the largest number of correlations which change sign
between emmer and durum wheat.

Network Analysis
The correlation structure among the content of metabolites
in each of the three taxa can be represented by a network.
The nodes in this network denote metabolites and the edges
stand for the presence of significant partial correlations be-
tween pairs of metabolites (fig. 2). A change in a metabolite
content is then expected to propagate across the network
edges and cause alterations in the contents in the rest of the
metabolites. The effect on such changes can be summarized
by the centrality of a metabolite (i.e., a node) in the network.
Therefore, in the following, we determine the centralities of
metabolites in each taxon-specific network, and compare
them between the taxa.

We investigated five classical measures of node centrality,
namely, the degree, eigenvalue centrality, node betweeness,
node closeness, and node subgraph centrality (Toubiana et al.
2013) at false discovery rate of 5% for the creation of the

Table 4. Comparisons among the Three Taxa of Partial Correlations (FDR ¼ 5%) among Metabolite Levels.

Taxon Partial Correlation Comparison Shared Partial Correlation Nonshared
Partial Correlation

Ratio

Positive
(n)

Negative
(n)

Positive
(n)

Negative
(n)

Correlation
(r) among
Positive

Positive to
Negative

Negative to
Positive

Positive
and Negative

Shared/
Nonshared
Partial
Correlation

Wild
emmer

333 47 Wild emmer vs.
emmer

165 6 0.47* 25 19 153 1.12

Emmer 317 74 Emmer vs.
durum wheat

155 2 0.29 41 17 136 1.15

Durum
wheat

439 45 Wild emmer vs.
durum wheat

191 2 0.31* 27 18 247 0.78

*P ¼ 0.05.
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network edges. The degree of a node is determined by the
number of edges incident on it. The eigenvalue centrality is
based on the idea that a node is more central if its neighbors
(i.e., nodes directly accessible via an edge) are central. A node
is considered more central according to the betweenness
centrality if a larger fraction of shortest paths for any pairs
of nodes pass through it. By the closeness centrality, a node is
more central if it has smaller total distance (i.e. , length of
shortest paths) to all other nodes in the network. Finally, a
node is deemed central based on the subgraph centrality if it
participates in a larger number of closed loops (Estrada and
Rodriguez-Velazquez 2005).

We found that the centralities were more conserved be-
tween wild emmer and emmer than between emmer and
durum wheat (table 5). This is consistent across four of the
five centrality measures (i.e., degree, closeness, subgraph cen-
trality, and, to a lesser extent, eigenvalue centrality).
Therefore, we conclude that the restructuring of the networks
appears more profound for the step leading to durum wheat
from emmer. This is in line with the conclusions drawn by the
correlation-based analysis and the coefficient of additive ge-
netic variation. However, in contrast to some of the findings
from the previous analyses, the network centrality measures
of durum wheat tended to be more concordant to those of
wild emmer than of emmer.

We also wanted to know whether the ranking of metab-
olites based on the absolute values of the differences between
their centralities corresponded to the rank based on their QST

values (table 6). We found stronger concordance for wild
emmer versus emmer; this was particularly the case when
all isolated nodes (i.e., nodes of degree zero) were excluded
from the analysis. The notable differences in the centralities
reflect changes in metabolic regulation or differences in met-
abolic pathways. The same analysis was conducted by exclud-
ing or considering only metabolites with significant LCs �
species interactions (supplementary table S4, Supplementary
Material online). Upon excluding metabolites with significant
interactions, a significant correlation was observed between
subgraph centralities and QST for emmer versus durum
wheat, and for wild emmer versus emmer in the second case.

Finally, we ranked the metabolites in each network based
on their participation in taxon-specific correlations. These
taxon-specific correlations and respective metabolites can
be regarded as the metabolomics “barcode” of each taxon.
The lowest number of taxon-specific significant correlations
was observed for wild emmer (63), followed by emmer (80)
and durum wheat (161). The number of metabolites involved
in taxon-specific correlations differed between the taxa: 40 in
durum and 31 and 34 respectively in emmer and wild emmer.
We observed that palmitoleic acid, lignoceric acid, and malt-
ose were involved in 37.3% of the correlations specific to wild
emmer. Moreover, neither palmitoleic acid nor lignoceric acid
was involved in taxon-specific correlations in emmer (fig. 3).
For this taxon, stearic and arachidic acids were involved 22.5%
of taxon-specific correlations. In durum wheat, behenic and
gondoic acids and palmityl and stearyl alcohols accounted for

FIG. 2. Metabolite partial correlation networks for wild emmer (A), emmer (B), and durum wheat (C). Squares denote isolated nodes (i.e.,
metabolites which are not involved in any significant correlation). The compound classes are denoted in colors indicated in the legend. The
nodes are numbered, and the corresponding names can be found in table 2.

Table 5. Comparisons among Metabolite Correlation Networks (FDR ¼ %).

Comparison Node Degree Node Eigenvalue Betweeness Closeness Subgraph Centrality

Wild emmer vs. emmer 0.61* 0.49 �0.13 0.80* 0.60*
Emmer vs. durum wheat 0.49* 0.37 0.03 0.67* 0.32
Wild emmer vs. durum wheat 0.59* 0.61* 0.37 0.85* 0.46*

NOTE.—For each of the five centrality measures, the Pearson correlation (r) between the three possible pairs of the Triticum taxa are reported.
*P ¼ 0.05.
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34.5% of the taxon-specific correlations. None of these me-
tabolites were involved in the taxon-specific correlations of
wild emmer and emmer. When considering the two evolu-
tionary steps separately, in wild emmer versus emmer the
compounds showing the strongest changes in terms of
taxon-specific correlations were stearic, palmitoleic, and
lignoceric acids (all three with significant QST; fig. 1).
Considering emmer versus durum wheat, the metabolites
with the strongest change were stearyl alcohol and stearic,
gondoic, and behenic acids. None of these had significant QST

for emmer versus durum wheat during secondary domesti-
cation, but the three acids showed significant QST for wild
emmer versus emmer.

Discussion
The phenotypic variation for kernel metabolite composition
has been characterized by comparing significant steps of tet-
raploid wheat taxa evolution, during and after domestication.
We identified significant changes among compound classes
and single metabolites and associated the observed changes
with selection during domestication by explicitly testing hy-
potheses using QST versus FST comparisons. To make claims
about a role of selection in choosing diversity, appropriate
tests of neutrality or direct measures of fitness are needed.
Moreover, changes in kernel metabolite composition may
also be attributed to correlations with plant and organ traits
associated to domestication. In this respect, our results show
that selection signatures concerning metabolic changes were,
at least in some cases, independent from the variations at
morpho-agronomic traits related to the domestication syn-
drome. This suggests that domestication and breeding have
an unexpectedly large genetic basis. Moreover, our metabo-
lomics data support the genome-wide effects of domestica-
tion identified using genome scans for signatures of selection
in maize and common bean (Wright et al. 2005; Yamasaki
et al. 2005; Hufford et al. 2012; Bellucci et al. 2014).
Furthermore, although genomic scans cannot distinguish be-
tween selection and hitchhiking, testing directly the neutral
distribution of phenotypic variation is less likely to be influ-
enced by the reduced recombination at linked loci.

Even if we cannot estimate the number of loci involved in
the observed metabolic changes, the relatively high number
of metabolic features associated with the domestication of
tetraploid wheats provides stronger support for models of

domestications based on a relatively long transition from
the cultivation of wild plants to the complete transition to
domesticated crop (Gepts 2014). In addition, the correlation
network analysis indicated that domestication and breeding
have reshaped the metabolite coabundance patterns, as pre-
viously observed for transcriptomic data in common bean
(Bellucci et al. 2014) and maize (Swanson-Wagner et al. 2012).
Taken together, these results could explain the complex seg-
regation observed in populations derived from hybridization
between modern varieties and exotic germplasm, along with
the difficulty to use in modern breeding wild relatives and
landraces.

Here we report strong divergence among the three groups
of tetraploid wheats, particularly for the amino acids alanine
and valine and for the UFAs as a whole, with the largest effects
for gondoic, linoleic, and arachidic acids. Altogether, it ap-
pears that the emergence of emmer mainly impacted the
metabolism of the SFAs and UFAs, while the changes leading
to durum wheat largely concerned amino acid metabolism.
The possibility that the processes of domestication of tetra-
ploid wheats have induced significant changes at the metab-
olomic level, and in particular that they might have affected
amino acid and fatty acid biosyntheses, has been suggested
for several crop species. Screens for signatures of selection
conducted at genomic levels have identified genes that un-
derlie subtle phenotypic changes, such as those supporting
metabolic shifts. Such methods applied to the domestication
process do not require any a priori assumption concerning
the traits that were subject to selection.

In a seminal study, Wright et al. (2005) compared the
sequence diversity between inbred maize and teosinte at
774 genes to determine the consequences of the domestica-
tion processes. The top 4% of genes that were identified as
candidates under selection during domestication were en-
riched in functions related to amino acid biosynthesis. This
was further confirmed by Yamasaki et al. (2005) with very
high statistical support based on 1,200 maize genes. More
recently, genome-wide resequencing of 75 wild, landrace,
and improved maize lines (Hufford et al. 2012) identified
genes with signals of selection stronger than those shown
to control major morphological changes; in addition, several
of these candidates are involved in nitrogen metabolism,
like those encoding glutamine synthetase and nitrate
reductase. In Heliantuhus annuus, a survey with 492 micro-
satellite loci derived from Expressed Sequence Tags of a large

Table 6. Correlations between QST and Differences of Node Centrality Measures of Degree, Eigenvalue, Betweenness, Closeness, and Subgraph.

QST Concordance Domestication (Pearson’s Correlation Coefficient)

Primary Secondary Both
Wild emmer/emmer s.s. ¼ 49 (37) Emmer/durum wheat s.s. ¼ 51 (40) Wild emmer/durum wheat s.s. ¼ 48 (38)

Degree 0.329* (0.410*) 0.031 (�0.092) 0.217 (0.222)
Eigenvalue 0.336* (0.412*) 0.075 (�0.081) 0.178 (0.174)
Betweenness 0.238 (0.276) 0.031 (�0.117) 0.422** (0.456**)
Closeness 0.259 (0.389*) 0.156 (�0.106) 0.049 (0.005)
Subgraph �0.274 (�0.428**) 0.356* (0.270) 0.035 (�0.34)

NOTE.—Concordance between variables is supported by significant Pearson correlation coefficient. Statistics are calculated both considering all detectable metabolites and
excluding those metabolites that were isolated in the pair of networks being compared (reported in brackets). s.s. ¼ sample size.
*P < 0.05; **P < .01.
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panel of wild accessions, landraces, and improved lines al-
lowed the identification of genes under selection involved
in amino acid synthesis and protein catabolism (Chapman
et al. 2008).

Bellucci et al. (2014) considered the consequences of the
domestication process of Phaseolus vulgaris, using RNAseq
analysis; three genes were identified as having key roles in
carbon/nitrogen interactions. In maize, the reshaping of the
transcriptome during domestication includes a significant
overrepresentation of genes related to amino acid salvage
and the biosynthesis of the sulfur-containing amino acids
(Swanson-Wagner et al. 2012).

The data provided here together with those from genomic
scans for selection signatures suggest that, in several crops,
selection acting on components of amino acid metabolism
can lead to convergent phenotypic changes participating to
the domestication syndrome. This is also coherent with the
observation that improved growth due to heterosis may be
due to changes in protein metabolism (Goff 2011).

We speculate that the selection for nutritional quality to-
gether with the selection for adaptation to a new agro-eco-
system characterized by a greater provision of nitrogen have
acted as major factors dictating the need of change. In durum
wheat, an important trait is gluten quality, which is mostly
determined by the protein composition of the kernel. As
shown by Laid�o et al. (2013, 2014), the evolution of durum
wheat has been associated with selection for protein compo-
sition, in particular with a strong reduction in glutenin diver-
sity, the most important fraction responsible for gluten
quality.

UFAs have exhibited a strong reduction across the step
from wild emmer to emmer, and a further reduction in du-
rum wheat. It can be hypothesized that during domestication
these changes were associated with a genetic variation at a
key step in UFA metabolism, as also suggested by the com-
parisons of the corresponding networks. In an analysis of
several legume species, an undirected change in the content
of fatty acids was found, showing an increase in some species
and a decrease in others following domestication (Fern�andez-
Mar�ın et al. 2014). These authors argued that part of the
detected changes might have made membranes less prone
to oxidation and speculate that this modification was driven
by selection for seed storability. Consistent with this hypoth-
esis, in our experiment the reduction of UFAs was stronger
than that for SFAs, which resulted in a decreasing UFA/SFA
ratio. The step from wild emmer to emmer reduced the UFA/
SFA ration by �9%, a third of the effect for the step emmer
versus durum wheat (�28%). It should be noted that a high
UFA/SFA ratio in the human diet helps in the prevention of
cardiovascular diseases (Mozaffarian and Wu 2011). Thus, our
results indicating a reduction of the UFA/SFA ratio may sug-
gest that not necessarily all of the metabolic variations that
occurred during domestication have proceeded toward an
amelioration of the nutritional quality. This is likely due to
the observation that yield-related traits were given priority
during the domestication process. Indeed, the reduction in
fatty acids might have favored increased grain yield, as noted
in an oat selection experiment (Holland et al. 2001), or higher
kernel and flour conservation (Kopfler et al. 2012). Moreover,
fatty acid composition affects seed odor and flavor because
specific fatty acids have different susceptibilities to peroxida-
tion leading to rancidity. Interestingly, the decrease in poly-

FIG. 3. Changes in the numbers of taxon-specific correlations during
primary domestication and secondary domestication. The changes
are shown only for metabolites which are involved in taxon-specific
network from at least one taxon. The bars indicate the sums of the
taxon-specific correlations in the compared networks (blue for wild
emmer vs. emmer, yellow for emmer vs. durum wheat). Dashed ver-
tical lines denote twice the value of the mean number of taxon-
specific correlations for the respective domestication event.
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UFAs, those most susceptible to oxidation, accompanied do-
mestication of grain legumes (Fern�andez-Mar�ın et al. 2014). In
this regard, it is interesting to note that linoleic acid, the only
poly-UFA detected, was under selection based on QST.

The correlation-based network analyses indicate that se-
lection might have modified the metabolic structure in dif-
ferent pathways, but also during different evolutionary steps
of tetraploid wheats. The present analysis supports a restruc-
turing of the associations between measured metabolites
more evident for the step emmer versus durum wheat of
the domestication process.

We pointed out that there was concordance between the
change in the node centrality between wild emmer and em-
mer and the values of QST for this contrast. We also noted
that the network analysis suggested that wild emmer is closer
to durum wheat than to emmer with respect to their net-
work centrality measures. The reason for this finding is that
the centrality measures, as determined in our analysis, take
into consideration only the network structure, but not the
values for the correlations based on which the networks are
established. This opens the possibility for future research in
the direction of developing theoretical models for changes in
correlation network structure due to domestication.

In conclusion, this study indicates that selection appears to
have operated to modify the metabolomic profile of durum
wheat during its evolution. Overall, this work provides addi-
tional support for domestication models that assume a rela-
tively slow transition from the cultivation of wild plants to the
development of fully domesticated crops. Indeed, the larger
the number of independent traits that have been modified by
selection, the longer the transition to fully domesticated crop.
Our findings illustrate that selection supporting a change in
metabolites content might have operated partly indepen-
dently of variations at well-known morpho-agronomic traits
associated with the domestication syndrome, and that the
observed metabolomic changes might be a result of modifi-
cations both in the relationships between the metabolites
(i.e., regulation and participation in metabolic pathways)
and between metabolites and phenotypic traits. This study
also illustrates that selection might have operated in different
directions. Indeed, primary domestication mainly involved
changes in fatty acid metabolism, while during secondary
domestication changes were more evident for the metabo-
lism of amino acids. It is speculated that such changes might
be consequences of crop adaptation to the agro-ecosystem,
probably in relation to agricultural practices. Finally, as selec-
tion seems to have supported, at least in the case of UFAs, the
reduction of some nutritional and quality traits, most likely in
the wild and exotic germplasm useful traits can be identified
and further incorporated into modern elite varieties to im-
prove specific traits.

Materials and Methods

Plant Material
The tetraploid wheat (T. turgidum L., 2n ¼ 4x ¼ 28; AABB
genome) collection classified according to van Slageren
(1994) consisted of 37 accessions of wild emmer, emmer,

and durum wheat as shown in table 1. The wild emmer
and emmer wheat accessions were kindly provided by the
National Small Grain Collection (Aberdeen, USA), John Innes
Centre (Norwich, UK), the Institute of Crop Production,
GeneBank Department (Czech Republic), and the CNR
Institute of Plants Genetics (Bari, Italy). The durum wheat
varieties represent a selection of Italian accessions (except
“Neodur” and “Pedroso”) that were collected by the CREA
Cereal Research Centre (Foggia, Italy) and the Department of
Environmental and Agro-Forestry Biology and Chemistry,
University Aldo Moro (Bari, Italy). Twenty plants of each ac-
cession were sown at Valenzano (Bari, Italy), and a single plant
that represented the prevalent biotype of the accession was
selected and grown to maturity to produce self-seed. The
collection was grown in the year 2009/2010 under a conven-
tional farming system in Foggia (southern Italy). The kernels
were obtained from a randomized field experiment with
three replicates, with the exception of T. dicoccum MG4387
and T. dicoccoides MG4343, MG4328/61, PI343446, PI355459,
and PI470945, for which only two replicates were available.
The samples were collected at the 11.4 stage (ripe for cutting,
straw dead) of the Feekes scale (Feekes 1941).

Genotyping:DNA Extraction and SSR Analysis
To obtain a neutral benchmark for the genetic divergence
among the three taxa and for each of the three possible pairs
of contrasts, we conducted molecular marker assays with 26
microsatellite (SSR) loci. These loci were the same as those
used to study the genetic diversity and population structure
of a collection of tetraploid wheats (T. turgidum L.) (Laid�o
et al. 2013). The leaf tissue of the plants that represented the
prevalent biotypes of the accessions was used for DNA ex-
traction, according to the protocol described by Sharp et al.
(1988). The wheat collection was genotyped with 26 SSR
markers selected from the durum wheat maps developed
by the Cereal Research Centre of Foggia (Italy) and the
Department of Environmental and Agro-Forestry Biology
and Chemistry of Aldo Moro University (Bari, Italy). The se-
lection of the SSR markers was carried out considering the
following criteria: locus-specific amplification, low complexity,
robust amplification, and good genome coverage (one maker
for each chromosome arm).The wheat DNA samples were
divided into three plates, in which two control DNA samples
of known molecular weight were included, to correct possible
electrophoretic migration differences between groups ac-
cording to Somers et al. (2007). Polymerase chain reaction
(PCR) amplification was carried out in 15 lL volumes con-
taining 2 lL DNA (�80 ng), 10� PCR buffer (EuroClone),
0.4 lM of each microsatellite primer (the forward primers
were fluorescently labeled), 1.5 mM MgCl2 (EuroClone),
0.2 mM of deoxynucleotide triphosphate (dNTP) mixture
(Fermentas), and 1 U Taq DNA-polymerase (EuroClone).
The PCR was carried out using a thermal cycler (BIO-RAD)
as follows: 95 �C for 3 min, followed by 35 cycles of PCR (94 �C
for 30 s, Ta specific for each primer for 30 s, 72 �C for 1 min),
and a final extension at 72 �C for 10 min. The PCR products
were detected by capillary electrophoresis using an ABI
PRISM 3130 Analyser and analyzed using GeneMapper
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version 4.0 genotyping software. The internal molecular
weight standard was 500-ROX.

Metabolite Profiling
After collection, the samples were freeze dried, milled using a
laboratory mill (Udy-Cyclone 1093 Foss Tecator), passed
through a 0.5-mm sieve, and stored at �25 �C until analysis.
The samples were analyzed within 3 months of the freeze
drying. The extraction, derivatization, and analysis of these
samples by gas chromatography–mass spectrometry (GC-
MS) for the profiling of the polar and nonpolar metabolites
were performed following protocols described previously
(Beleggia et al. 2013) as part of the metabolomics platform
of CRA-CER (Foggia). Briefly, 100-mg dry weight of each sam-
ple was extracted using a mixture of methanol, ultrapure
water, and CHCl3 (1:1:3 v/v/v). The samples were stored at
4 �C for 30 min, and then centrifuged at 4,000� g for 10 min.
Aliquots (50 ll) of the polar and nonpolar phases (500 ll)
were dried in a Speed-vac for further analysis. The polar res-
idues were redissolved and derivatized for 90 min at 37 �C in
methoxyamine hydrochloride in pyridine (70 ll; 20 lg/ml),
followed by incubation with N-methyl-N-(trimethylsilyl)tri-
fluoro-acetamide (MSTFA, 120 ll) at 37 �C for 30 min. The
nonpolar fraction was redissolved and derivatized for 30 min
at 37 �C in MSTFA (70 ll). The polar and nonpolar metab-
olites were analyzed using GC (Agilent 6890N; Agilent
Technologies, USA) coupled with quadrupole MS (Agilent
5973; Agilent Technologies) (Beleggia et al. 2013). The chro-
matograms and mass spectra were evaluated using the
AMDIS program, while the GC-MS quantification was per-
formed using a Chemstation program. The metabolites were
identified by comparing the mass spectroscopy data with
those of the NIST 2008 database and with a custom library
obtained with reference compounds, while the absolute con-
tents of the polar and nonpolar metabolites were determined
by comparisons with standard calibration curves obtained in
the ranges of 0.04–2.00 ng and 0.05–3.00 ng, respectively. For
both polar and nonpolar profiling, the batches for analysis
included 17 runs with 2 calibration standard mixes at the
beginning and end of each batch. Before the GC-MS injection,
the samples were randomized, with the instrumental perfor-
mance monitored by internal standards added after the ex-
tractions. The standards and all of the chemicals used (HPLC
grade) were from Sigma-Aldrich Chemical Co. (Deisenhofen,
Germany), while MSTFA was from Fluka.

Statistics
Genotyping
To determine the levels of genetic divergence among the
T. turgidum taxa, we calculated the FST statistics (Wright
1931) adopting analysis of molecular variance (Excoffier
et al. 1992) and considering the individuals belonging to
each taxon as a population. In this framework, the FST was
calculated as r2

B=r
2
T, where r2

B is the (co)variance of the SSR
allele frequencies between populations (taxa) and r2

T is the
total variance (the sum of the between and within population
[taxa][co]variance components, r2

W=r
2
B). The significance of

FST was determined by permuting individuals across

populations (105 randomizations) with the Arlequin version
3.5 software (Excoffier and Lischer 2010).

We first calculated FST considering all of the 26 SSR loci.
However, such estimates can be seen as the results of selective
and nonselective (neutral) processes. To disentangle these
effects, as far as possible, and to obtain estimates of the level
of (putatively) neutral population divergence, we used a two-
step approach: 1) We applied an FST-based outlier test of
selection to identify loci that were putatively under selection,
that is, with “too high” or “too low” observed FST values
compared with the simulated neutral expectations; and (2)
we discarded the outlier loci and we retained the putatively
neutral SSR loci only. These two steps were reiterated until no
SSR loci with signature of selection were detected. Estimates
of “neutral” FST were then obtained considering the final
“neutral data set.” To detect signatures of selection, we
adopted the FDIST approach (Beaumont and Nichols 1996;
Beaumont and Balding 2004), implemented in Arlequin ver-
sion 3.5, with 106 simulations. In particular, in this method,
the distribution of FST across loci as a function of heterozy-
gosity between populations is obtained by performing simu-
lations under a finite-island model. The outlier loci were those
present in the tails of the generated distribution.

Metabolite Profiling
For the statistical analyses here we considered as quantitative
traits the total content of each of the 9 classes of metabolites:
Amino acids, organic acids, polyols, sugars, SFAs, UFAs, fatty
alcohols, tocopherols, and phytosterols, as given by the levels
of each of the single 51 metabolites determined for these
Triticum genotypes. Three biological and three analytical rep-
licates of each genotype were considered. We processed the
data using two different statistical models. First, we adopted
the nested analysis of variance (NANOVA) using the REML
procedure. For each quantitative trait (metabolite level), this
analysis allowed partitioning of the total variance (r2

TP) into
genetic variance components due to differences between
taxa (r2

B), between genotypes within taxa (r2
W), and to er-

ror/environment (arising among individuals of the same ge-
notype; that is, among the three replicates) (r2

e). Error/
environmental variance (r2

e) was taken away from the total
phenotypic variance (r2

TP¼ r 2
e þ r2

W þ r2
B) to determine

the total genetic variance (r2
TG¼ r 2

B þ r2
W). We then cal-

culated the heritability of each quantitative (metabolite level)
trait as h2¼ r 2

TG=r
2
TP. However, it is possible that variations

in the metabolite levels among these taxa were due to cor-
relation with other phenotypic traits that were associated to
selection during primary domestication and secondary do-
mestication (e.g., to pleiotropic effects). For this reason, we
studied the correlations between the metabolite levels and
seven other seed traits that were putatively under selection
during wheat evolution: EW, seed weight without embryo
(indicated as ENW), EW/TW, 1,000 KW, ENW/TW, ENW/
EW, and pc. To obtain QST estimates corrected as equalizing
taxa for seed traits (henceforth: QST1), we applied ANCOVA. If
a covariate is highly related to another covariate (at a corre-
lation of 0.5 or more), then it will not adjust the dependent
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variable over and above the other covariates. Thus, we re-
duced dimensionality of data by applying PC analysis. The
seven original covariates can be summarized by three PCs (see
Results) that we treated as LCs. First, for each metabolite, we
fit the model including two main terms (taxa, genotypes
within taxa), three covariates (LC1, LC2, LC3), and three in-
teractions (LC1 � taxa, LC2 � taxa, LC3 � taxa). For each
metabolite, we decided that when at least one of the covar-
iate � taxa interactions was significant, ANCOVA was not
applicable; that is, the homogeneity of slopes cannot be as-
sumed if interactions are significant, and ANCOVA cannot be
used to “equalize” taxa for seed traits. For the metabolites for
which all three interactions were not significant, we reran
ANCOVA without entering interaction terms. In this case,
we set taxa and genotypes within taxa as random factors
and we calculated the corrected between and within taxa
variance components using the REML procedure. These var-
iances were then used to determine the QST1 values. Thus, this
analysis allowed the differences among taxa for the metabo-
lite levels to be tested while factoring out differences for co-
variate variables; that is, as if the phenotypic traits have the
same value for all three of the taxa. As we treated the three
botanical taxa of T. turgidum as populations, for each quan-
titative trait the level of among-taxa divergence was esti-
mated using the QST statistic through equation (1) (Bonnin
et al. 1996):

QST ¼ 1þ FISð Þr2
B=½ 1þ FISð Þr2

B þ 2 r 2
W� (1)

where r2
B is the between-taxa genetic variance component,

r2
W is the within-taxa genetic variance component, and FIS is

the inbreeding coefficient that measures the reduction in the
heterozygosity observed within individuals relative to expec-
tation assuming the Hardy–Weinberg equilibrium. It should
be noted that with our design, r2

W includes both additive and
nonadditive components. Consideration of nonadditive gene
actions appears to contribute to underestimation of QST

(Whitlock 1999). However, when the goal was to study diver-
sifying selection, the test will remain conservative (Kronholm
et al. 2010).

Given the strict autogamy of T. turgidum (Chabra and
Sethi 1991; Nevo 2011) and the results of the analysis of
polymorphism at 26 SSR loci where no heterozygotes were
found (not shown), we posed FIS ¼ 1, giving equation (2)
(Bonnin et al. 1996):

QST ¼ r2
B= r2

B þ r2
W

� �
(2)

Due to the use of two statistical models, we calculated two
sets of QST statistics, one named QST (not using covariates) and
the second QST1 (using covariates). We obtained QST and QST1

values to estimate the mean divergence among the three taxa,
as also between the three possible pairs of taxa. These com-
parisons allowed disentangling the effects due to primary do-
mestication (wild emmer vs. emmer) from those due to
secondary domestication events (emmer vs. durum wheat).
The comparison of wild emmer versus durum wheat repre-
sents the combination of these two effects. For metabolites
and classes of compounds that were determined as

significantly different from the previous comparisons, mean
differences for the taxa were tested using Tukey’s tests. The
two NANOVA models were investigated using the JMP soft-
ware (SAS Institute Inc., version 8). To test the significance of
the observed QST, we used the method of Whitlock and
Guillaume (2009). Instead of directly comparing estimates of
QST (the divergence for a quantitative trait) with estimates of
FST (the molecular divergence used as a neutral benchmark),
this method compares the observed QST with the null distri-
bution of QST expected for neutrally evolving traits. In partic-
ular, the method predicts the sample variance that would be
expected from QST of a neutral trait by simulating it with
information on (neutral) FST and the within-population addi-
tive variance of the trait. Specifically, we followed these steps:

(1) Determination of the expected among-population var-
iance component E r2

B

� �
for a neutral trait, which is

given by E r2
B

� �
¼ 2FSTr2

W 1� FSTð Þ, where in our case
FST is the genetic divergence among taxa estimated
using neutral SSR markers.

(2) Provide parametric estimation of the sampling distri-
bution of E r2

B

� �
by multiplying E r2

B

� �
by a random

number, drawn from a v2 distribution with two de-
grees of freedom [d.f. ¼ 3 (i.e., the number of taxa) �
1] (Whitlock 2008).

(3) Calculation of the expected QST of a neutral trait using
the measured within-population variation, r2

W , and the
expected among-population variation E r2

B

� �
, follow-

ing equation (2).

For each trait and for each comparison among taxa, we
obtained the distribution of the test statistic QST � FST from
500,000 repetitions. The resulting P-value was determined by
observing the quantile of the simulated distribution that had
more extreme values than the observed value. Finally, we
divided the metabolites into two groups, those with signifi-
cant QST (sQST) and those with not significant QST (nsQST).
We also divided the metabolites into two groups based on
the significance of the interactions species� LCs, considering
the three taxa simultaneously (sINT, nsINT). We then tested
the associations between the significance of the QST and the
significance of the interactions species � LCs, using contin-
gency analysis and Fisher exact tests. We also tested the hy-
pothesis that the sINT and nsINT groups differ for the mean
QST level, using one-way ANOVA.

Correlation and Network Analysis
Here, we first determined the correlations based on the me-
tabolite profiles from each of the three wheat populations.
Prior to the analysis of correlations, the missing values for the
contents of the measured metabolites and compound classes
were imputed with a nonparametric approach based on ran-
dom forest (Stekhoven and Buehlmann 2012), which has
been shown to outperform other approaches with respect
to the imputation error (Waljee et al. 2013). To this end, we
used the R package missForest. Although analysis of the dif-
ferential behaviors of the levels of the metabolites can indi-
cate quantitative differences between the wheat species, this
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approach focussed instead on the correlative behavior of in-
dividual metabolites across the three wheat populations. To
investigate the metabolic profiles with respect to these sce-
narios, we first used the Pearson correlation coefficient, which
we in turn use to derive networks. The correlations were
controlled for the effects of the seven phenotypic traits (par-
tial correlations). To arrive at correlations from which the
effects of these seven phenotypic traits were partially out,
denoted by C, we used the approach of Velicer (1976) ac-
cording to equation (3):

C ¼ diag Cxxð Þ�
1
2C 	 diag Cxxð Þ�

1
2;

C 	 ¼ Cxx � CxyCyy
�1Cyx; (3)

where Cxx is the covariance between metabolites, Cxy ¼ Cyx
T

is the covariance between the metabolic and phenotypic
traits, Cyy is the covariance between the phenotypic traits,
and diag denotes the operator for a diagonal matrix. The
derived partial correlations were tested with permutation
tests (separate permutation of the replicates for each metab-
olite) with B repetitions, and empirical P-values were given by
the ratio of the number of more extreme observations incre-
mented by one and (B þ 1). We noted that only partial
correlations at prespecified FDR were retained for the analysis
(FDR 5%). Moreover, the correlation structure can be repre-
sented by a network in which nodes represent metabolites
and edges denote the presence of significant correlation over
all 1,000 imputations. The network structure can be used to
determine the metabolites for which the connections to the
rest of the network change the most between two species. In
addition, using various centrality measures, it was possible to
investigate the changes in the position/role of metabolites in
the network of data-established associations. In such a way,
this moves away from investigating only the local aspects of
the effects of a metabolite, and instead brings about the sys-
tems point of view. In addition, network properties can be
used to further describe the global differences between the
structures of significant correlations between species, and
how these arise from local differences. We thus obtained
three taxon-specific, correlation-based networks (i.e., for
wild emmer, emmer, durum wheat). To characterize each
network, we calculated the following seminal properties
(Newman 2003) of the derived correlation-based networks
at an FDR of 5%: Average path length, diameter, number of
components, and isolated nodes. Also, to gain insight into the
relative importance of each node (metabolite) within a net-
work, we obtained five different measures of centrality: Node
degree, eigenvalue, betweenness, closeness, and subgraph.
Thus, to quantify differences in the metabolite correlation
structure among taxa, we determined the agreement of the
node centrality measures between the taxon-specific correla-
tion-based networks. Moreover, to further determine the ef-
fects of selection (as measured by QST) on the rewiring of the
metabolic profiling of the wheat seeds during domestication,
we determined the concordance between QST and the differ-
ences in the node centrality measures between taxon-specific

networks. In both cases, the degree of agreement was quan-
tified by Person’s r coefficients of correlation. The correlation
and network-based analyses were carried out in R. To calcu-
late the network properties, we used the R package igraph
(Csardi and Nepusz 2006).

Supplementary Material
Supplementary tables S1–S4 and figure S1 are available at
Molecular Biology and Evolution online (http://www.mbe.ox
fordjournals.org/).

Acknowledgement
This work was supported by the PON a3 PlASS project.

References
Bar-Yosef O. 1998. The Natufian culture in the Levant, threshold to the

origins of agriculture. Evol Anthropol. 6(5):159–177.
Barbeau WE, Hilu KW. 1993. Protein, calcium, iron, and amino-acid

content of selected wild and domesticated cultivars of finger millet.
Plant Foods Hum Nutr. 43(2):97–104.

Beaumont MA, Balding DJ. 2004. Identifying adaptive genetic divergence
among populations from genome scans. Mol Ecol. 13:969–980.

Beaumont MA, Nichols RA. 1996. Evaluating loci for use in the genetic
analysis of population structure. Proc R Soc B. 263:1619–1626.

Beleggia R, Platani C, Nigro F, De Vita P, Cattivelli L, Papa R. 2013. Effect of
genotype, environment and genotype-by-environment interaction
on metabolite profiling in durum wheat (Triticum durum Desf.)
grain. J Cereal Sci. 57:183–192.

Bellucci E, Bitocchi E, Ferrarini A, Benazzo A, Biagetti E, Klie S, Minio A,
Rau D, Rodriguez M, Panziera A, et al. 2014. Decreased nucleotide
and expression diversity and modified co-expression patterns char-
acterize domestication in the common bean. Plant Cell
26:1901–1912.

Bonnin I, Prosperi JM, Olivieri I. 1996. Genetic markers and quantitative
genetic variation in Medicago truncatula (Leguminosae): a compar-
ative analysis of population structure. Genetics 143:1795–1805.

Chabra AK, Sethi SK. 1991. Inheritance of cleistogamic flowering in du-
rum wheat (Triticum durum). Euphytica 55(2):147–150.

Chapman MA, Burke JM. 2012. Evidence of selection on fatty acid bio-
synthetic genes during the evolution of cultivated sunflower. Theor
Appl Genet. 125:897–907.

Chapman MA, Pashley CH, Wenzler J, Hvala J, Tang S, Knapp SJ, Burke
JM. 2008. A genomic scan for selection reveals candidates for genes
involved in the evolution of cultivated sunflower (Helianthus annus).
Plant Cell 20:2931–2945.

Chen W, Gao Y, Xie W, Gong L, Lu K, Wang W, Li Y, Liu X, Zhang H, Dong
H, et al. 2014. Genome-wide association analyses provide genetic
and biochemical insights into natural variation in rice metabolism.
Nat Genet. 46:714–721.

Csardi G, Nepusz T. 2006. The igraph software package for complex
network research. InterJ Complex Syst. 1695.

Estrada E, Rodriguez-Velazquez JA. 2005. Subgraph centrality in complex
networks. Phys Rev. E71:056103.

Excoffier L, Lischer HEL. 2010. Arlequin suite ver 3.5: a new series of
programs to perform population genetics analyses under Linux
and Windows. Mol Ecol Resour. 10:564–567.

Excoffier L, Smouse P, Quattro J. 1992. Analysis of molecular variance
inferred from metric distances among DNA haplotypes: application
to human mitochondrial DNA restriction data. Genetics
131:479–491.

Feekes W. 1941. De Tarween haar milieu. Verslogen van de Technische
Tarwe Commissie, XVII Editor Gromingen:Hoitsema, 560–561.

Beleggia et al. . doi:10.1093/molbev/msw050 MBE

1752

Deleted Text: u
Deleted Text: E
Deleted Text: p
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: -
Deleted Text: a
Deleted Text: n
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw050/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw050/-/DC1
http://www.mbe.oxfordjournals.org/
http://www.mbe.oxfordjournals.org/


Fern�andez-Mar�ın B, Milla R, Mart�ın-Robles N, Arc E, Kranner I, Becerril
JM, Garc�ıa-Plazaola JI. 2014. Side-effects of domestication: cultivated
legume seeds contain similar tocopherols and fatty acids but less
carotenoids than their wild counterparts. BMC Plant Biol. 14:1599.

Gaut BS. 2015. Evolution is an experiment: assessing parallelism in crop
domestication and experimental evolution: (Nei Lecture, SMBE
2014, Puerto Rico). Mol Biol Evol. 32:1661–1671.

Gepts P. 2014. The contribution of genetic and genomic approaches to
plant domestication studies. Curr Opin Plant Biol. 18:51–59.

Gepts P, Papa R. 2002. Evolution during domestication. In: Encyclopedia
of life sciences. London: Macmillan Publishers, Nature Publishing
Group. p. 1–7.

Gioia T, Nagel KA, Beleggia R, Fragasso M, Ficco DBM, Pieruschka R, De
Vita P, Fiorani F, Papa R. 2015. The impact of domestication on the
phenotypic architecture of durum wheat under contrasting nitro-
gen fertilisation. J Exp Bot. 66:5519–5530.

Goff SA. 2011. A unifying theory for general multigenic heterosis: energy
efficiency, protein metabolism, and implications for molecular
breeding. New Phytol. 189:923–937.

Golan G, Oksenberg A, Peleg Z. 2015. Genetic evidence for differential
selection of grain and embryo weight during wheat evolution under
domestication. J Exp Bot. 66:5703–5711.
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