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Variation in cyanogenic compounds
concentration within a Heliconius butterfly
community: does mimicry explain
everything?
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Abstract

Background: Aposematic species advertise their unpalatability using warning signals such as striking coloration.
Given that predators need to sample aposematic prey to learn that they are unprofitable, prey with similar warning
signals share the cost of predator learning. This reduction in predation risk drives evolutionary convergence of
warning signals among chemically defended prey (Müllerian mimicry). Whether such warning signal convergence is
associated to similar defence levels among co-mimics is still an open question that has rarely been tested in wild
populations. We quantified variation in cyanide-based (CN) chemical protection in wild caught individuals of eight
aposematic Heliconius butterfly species belonging to four sympatric mimicry rings. We then tested for correlations
between chemical protection and ecological species-specific traits.

Results: We report significant differences in CN concentrations both within and between sympatric species, even
when accounting for the phylogeny, and within and between mimicry rings, even after considering inter-specific
variation. We found significant correlations between CN concentration and both hostplant specialization and
gregarious behaviour in adults and larvae. However, differences in CN concentrations were not significantly linked
to mimicry ring abundance, although the two most toxic species did belong to the rarest mimicry ring.

Conclusions: Our results suggest that mimicry can explain the variation in the levels of chemical defence to a
certain extent, although other ecological factors are also relevant to the evolution of such variability.

Background
Toxic species displaying bright colour patterns that adver-
tise their unpalatability to predators are said to be aposem-
atic [1, 2]. Although the association between warning
coloration and distastefulness can rely on predators’ innate
biases [3], they usually need several sampling events to
learn it [4–7]. This predation pressure promotes evolution-
ary convergence in colour patterns between chemically
protected species living in sympatry, because species that
share a common warning signal share the cost of predator
learning. This association is known as Müllerian mimicry

[8], and different species that exhibit the same warning sig-
nal are said to form “mimicry rings”. Müllerian mimicry
has been observed in various unpalatable organisms such
as insects [9, 10] and amphibians [11]. Similar protection
between Müllerian co-mimics has been classically assumed
in theoretical approaches as it is modelled as a strictly mu-
tualistic interaction. However, when co-mimetic species ex-
hibit differences in defence levels, less protected mimics
might dilute the protection of a given warning signal, acting
in a semi-parasitic manner (i.e., quasi-batesian mimicry
[12]). Uneven defences within mimicry ring can then pro-
mote warning signal shift in the most toxic species toward
better-protected mimicry rings [13]. Such processes might
homogenize defence levels among Müllerian mimics but
empirical studies estimating defence variations within
natural communities are still lacking. Species that are
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considered Müllerian co-mimics can rely on drastically
different chemical compounds [14], and chemical defences
can be either sequestered from diet [15–18] or neo-
synthesized [19, 20]. Consequently, co-mimics are not al-
ways equally unpalatable, with levels of chemical protection
varying from very similar to very uneven, as reported in
some mimetic butterflies [21, 22] and frogs [23, 24]. Even
within species, individuals are not equally protected. In ex-
treme cases, this intraspecific variation includes palatable in-
dividuals within protected species; an interaction known as
automimicry [25]. Automimics thus benefit from the unpal-
atability of their co-mimics, without investing in chemical
protection themselves. This variation in defence levels be-
tween mimics can be linked to several ecological factors.
Factors associated to the amount of prey encountered

by predators (abundance) and how memorable such en-
counters are (enhanced by behaviours such as aggregation,
for instance [4, 26] but for contrasting evidence see [27])
might be correlated with different defence levels. More-
over, when defences are sequestered, the efficiency in the
use of the available resources (larger for specialist than for
generalist feeders, for example [20, 28]) is also likely to
play an important role in the evolution of chemical
defences. Additionally, differences in the resource use
between sexes associated to their relative vulnerability in-
trinsic to their specific ecological roles [23], need also to
be considered when studying differences in chemical pro-
tection. All these factors are correlated, and might have a
joint effect on defence level variation and warning signal
convergence. Here we investigate the effect of those multi-
farious ecological traits in chemical protection variation.
Here, we focus on Neotropical Heliconius butterflies,

which exhibit several outstanding examples of mimetic con-
vergence between distantly related species both within [29]
and outside the genus [30]. Heliconius butterflies contain
toxic cyanogenic glucosides obtained from their Passiflora
host plants during larval feeding [30, 31], and also through
de novo synthesis as larvae and adults [16, 20]. Although all
Heliconius have similar chemical compounds, they partici-
pate in a number of different sympatric mimicry rings,
allowing investigation of variations in toxicity both within
and between mimicry rings in a single community. Several
previous studies have investigated toxicity (i.e., chemical
compounds) and unpalatability (i.e., predators behaviour)
variations in Heliconius butterflies. Studies of natural and
experienced predators found differences in rejection behav-
iour towards several Heliconius species [32, 33]. However,
no attempts were made to disentangle the visual and chem-
ical components of aposematic prey. Chemical analyses have
also revealed differences in the concentration of cyanogenic
compounds in Heliconius butterflies, highlighting in particu-
lar the apparent association between the specialisation of
Heliconius sara on the larval host-plant Passiflora auriculata
and a significant increase in toxicity compared to generalist

species [20, 34, 35]. However, most butterflies used in these
studies were captive-bred, and in several cases were not
reared on their natural host plant species. The variations in
toxicity in natural populations, which are the products of
multifarious ecological factors, have yet to be investigated.
By comparing toxicity in Heliconius species sharing

warning signals but with contrasting abundances, and dis-
tinct behavioural (i.e., larval aggregation, communal roost-
ing) and physiological traits (i.e., host-plant specialisation,
capacity to synthesise cyanogenic glucosides), we test for
associations between those different traits and chemical
defence levels. We measured cyanide levels in wild caught
individuals belonging to eight different sympatric Helico-
nius species, aiming to 1) quantify the variation of cyanide
concentration within and between sympatric protected
species. We also aim to test whether 2) co-mimetic species
have similar levels of toxicity, 3) coexisting mimicry rings
have different toxicity levels, and 4) differences in toxicity
are correlated with a) the local abundance of the mimicry
ring, b) sex, and c) life history traits such as communal
roosting, larvae gregariousness and dietary specialisation.

Methods
Sample collection
Butterflies were collected in natural populations in the vicin-
ity of Tarapoto (San Martin department, Peru) in September
2014. Butterflies’ head, thorax and abdomen were stored in
methanol (wings were discarded because the head and
thorax of Heliconius butterflies usually contain the highest
CN concentrations [36]). Our sample included 8 Heliconius
species belonging to 4 different mimicry rings, thus encom-
passing all the local Heliconius mimicry rings (see Fig. 1): H.
numata (n= 28, 7 females, 20 males, 1 not registered sex
(NRS)) and H. ethilla (n= 5, 2 females, 3 males) (tiger ring),
H. erato (n = 23, 5 females, 17 males, 1 NRS) and H.
melpomene (n= 20, 6 females, 13 males, 1 NRSS) (postman
ring), H. aoede (n= 9, 4 females, 5 males) and H. burneyi (n
= 8, 1 female, 7 males) (dennis-rayed ring), H. sara (n= 12, 2
females, 10 males) and H. doris (n= 15, 9 females, 6 males)
(blue/yellow ring). While there is evidence that Heliconius
mimicry rings are segregated by habitat to some degree [37],
all of these butterflies occur in the same broadly defined
community, and can be seen flying together.

Cyanide extraction
Methanol was removed from the collection tube using a
vacuum concentrator (Savant AES 1010 Speedvac® system:
ThermoFisher Scientific France). Dried butterfly bodies
were then ground to a fine powder using liquid nitrogen in
a mortar and the powdered tissue was weighed. First we
extracted all cyanogenic glucosides (CGs) by adding 0.1 M
H3PO4 (4 mL, also used to rinse the butterfly collection
flask) and stirring the mixture at room temperature for 1 h.
The mixture was then filtered using 7 mm diameter glass
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pipettes and cotton. To hydrolyse the cyanogenic com-
pounds by cleaving the glycosidic bond and releasing the
cyanohydrin aglycone (Fig. 3), 2 mL aliquot of the filtrate
was mixed with 2 mL of 5 M H2SO4, in a tightly capped
tube and heated in boiling water (100 °C) for 1 h. The hot
solution was cooled in an ice bath and 5 mL of ice-cold
5 M NaOH was added to hydrolyse the cyanohydrin agly-
cone and trap the liberated cyanide as NaCN. The basic so-
lutions were allowed to stand for 1 h at room temperature
to ensure complete reaction.

Quantification of cyanogenic glucosides by colorimetric
analysis
The following method was adapted from Lambert et al. [38].
Aliquots (125 μL) of the final basic solution were poured
into three different test tubes containing 0.2 M phosphate
buffer (875 μL, pH 6), allowing independent measures of
three technical replicates for each biological sample. 0.4 mL
of N-chlorosuccinimide/succinimide (NCS) oxidizing re-
agent solution was added to each tube (see Additional file 1
for detailed NCS preparation). These oxidised solutions
were then kept at 20–21 °C for 20 min, after which 1.6 mL
of pyridine/barbituric acid solution (chromogenic reagent,
see Additional file 1 for preparation) was added. After
20 min, when the mixture developed a purple colour, the
absorbance of the sample was measured using a spectropho-
tometer (UVIKON UV 9×3 W, BioServ France) at 580 nm
against a blank solution (phosphate buffer + reagents). The
NaCN concentration for each sample was then calculated
by comparing its absorbance with a calibration curve calcu-
lated using solutions of known NaCN concentration, with
standard absorbance of each sample on the x-axis and

known NaCN concentration on the y-axis (NaCN range
0.2–18 μg/mL).

Ecological and life-history traits
Abundance (the total number of individuals in each mim-
icry ring) was estimated from sampling performed in San
Martin and Loreto areas in January-March 2011, August-
December 2011, January-March 2012, September 2014
and June 2015 to April 2016 (Fig. 2). We included all
protected mimetic species (Heliconius, ithomiine butter-
flies and Chetone moths) involved in each of the four
mimicry rings (tiger, postman, dennis-rayed and blue/yel-
low, Additional file 2: Table S1). Data on roosting
behaviour, larval gregariousness and host plant use were

Fig. 1 Phylogenetic relationships of the 8 species used in this study and number of samples per species. Phylogeny dated according to Kozak
et al. [29]. The two main types of larvae are shown in the top left; g) brown/green and gregarious and s) white and solitary, and are associated to
each species (in parenthesis)

Fig. 2 Abundances of butterflies belonging to each mimicry ring in
the Peruvian departments of San Martin and Loreto. Samples were
collected on January-March 2011, August-December 2011, January-
March 2012, September 2014 and from June 2015 to April 2016, and
were pooled together. On top of the bars is the number of species
belonging to each mimicry ring
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obtained from the literature [30, 39–42] and are sum-
marized in Table 1.

Statistical analyses
To explore whether convergence in colour pattern is asso-
ciated to the convergence of each of the evaluated traits,
we performed a Factor Analysis of Mixed Data (FAMD)
using FAMD in the R-package FactoMineR [43]. FAMD
performs Principal Component Analyses on continuous
variables and Multiple Correlation Analyses on categorical
variables, enabling the simultaneous analysis of both kinds
of factors. Abundance was excluded given that both spe-
cies within each mimicry ring share the same abundance,
thus, it could work as a grouping factor.
To test whether phylogenetic relationships could ac-

count for toxicity variation in our samples we computed
1) Blomberg’s K [44] and 2) Pagel’s lambda [45, 46] for
toxicity, and testing their significance using phytools [47].
In all cases we used a comprehensive phylogeny for the
genus Heliconius [29] that was pruned to include only the
species in our study. We then used phytools [47] to test
for differences in cyanide concentration between species
using a phylogenetic ANOVA and posthoc tests, while
controlling for multiple testing (Holm-Bonferroni
method). Differences between species were also tested
using a Wilcoxon test that does not include the phylogen-
etic effect. To investigate whether CN concentration is re-
lated to life history traits such as feeding specialization,
larval gregariousness, roosting behaviour or mimicry ring,
while accounting for intraspecific variation and phylogeny,
we expanded the method of phylogenetic ANOVA to in-
corporate a nested structure. “Nested phylogenetic ANO-
VAs” work as follows: first, we simulated the evolution of
CN concentration at the species-level phylogeny 1,000
times (i. e. one value μsim_i for each species i for each
simulation sim), following a Brownian motion and assum-
ing an instantaneous variance of the Brownian motion
process equal to the mean squared value of the Phylogen-
etic Independent Contrasts (PICs) for CN concentration
[47–49]. Then, we estimated the observed mean and

standard deviation of CN concentration for each species i:
μobs_i and σobs_i. Afterwards, for each individual of each
species in the original dataset, we sampled a value for CN
concentration in a normal distribution centered on μsim_i

and with standard deviation (σobs_i/μobs_i)*μsim_i, with
σobs_i/μobs_i as the coefficient of variation. Having simu-
lated data at the individual level, we subsequently per-
formed a nested ANOVA on each simulation, using as
nested each of the factors mentioned above. We recorded
F statistics for the different nesting levels in each simula-
tion, and we generated a distribution of those statistics.
To test for differences between mimicry rings we tested
pairwise comparisons with a t test accounting for variation
within mimicry ring, and controlling for multiple testing
with the Bonferroni method. Finally, we performed a
nested ANOVA on the actual dataset, and compared the
observed statistics to the distribution of the simulated sta-
tistics, to calculate p-values. To test for correlations be-
tween cyanide concentration and sex, while controlling
for phylogeny, we performed a “phylogenetic two-way
ANOVA”. We simulated data as for the “Nested phylogen-
etic ANOVAs”. Differences between sexes in each species
were also tested by a Wilcoxon test.
We tested whether mimicry ring abundance and toxicity

were correlated after controlling for phylogeny using Phylo-
genetic Generalized Least Squares (PGLS). To account pre-
cisely for the phylogenetic signal in the correlation between
toxicity and abundance, we applied the method suggested
by Symonds and Blomberg [50]. First, we calculated a linear
regression between toxicity and abundance. Then, we
estimated the phylogenetic signal on its residuals by calcu-
lating Pagel’s lambda [45, 46] using BayesTraits V.2 [51].
The phylogeny was then transformed according to lambda.
A linear model was then fitted using PGLS and the trans-
formed phylogeny, with the package phytools [47].

Results
Variations of toxicity within and among species
A large variation in cyanide concentration was found
among the compared species (Fig. 3, Table 1). For in-
stance, although H. erato and H. sara are closely related
(Fig. 1), the latter has a CN concentration six times higher
than the former (Fig. 3). No significant phylogenetic signal
was detected on the CN concentration of our samples
(Blomberg’s K = 0.414, p = 0.54 and Pagel’s lambda = 5.07.
10−05, p = 0.12). However, the high K value and small sam-
ple size of our study mean that phylogenetic signal cannot
be completely discounted. We therefore performed all
tests twice, with and without phylogenetic correction.
Females generally displayed a higher cyanide concentra-

tion than males (two-way ANOVA without phylogenetic cor-
rection: sex df = 1, F = 10.116, p = 0.002; sex*species df = 7,
F = 2.753, p = 0.012; with phylogenetic correction: sex df = 1,
F = 10.116, p = 0; sex*species df = 7, F = 2.753, p = 0.012).

Table 1 Characters proposed as possible explanatories of the
toxicity variability found in our study

Species Mimicry
ring

Communal
roosting

Gregarious
larvae

Host plant
specialisation

H. ethila tiger yes no specialist

H. numata tiger no no generalist

H. doris blue/yellow no yes specialist

H. sara blue/yellow yes yes specialist

H. aoede rayed no yes specialist

H. burneyi rayed no yes specialist

H. melpomene postman yes no (semi)specialist

H. erato postman yes no (semi)generalist
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However, sex differences were non-significant within many
species probably due to small sample sizes for females (Wil-
coxon test H. erato W= 42, p = 1; H. melpomene W= 46.5,
p = 0.54; H. numata W= 61.5, p = 0.66; H. burneyi W= 7,
p = 0.25; H. aoede W= 16, p = 0.19; H. ethilla W= 0, p =
0.2; H. sara W = 10, p = 1). Therefore, the overall significant
difference between sexes was mostly driven by H. doris,
whose females had 1.6 times higher CN concentration than
males (Wilcoxon test W = 46.5, p = 0.025).

Variations among mimicry rings
We found significant differences in cyanide concentration be-
tween mimicry rings, even after accounting for inter-specific
variation (nested phylogenetic ANOVA mimicry ring (mr) F
= 48.46, p = 0; mr:species F = 13.77, p = 0; nested ANOVA mr
df= 3, p < 0.001, mr:sp df= 4, p < 0.001). The most toxic ring
was the ‘blue/yellow’ mimicry ring, followed by the ‘dennis-
rayed’ one. The ‘postman’ and ‘tiger’mimicry rings were simi-
larly toxic and showed a lower cyanide concentration than
the other mimicry rings (Fig. 3). However, we also detected
significant differences in cyanide concentration between most
pairs of co-mimetic species (Fig. 3, and Table 2).

Correlation with ecological and life-history traits
Species whose adults roost communally were generally less
toxic than solitary roosters (nested phylogenetic ANOVA
roosting F = 4.99, p = 0.03, roosting:species F = 32.58,
p < 0.001; nested ANOVA roosting df = 1, p = 0.03,

roosting:species df = 6, p < 0.001), in accordance with the
expectation that aggregation may enhance warning signal
efficiency in poorly defended species. However, species
with gregarious larvae were more toxic than species with
solitary larvae (nested phylogenetic ANOVA gregariousness
F = 124.92, p < 0.001; gregariousness:species F = 12.59, p <
0.001; nested ANOVA gregariousness df = 1, p < 0.001; gre-
gariousness:species df = 6, p < 0.001). With respect to lar-
val diet, we found that specialist species were significantly
more toxic than generalist species (nested phylogenetic
ANOVA diet F = 106.73, p < 0.001, diet:species F = 15.63,
p < 0.001; nested ANOVA diet df = 1, p < 0.001, diet:species
df = 6, p < 0.001).
Finally, no correlation was found between warning

signal abundance and CN concentration (controlling for
phylogeny t = −0.868, p = 0.418, without phylogeny
effect: df = 6, t = −0.87, p = 0.418). However, the most
toxic species, H. sara and H. doris, did display the rarest
warning signal (Fig. 2).
To account for correlations within the different eco-

logical and behavioural traits, and mimicry ring, we per-
formed a Factor Analysis of Mixed Data (FAMD, Fig. 4).
Toxicity, larvae gregariousness and specificity of larval diet
were correlated, and contributed similarly to the first
dimension of the FAMD, explaining 46.67% of the total
variation (Additional file 3: Figure S1). Roosting behaviour
and sex mostly contributed to the second FAMD dimen-
sion that explains 21.89% of the total variation. Less toxic

Fig. 3 Mean and standard deviation (lines) of the concentration μg of NaCN per mg for each species. *** stands for significant difference with
P < 0.001, ** for significant difference with P <0.01, * for significant difference with P < 0.05 between co-mimics. Letters stand for significant differences
in the comparisons on the concentration of NaCN between mimicry rings (p < 0.05). On the top left corner is an example of a cyanogenic glucoside
molecule (linamarin), showing the glycosidic bond between the glycine and the aglycone part that was broken off during hydrolysis

Arias et al. BMC Evolutionary Biology  (2016) 16:272 Page 5 of 10



species generally have solitary and generalist larvae, are
common rooster as adults and belong to postman and
tiger mimicry rings. In contrast, blue/yellow and dennis
rayed rings contain more toxic species, and have gregari-
ous and specialised larvae, highlighting that both conver-
gent evolution toward similar warning signal and life-
history traits might influence toxicity levels.

Discussion
Natural interspecific variation
Large variations in inter-specific toxicity were observed in
Heliconius butterflies caught within the same natural
habitat. For instance, H. sara individuals were on average
2.25 times more toxic than H. melpomene individuals. This

is comparable to the three-fold difference in concentration
previously reported by Engler-Chaouat and Gilbert [20] for
the same pair of species when individuals were reared on
their preferred host plant. However, toxin concentrations
reported by [20] showing that H. melpomene (0.719 ±
0.072 μg CN/dwmg) was more toxic than H. numata
(0.509 ± 0.055 μg CN/mg) and H. doris (0.357 ± 0.029 μg
CN/mg) contrast with our findings, in which H. numata
(2.241 ± 0.74 μg CN/mg) and H. melpomene (2.601 ±
0.96 μg CN/mg) showed lower total CN concentrations
than H. doris (4.183 ± 1.43 μg CN/mg). This discrepancy
may stem from the cyanide hydrolysis methods applied.
Engler-Chaouat and Gilbert [20] used the substrate specific
β-glucosidase enzyme originally present in the butterfly

Table 2 t values and posthoc p calculations from phylogenetic ANOVA (above diagonal) and Wilcoxon test results for pairwise
comparisons between tested species (below diagonal)

In grey cells, comparisons between co-mimic species. *** stands for significant difference with P < 0.001, ** for significant difference with P <0.01, * for significant
difference with P < 0.05 and ~ for significant difference with P < 0.1

Fig. 4 Individuals distributed in a Factor Analysis for Mixed Data (FAMD) plot for the first 2 dimensions. Different colours represent different
mimicry rings (red is postman, orange is tiger, green is dennis rayed and blue is blue/yellow). Circles represent the individuals of the less toxic
species of each pair, while triangles stand for individuals belonging to the most toxic species. The green and orange arrows represent the
direction of the variation on the ecological and behavioural traits that we included in our analyses. In squares, the extreme phenotypes for each
trait and the area in the plot where they are located
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samples, to hydrolyse linamarin, one of several cyanogenic
compounds found in Heliconius butterflies [52]. In our
study, we used a non-selective method under strong acidic
conditions that enables chemical hydrolysis of all cyano-
genic compounds carried by our analysed butterflies, irre-
spective of chemical structure. This also explains why the
concentrations that we report are larger than those re-
ported by [20]. The differences between the two studies
thus highlight how species not only contain different
cyanide concentrations, but also cyanogenic glucosides with
different structures, and possibly different enzymes able to
hydrolyse each cyanogenic compound. These quantitative
and qualitative differences may produce variation in preda-
tors’ rejection behaviour and merit further investigation,
since predator responses to these variations ultimately
shape selective pressure acting on the evolution of mimicry.

Does mimicry explain the differences in cyanide
concentration? Within and between mimicry ring
variation
Mimicry rings have significantly different toxicity levels,
even after accounting for variation in toxicity among species
within mimicry rings. This held true when phylogenetic
correction was applied, showing that relatedness among co-
mimics does not explain similarity in level of toxicity.
However, species sharing a common warning signal gener-
ally exhibited similar ecologies and behaviours. For instance
ecological convergence in flight height [53] and microhabitat
use [53, 54] have been found among co-mimics. Here, we
report how life-history and behavioural traits are strongly
associated with cyanide concentration (Fig. 4). Despite our
limited sample size, most ecological characters tested
(except abundance) were described as binomial variables
and were evenly represented in our dataset (usually 4:4).
Furthermore, our comparative analyses accounted for
intraspecific variation on more than 100 specimens.
However, increasing the number of species tested
within rings would allow to estimate which of these
different life history and ecological traits coevolve
with toxicity, or whether convergence in one drives
convergence in others.

Within species variations in levels of chemical defence:
sex differences
Females of mimetic and non-mimetic species have been
reported to suffer more attacks than males [55]. Such
differences may result from a generally less agile flight
(perhaps due to heavier, egg-laden bodies), and also from
slower, more predictable flying when searching for host-
plants on which to oviposit [56]. Greater vulnerability has
likely promoted increased protection in females, such as
higher CN concentration, or the female-limited mimicry
observed in certain Batesian mimetic butterflies [55]. In
Heliconius, males transfer a spermatophore to the females

that is rich in cyanide compounds in addition to contain-
ing sperm [35]. Given that wild caught females and males
are generally mated, we expected to find higher cyanide
concentration in females. Only females of H. doris showed
higher cyanide concentrations than males. The overall
lack of cyanide concentration differences between sexes
for the other Heliconius species included in our study sug-
gest that despite the transfer of spermatophores, males
and females are similarly defended.

Ecological factors influencing levels of chemical defence
in mimetic species
Abundance
Predators’ ability to learn and associate warning signals
with chemical defences is strongly influenced by prey
features such as unpalatability and abundance (i.e., how
often predators encounter a warning signal). Predators
learn the association between a given warning signal and
its unprofitability faster when the aversive stimulus is
stronger [57]. However, although the blue/yellow colour
pattern was the most toxic and also the least abundant
mimicry ring, we were unable to detect a trend between
abundance and toxicity across the four mimicry rings.
We only included two species per mimicry ring for our
toxicity analyses, a non-representative sampling from
mimicry rings that can comprise dozens of species. The
tiger ring, for example, includes at least 89 species living
in sympatry (Fig. 2). Moreover, current toxicity presum-
ably reflects past selective (and historical) processes, that
may well differ from current selective processes. Our
abundance estimation is limited to the last five years
sampling and might not be representative to the histor-
ical abundances of the different mimicry rings in the
area. This could also explain the general lack of correl-
ation between abundance and toxicity.
We found high variation in toxicity both within and

between co-mimetic species. We detected a possible case
of automimicry (i.e., we detected no CN in two H. erato
individuals), as well as significant differences between
three of the four pairs of co-mimics (Fig. 3). When un-
palatability variation can be detected within a mimicry
ring (either within species and/or between co-mimics),
predators learn to sample it more carefully, to accurately
determine the real unpalatability value of each prey item
(the “go-slow strategy”) [58], instead of being totally de-
terred by a given warning signal [59]. Such variation thus
reduces the efficiency of warning signal, because it in-
creases the predator-sampling effect on the mimicry
ring. Larger abundances might therefore be associated
with larger toxicity variation, because the per capita risk
of predation is reduced in abundant mimicry rings.
Whether variability in toxicity is driven by variation in
abundance remains nevertheless unclear.
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Selection by predators at larval and adult stages
The two most toxic species H. sara (blue/yellow mimicry
ring), and H. aoede (dennis-rayed mimicry ring) are spe-
cialist feeders, probably due to specific metabolic pathways
adapted to the biochemical composition of the host-plant
[20]. But they also belong to the two least abundant mim-
icry rings, showing the association between mechanisms
that confer higher toxicity, displayed by species exhibiting
a warning signal at low abundance. In this way, the few
encounters between predator and prey, given their low
abundance, will be highly memorable, given their high
toxicity, in contrast to more palatable prey that will be
more sampled before being learned as unprofitable [60].
Both high specialization and low abundance of these mim-
icry rings, seem strongly associated with higher toxicity.
We also found a positive correlation between larval gre-

gariousness and toxicity. Larval mortality can reach 95%
on first instars and includes predation, parasitism and des-
iccation among other factors [61]. Although they all have
scoli (spine-like structures), Heliconius larvae are mostly
gregarious and rather cryptic for highly toxic species
(Fig. 1). Gregariousness can reduce per capita detectability
[62] and predation by the “dilution effect” [63], because
predators will not eat all larvae due to predator satiation
and/or time spent feeding on them [64]. However, parasite
transmission is usually density-dependent [65], thus gre-
gariousness might increase vulnerability to parasites. The
evolution of mechanisms conferring higher toxicity could
thus have evolved in response to selection exerted by par-
asites and parasitoids. Gregariousness has also been re-
ported as a mechanism to accumulate higher energy
resources by larvae of the African armyworm Spodoptera
exempta [66]. On a protein deficient diet, gregarious lar-
vae of S. exempta accumulated more body nitrogen per
amount consumed, in contrast to solitary larvae [67].
Whether it can also increase the CN intake or its synthesis
by larvae remains an open question.
Contrary to the findings for larvae, at the adult stage,

communal roosting was associated with lower chemical
protection. Communal roosting of aposematic individ-
uals has been shown to enhance warning signal con-
spicuousness [68], and can therefore limit predation
pressure. This might explain a relaxation of selection for
high levels of defence in aposematic species with gregari-
ous behaviour as adults. Evolution of chemical defence
therefore seems to be shaped by predation specific pres-
sure exerted both at larval and adult stages.

Mimicry, ecological convergence and defences variation
According to our results, chemical defences variation is as-
sociated to warning signal convergence, but is not the only
trait that explains differences in protection level. Larval diet
specialization and gregarious behaviour in larvae and in
adults are also associated to distinct levels of cyanide

concentration in Heliconius. It is possible that mimicry has
promoted convergence in ecology and behaviour that at the
end produced similar defence levels between co-mimics.
But is also possible that mimicry is an outcome of having
similar protection levels [13], behaving similarly and
exploiting resources in a similar way. Whether these traits
are evolving one after the other or are coevolving together,
remains an open and interesting question to solve.

Effects of chemical defence on predators’ behaviour
The correlation between CN concentration and repulsive
behaviour is not straightforward. Arias et al. [69] con-
ducted taste-rejection experiments towards different
Heliconius species with naïve predators, removing birds’
access to any visual and odour cues. Based on taste only,
tested birds rejected H. numata, H. erato and H. melpom-
ene similarly, ingesting a limited fraction of them, regard-
less of the contrasting cyanide concentrations detected in
our study for these different species [69]. This implies that
even small concentrations of cyanide can produce aversive
reactions in predators. However, behavioural experiments
studying the possible effects after consumption, probably
involved in the learning of a warning signal as aposematic,
might show that minute differences in cyanide concentra-
tion are relevant. Short- and long-time effects of chemicals
on birds are important to test given that some natural
predators have been reported to feed on Heliconius butter-
flies, such as tropical kingbirds (Tyrannus melancholicus)
[70]. Furthermore, long-time dose effects of chemicals
have been predicted to affect mimicry dynamics by deter-
mining the number of attacks needed for predators to
learn and avoid a given warning signal [71, 72].
The effect of specific cyanide compounds or other toxins

present in the butterflies was not explored in our study but
deserves consideration regarding predator behaviour. For
instance, pyrazines are responsible for some of the stron-
gest butterfly odours, and are probably involved in preda-
tion learning [16], and have been reported in Heliconius
species such as H. melpomene [73]. Additionally, other un-
detected substances, such as β-carboline alkaloids, have
been found in H. ismenius [74] and might also be involved
in predator learning. Alkaloids may contribute to butter-
flies’ bitterness and bad taste, in addition to their toxicity
[75]. The unpalatability on Heliconius butterflies therefore
relies on a diversity of chemical compounds, not exclusively
on cyanogenic glucosides. Further detailed investigation on
the presence of a variety of such chemical defences, and
their effects on predators, are required.

Conclusions
Large variations in CG concentration were found among
sympatric Heliconius species and within mimicry rings in
natural populations. Although this variation is associated
to mimicry, our results highlight the importance of other
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ecological traits and life-history features on the evolution
of such variation. Our study thus stresses the need to
investigate ecological traits to understand the evolution of
toxicity in mimetic species.
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