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Accurately establishing the state of large-scale quantum systems is an important tool in quantum
information science; however, the large number of unknown parameters hinders the rapid characterisation
of such states, and reconstruction procedures can become prohibitively time-consuming. Compressive
sensing, a procedure for solving inverse problems by incorporating prior knowledge about the form of the
solution, provides an attractive alternative to the problem of high-dimensional quantum state
characterisation. Using a modified version of compressive sensing that incorporates the principles of
singular value thresholding, we reconstruct the density matrix of a high-dimensional two-photon entangled
system. The dimension of each photon is equal to d 5 17, corresponding to a system of 83521 unknown real
parameters. Accurate reconstruction is achieved with approximately 2500 measurements, only 3% of the
total number of unknown parameters in the state. The algorithm we develop is fast, computationally
inexpensive, and applicable to a wide range of quantum states, thus demonstrating compressive sensing as
an effective technique for measuring the state of large-scale quantum systems.

M
any areas of quantum mechanics require the efficient and accurate measurement of entangled states.
Perhaps the most traditional and widely adopted way of doing so is through full tomographic recon-
struction1, a technique that performs a series of independent measurements on the system in order to

uniquely identify its nature. However, the complexity of such a method dramatically increases with increasing
dimension of the system, and fully measuring the state of two entangled objects, each of d dimensions, requires at
least d4 measurements2. As a result, full tomographic reconstruction is effective only at low dimensions and is
otherwise prohibitively time consuming and computationally expensive.

Large-dimensional states are necessary for quantum computation and for certain quantum information pro-
tocols. Monz et al. reported the generation of a 14-qubit entangled state using trapped ions3, and Yao et al.
reported the generation of an 8-photon entangled state4, although neither reported the density matrix for their
respective states. Zhang et al. performed quantum tomography of a hybrid optical detector with over a million free
parameters5. However, to date, the largest density matrix reported for an entangled state is that of Häffner et al.,
who recorded the density matrix of 8 trapped ions6.

Compressive sensing, which originates from the field of signal processing, provides a very efficient mechanism
to establish properties of an unknown system with limited observations (see, e.g., Candès7 and references therein).
Compressive sensing uses prior assumptions in order to reduce the number of possible solutions, which can
drastically reduce both measurement and processing time. Consequently, it is possible to establish descriptions of
very large systems that could previously not be explored. This principle is used extensively in the fields of image
reconstruction8 and medical tomography9, and it has recently been adopted in various areas of quantum
science10–16.

In this paper we propose and outline a compressive sensing technique that is able to successfully reconstruct the
density matrix of near-pure entangled states of high dimensions. We implement this method to reconstruct a pure
state of two 17-dimensional photons entangled in their orbital angular momentum. The recovery of the state is
achieved by employing only 3% of the measurements that full tomographic reconstruction would require. The full
procedure, including measuring and post-processing, takes approximately three hours on a standard desktop
computer. Our data processing algorithm is similar to the singular value thresholding algorithm detailed in17;
however, its design is specifically adapted for near-pure entangled state reconstruction. The procedure is fast,
computationally inexpensive, and robust to noise.
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Results
Theoretical description of compressive sensing and quantum
tomography. Compressive sensing is a data-processing technique
widely used in different signal reconstruction applications. Its aim
is to find the solution to underdetermined linear systems, under the
assumption that such a solution is sparse in some basis. Such
problems can be posed in the following way:

min f xð Þk k1 s:t: Ax~b, ð1Þ

where x [ C
N|1 represents a vector describing the measured object;

A [ C
M|N is the matrix of measurements, with M=N ; b [ C

M|1 is
the vector of measurement results; jj ? jj1 denotes the ,1 norm of the
vector; and f is a transformation to a space in which f(x) has a sparse
representation.

In the specific case of quantum state tomography, the aim is to
reconstruct an unknown near-pure density matrix, using an under-
sampled set of measurements, under the assumption that such a
matrix is low rank. The problem to be solved is then10,18

min r̂k kTr s:t: A~r~~p, Tr r̂ð Þ~1, r̂~r̂{: ð2Þ

Here, r̂ is the density matrix to be reconstructed, while~r [ CN|1 is
the density matrix in vector form; A [ C

M|N is the matrix of mea-
surements; ~p [ C

M|1 is the vector of resulting probabilities; and
jj ? jjTr stands for the trace norm of the matrix. The rows of the
measurement matrix A are individual measurement vectors Ai, and
the elements of the vector~p are the corresponding probabilities pi.

The algorithm. We develop an operation-projection method similar
to the singular value thresholding algorithm shown in17 and
implemented in10; however, we significantly modify its design in
order to make use of the known features of near-pure entangled
states. While singular value thresholding relies on both decom-
posing and recomposing the matrix using singular value
decomposition, our method instead recomposes the matrix using
the assumption that it is Hermitian. The algorithm requires an
initial guess matrix to begin the procedure. The protocol then has
two main stages: (i) the operations on the current matrix r̂ to impose

the desired characteristics and (ii) the projection of the resulting
answer in vector form ~r onto the solution space. Applying these
steps repeatedly constitutes an iterative procedure to approach the
target solution. We interchange between the matrix form and vector
form when implementing the operation and projection stages
respectively.

In the operations stage, two steps are performed: First, the rank of
the matrix is reduced by thresholding the eigenvalues below a certain
level. This is achieved by decomposing the matrix into its eigenvalues
and eigenvectors, setting the eigenvalues below the chosen threshold
to zero, and then recomposing the matrix using

r̂~
X

li Qij i Qih j, ð3Þ

where li is the ith eigenvalue and Qi the corresponding eigenvector.
Second, to make use of the known sparsity characteristics associated
with entangled states, we apply a thresholding operation on the
individual matrix elements. We achieve this by setting the elements
that have modulus smaller than a chosen value to zero. To apply the
method to a state that is not known to be entangled, this step can be
excluded. Finally, we normalise the result to have trace equal to unity
to obtain a density matrix.

After the operation, the resultant matrix r̂0 has the desired char-
acteristics of the solution; however, it no longer belongs to the linear
space defined by the measurements A and probabilities~p. To return
the matrix r̂0 to the space defined by A~r~~p, we then implement the
projection stage of the procedure. In order to describe the projection
stage, we first introduce a geometrical formalism of the problem.

Each measurement vector Ai and corresponding probability pi

represents a hyperplane in a space of N dimensions, where N is
the number of elements in ~r. This can be understood by visualis-
ing each measurement as the normal to a plane; the probability
resulting from the measurement provides the intercept of the
plane with the normal, which completely defines a plane in which
the solution can reside. The intersection of these hyperplanes
represents the set of all solutions to the system A~r~~p. A simpli-
fied version of this concept is shown in Fig. 1, where two inter-
secting hyperplanes are represented as two-dimensional planes,
and their intersection as a line.

Figure 1 | A schematic representation of the compressive sensing problem. The two green planes A’i~r~p’i and A’j~r~p’j each correspond to individual

measurements and represent two different solution spaces. The intersection of the two planes corresponds to the set of all solutions belonging to the

combined space A~r~~p, indicated by the red line. The curved line represents a set of potential solutions in the space that retain the desired characteristics

of our answer. Our algorithm works by iterating between the set of solutions with the desired characteristics (orange line) and the set of solutions

belonging to A~r~~p (red line). After a number of iterations, the algorithm converges to the solution of A~r~~p that possesses the desired characteristics.
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After the operations stage, the matrix r̂0 is reshaped into vector
form ~r0 so that it can be projected onto the intersection of the
hyperplanes defined by the linear system. The projection procedure
is simple and computationally inexpensive if the hyperplanes are all
perpendicular to each other.

However, although the matrix of random measurements A is
nearly orthonormal, there is small non-zero overlap between any
two measurements Ai and Aj (i ? j). This is due to the physical
limitations of the measurement procedure. For this reason, we trans-
form the system A~r~~p into a new system A’~r~~p’, where A9 is an
orthogonal matrix. This is achieved by multiplying both A and p by a
matrix B such that BA 5 A9. It is important to note that the system
A’~r~~p’ is a mathematical construct and no longer directly relates to
the measurements and their corresponding probabilities; however,
the set of solutions it defines is exactly the same as that of the original
system.

In order to obtain a solution ~rs from the initial point ~r0, we
progressively project~r0 on each hyperplane in turn. This procedure
is initiated by projecting the initial point~r0 onto the first hyperplane,
given by A’1~r~~p’1, to find a new point ~r1. This new point is then
projected onto the second hyperplane, and we continue in this fash-
ion until the desired solution ~rs is found. This occurs after M pro-
jections, where M is the number of measurements. Details of this
projection procedure can be found in the Supplementary Materials.

Applying this operation-projection procedure repeatedly consti-
tutes an iterative method that provides a solution exhibiting the
desired characteristics and belongs to the linear system A~r~~p.
The schematic outline of the algorithm is shown in Fig. 1, where
the orange and red arrows represent the operation and projection
steps, respectively. The method is considered complete when the
distance between consecutive iterates is below a predetermined
tolerance.

Noise correction. In our system, noise manifests itself as errors in the
measured probabilities. Such noise is unavoidable, and consequently,
the density matrix that we recover ~rr will not correspond to the
desired solution to the problem A~r~~p; instead, it will be a
solution to the system A~r~~pzD~p, where D~p is a vector of errors
on the true probabilities. This error in probabilities results in a
solution ~rr that is in fact some distance D~r from the desired
solution~rd in the space in which the algorithm operates. There are
many methods for finding the solution in the presence of error17,19. In
our case, we determine D~r and subtract it from~rr . This corresponds
to the operation

~rd~~rr{D~r: ð4Þ

We use a priori knowledge of the desired state’s characteristics to find
D~r and systematically correct for noise in the system. Further details
of our method can be found in the Supplementary Information.

Experimental implementation. We have performed an experi-
mental recovery of the density matrix of a 17-dimensional two-
photon state in the orbital angular momentum (OAM) degree of
freedom, produced by parametric downconversion (see Methods
for details). The dimension of each photon is equal to d 5 17, so
the number of unknown parameters in the entire state is 83521. The
reconstruction is performed after 2506 projective measurements,
which corresponds to only 3% of the total number of unknown
parameters in the state. The reconstruction of the state is shown in
Fig. 2.

The state that we measure exhibits strong anti-correlations in the
OAM degree of freedom; that is to say that the OAM state j,æS in the
signal photon is correlated with the state j2,æI in the idler photon.
Additionally, the existence of the non-zero off-diagonal elements in
the density matrix indicates a high degree of purity in the obtained

state. These two features combine to suggest a high degree of entan-
glement of the OAM modes.

To characterise the entanglement, we use the fidelity of the recon-
structed state r with the ideal, maximally entangled pure state

Wj i~
X
‘

1
d2

{‘j iS6 ‘j iI : ð5Þ

The fidelity is then given by

F~Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r
p

Wj i Wh j ffiffiffirpq� �
: ð6Þ

For the density matrix shown in Fig. 2, this fidelity was found to be
83.1%.

In order to characterise the effectiveness of the reconstruction
method, we reconstructed the density matrix of a 7-dimensional
two-photon state with varying number of measurements. The result-
ant fidelities are shown in Fig. 3. We show the results both with and
without our error correction procedure. For both cases, the fidelity
increases as the number of measurements increases, indicating that
more information produces a more accurate reconstruction.

However, for the case without error correction, the fidelity gradu-
ally decreases beyond 20% of the measurements. Because the mea-
surements performed are nearly orthogonal to each other and are of
insufficient number to yield a fully determined system, the errors
contained within each measurement result do not average out to
reduce the uncertainty, but instead sum to increase the uncertainty.
Equivalently, every measurement taken into account restricts by one
dimension the space of possible solutions to the underdetermined
system: fidelity increases with increasing measurements at a low
number of samples because the space is large enough to be very close
to the desired solution, but the space gets smaller with increasing
measurements, progressively excluding other low-rank sparse
objects. At the high fidelity peak, the space is small enough so that
the lowest rank and sparsest solution it contains is approximately the
desired one and the algorithm will converge towards it. As the num-
ber of samples increases, the accumulation of errors results in a
solution space that is far from the desired one; however, with addi-
tional samples, the dimension of the space is reduced. As a result, its
distance from the sampled object increases and the algorithm yields
an answer that diverges from the desired one.

Discussion
We have developed and tested an efficient method for determining
the state of a quantum system based on a few simple assumptions. In
this case, we use the prior knowledge of the sparsity of the density
matrix associated with the system to achieve high-fidelity recovery
from a small number of independent measurements of that system.
Thus the state that we report corresponds to that which satisfies the
set of measurements and the initial assumption of purity. One way to
look at this is to say that we have answered the following question:
‘‘What is the purest state that is compatible with the set of measure-
ments?’’ However, a feature of our method is that, using the same
measurements and different prior knowledge, it can be readily
refashioned to recover many states with a variety of desired
characteristics.

In the case of a two-photon entangled state, where each pho-
ton exists in a 17-dimensional space with 83521 corresponding
unknowns, we are able to recover the system with 3% of the measure-
ments required for informational completeness of an unknown gen-
eral quantum state. Our result corresponds to one of the largest
discrete quantum states yet to be reported. We anticipate that the
techniques implemented in this work will have impact in a wide
range of areas in quantum science, including implementation
and verification of quantum information protocols using high-
dimensional states.
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Figure 2 | (a) The real part of the recovered density matrix. The dimension of each photon is equal to d 5 17, so that the number of unknown parameters

of the combined space is equal to 83521. The index i runs from i 5 28 to 8. (b) The imaginary part of the recovered density matrix.
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Methods
We use a 100-mW diode laser with wavelength 405 nm, along with a 3-mm-thick
BBO crystal, to generate entangled photons through the process of parametric
downconversion; see Fig. 4. The two-photon state that is generated in this process is
given by

Yj i~
X
‘

c‘ {‘j iS6 ‘j iI , ð7Þ

where jc,j2 indicates the probability of finding the signal photon with OAM {‘�h and
the idler photon with OAM ‘�h. In our experiment, we limit the range of OAM states to
values between , 5 28 and , 5 8.

The signal and idler photons are each incident on a separate half of a spatial light
modulator (SLM), displaying computer-generated holograms, and then collected by a
single-mode fibre connected to a single-photon detector. This results in a projective
measurement on the two-photon mode. The result of the projection is measured by
the coincidence detection with a coincidence window of 25 ns. Each measurement is
performed for 3 s with a maximal coincidence rate of approximately 450 counts/sec.

One of the keys to successful compressive sensing is to ensure that the measure-
ment states are unstructured with respect to the basis in which the sampled state is
sparse. For this experiment, that corresponds to measurement settings that are ran-
dom superpositions of OAM modes. Therefore the measurement states jyiæS and jwiæI

are generated from superpositions of OAM states where the coefficients a, are gen-
erated at random

wj i~
X

a‘ ‘j i: ð8Þ

We generate the matrix A, of Eq. (2), by performing a number of random separable
projective measurements. Each row of A corresponds to the vector form of the
individual projectors Âi . The projection operator Âi is given by

Âi~ yij iS wij iI yih jS wih jI , ð9Þ

where the states jyiæS and jwiæI are the modes for the signal and idler arms respectively.
The coincidence rate ci for each measurement Âi can be normalised to obtain the

equivalent probability pi. Each probability pi constitutes the result of the corres-
ponding measurement Âi . The probability of recording a coincidence count is given
by

pi~Tr Âir̂
� �

: ð10Þ

Consequently, the linear system that is defined by the set of measurement operators
{Âi} and the corresponding probabilities {pi} is

A~r~~p, ð11Þ

where~r is the vector form of the density matrix r̂. After performing an appropriate
number of measurements, the task is then to solve the inverse problem under the
constraints given by Eq. (2).
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Figure 4 | Experiment configuration for compressive sensing of high-
dimensional quantum states entangled in the orbital angular momentum
degree of freedom.
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