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Abstract: Ischemic stroke represents one of the most prevalent pathologies in humans and is a leading
cause of death and disability. Anti-thrombolytic therapy with tissue plasminogen activator (t-PA)
and surgical thrombectomy are the primary treatments to recanalize occluded vessels and normalize
the blood flow in ischemic and peri-ischemic regions. A large majority of stroke patients are
refractory to treatment or are not eligible due to the narrow time window of therapeutic efficacy.
In recent decades, we have significantly increased our knowledge of the molecular and cellular
mechanisms that inexorably lead to progressive damage in infarcted and peri-lesional brain areas.
As a result, promising neuroprotective targets have been identified and exploited in several stroke
models. However, these considerable advances have been unsuccessful in clinical contexts. This lack
of clinical translatability and the emerging use of biomaterials in different biomedical disciplines
have contributed to developing a new class of biomaterial-based systems for the better control of
drug delivery in cerebral disorders. These systems are based on specific polymer formulations
structured in nanoparticles and hydrogels that can be administered through different routes and,
in general, bring the concentrations of drugs to therapeutic levels for prolonged times. In this review,
we first provide the general context of the molecular and cellular mechanisms impaired by cerebral
ischemia, highlighting the role of excitotoxicity, inflammation, oxidative stress, and depolarization
waves as the main pathways and targets to promote neuroprotection avoiding neuronal dysfunction.
In the second part, we discuss the versatile role played by distinct biomaterials and formats to support
the sustained administration of particular compounds to neuroprotect the cerebral tissue at risk
of damage.
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1. Introduction

Demographic change is an undeniable reality in modern countries. In the coming decades,
an increasing number of pathologies are expected to occur as a consequence of aging.
Aging and additional risk factors, such as hypertension, cholesterol, obesity, and sedentary lifestyle,
will contribute to an increase in the prevalence of pathologies caused by brain, heart, and arterial
dysfunctions. The sudden occlusion of cerebral arteries produces brain ischemia. This fatal disease is
a leading cause of death and disability among adults, comprising ~85% of all stroke cases in comparison
with hemorrhagic strokes (~15%), which are caused by an arterial rupture. Stroke continues being
a devastating disorder, with mortality rates of 30% and 50% at 1 month and one year, respectively,
after the initial attack [1]. The reversibility and duration of occlusion are the first determinants of
the extent of damage influencing a patient’s prognosis. A main cause of stroke is the occlusion
of the middle cerebral artery, which supplies oxygen and nutrients to sensory and motor areas.
Occlusion of this artery is commonly associated with contralateral motor and sensory dysfunction,
but, depending on the specific occlusion and affected artery/s, other clinical symptoms might appear,
such as cognitive and perceptual deficits with varying degrees of affectation. Preventative programs to
reduce risk factors have diminished the burdens of this disease.

Acute therapies for ischemic stroke are based on the re-canalization of occluded vessels through
pharmacologic and invasive surgical procedures. In contrast, during the chronic stage, physical
and cognitive rehabilitation therapies might work in a minority of patients, especially in subjects with
less extensive damage after the initial insult [2,3]. It is clinically accepted that the administration
of a tissue plasminogen activator (t-PA) for clot dissolution—alone or in combination with surgical
procedures such as endovascular thrombectomy for clot retrieval—constitute the most acceptable
treatment to treat stroke patients in the early stages (acute phase). Although its efficacy has been
demonstrated in clinical trials [4,5], the number of patients benefited by this procedure is unfortunately
low, around 5% of all stroke patients [1,6], a fact ascribed to the narrow time window for t-PA
administration (3–4.5 h after stroke) and because delayed thrombolytic therapy and blood reperfusion
have been associated with a high risk of hemorrhagic transformation and oxidative stress, thus causing
additional damage. Ischemic stroke produces a core of irreversibly damaged tissue surrounded by
a salvageable area called the penumbra, which has a high risk of neuronal death following the initial
infarct. Both the ischemic core and the penumbra area, if damaged, are generally responsible for
the definitive lesion. Although most stroke patients show definitive lesion sizes 24–36 h after the onset of
symptoms, in a third of patients, the final lesion size occurs after one week [7]. Thus, the definitive area
of injury depends of both the time of blood flow occlusion/oxygen deprivation (primary initial damage)
and the so-called secondary injury that will affect the peri-lesional penumbra and non-damaged areas,
transforming them in irreversibly damaged regions [8,9]. Many molecular and cellular events have
been related to this secondary wave of damage, including, but not limited to: i) excitotoxicity mediated
by uncontrolled release of neurotransmitters such as adenosine and glutamate concurrently with
an overload of intracellular calcium [10], and ii) impaired mitochondrial functions and oxidative
stress caused by free radicals and reactive oxygen/nitrogen species [11]. In addition, inflammation
is a component of the pathophysiology of the brain in stroke, contributing to neuropil damage.
Inflammation is mediated by microglia and the recruitment and infiltration from the blood to the brain
of leukocytes that release pro-inflammatory and pro-apoptotic molecules [12]. Another contributor of
secondary damage is the spreading depolarization and their associated inverse hemodynamic changes
with the hypoperfusion of peri-lesional areas [13].

1.1. Lost in Clinical Translation

There is a narrow time window for therapeutic interventions based on recanalization procedures
and attenuators of secondary damage to prevent neuronal death and damage. In the last few decades,
intensive collaborative work has been done to identify the precise targets involved in secondary
damage whose modulation can be exploited to neuroprotect the brain within this narrow time
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window. Although many of these targets have been very promising at the preclinical level, there has
been an undeniable lack of translatability into clinics. It has been estimated that more than 1000
therapeutic molecules have been tested in the preclinical phase. About ten percent of these molecules
entered clinical trials; however, except for some trials [14,15], all of them failed to present positive
outcomes [16]. Several arguments have been considered to explain this desolate scenario, such as a lack
of adequate animal models, a lack of consensus between preclinical studies, an oversimplification
of the pathogenic molecular and cellular routes and pathways, the heterogeneity of clinical trials,
and the poor standardization of clinical procedures. Specifically, there has been a lack of connections
between preclinical and clinical trials. For example, neuroprotective compounds that were tested
successfully in transient ischemic models were used later in patients with permanent ischemia because
recanalization approaches only benefit a minority of subjects [17]. These biomolecules were assayed in
healthy young animals submitted to stroke, while brain ischemia mostly affects aged populations with
previous comorbidities [17]. Even assuming similar neuroprotective pathways and targets between
human and rodents, the blood-brain barrier permeability, concentration ranges for drug effectiveness,
and molecular clearance by the glymphatic system are, with a strong probability, different between
species [18]. For example, the endothelial cell thickness of the blood-brain barrier oscillates from
~200 nm in mice to ~400 nm in human brain tissue, which probably influences the permeation of
molecules differently between both species [19,20]. A renewal of the total cerebrospinal fluid is produced
in humans every 5 h, while in the rodent brain, this process occurs more rapidly (every hour) [21].
These values likely produce differences in the clearance rates of biomolecules. Even when we consider
only the same rodent species, there are examples throughout the literature where similar stroke models
have caused variable damage and affectations between different strains [22]. Particular drugs can
even exert both neuroprotective and non-neuroprotective effects depending on the rodents and strains
used [23]. Due to this great variability in therapeutic effects and their efficacy, even between the closest
mammalian species, it is not surprising that there is difficulty in establishing therapeutic connections
between species, including humans.

1.2. The Blood-Brain Barrier

While we advance in resolving of these issues to identify promising targets and drugs, and to
establish better stroke models (i.e., human organoids for drug screening), it is also a priority to
progress the development of efficient systems for pharmacological administration into central nervous
tissue, especially designed for humans. Non-invasive (systemic) and invasive (intracerebral) routes of
administration have been preclinically and clinically explored. The main handicap of the systemic
route is the inability of many drugs and biomolecules to cross the blood–brain barrier (BBB) and reach
the brain with efficacy [24]. The restrictive permeability of the BBB and, in particular, the abundance of
tight junctions that encircle endothelial cells, complicates the entrance of biomolecules into the brain
by crossing the luminal and antiluminal lipid membranes that face the blood lumen and the brain
parenchyma, respectively. Under physiological conditions, several highly regulated mechanisms have
been described to facilitate the passage of specific molecules through this barrier. These mechanisms
include transporter proteins, transcytosis processes, simple diffusion, and paracellular transport in
the tight junction borders between adjacent endothelial cells [25]. In general, the active mechanisms
of transport permit the entrance of polar molecules, such as glucose and amino acids, while small
hydrophobic substances generally cross the BBB by simple diffusion [26]. In addition, some large
molecules can physiologically pass through transcytosis mechanisms. Under pathological conditions,
the scenario is different, since the permeability of the BBB is impaired very early after injury [27].
For example, in ischemic rats, the permeability of the BBB is compromised as soon as 2–3 h after
occlusion [28]. Despite the BBB being substantially impaired after injury, in most systemic applications,
it is unknown how much of the administered drug may effectively reach the brain and whether
the brain’s local concentrations that are effective in rodent models are also valid for humans due to
differences in drug clearance. All these facts obviate any control that we believe to have over
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drug kinetics at effective doses to target the salvage penumbra. An alternative route for systemic
administration is intracerebral. Although this route is more invasive, an intracerebral injection offers
significant advantages, e.g., the direct administration of drugs in the area/s of interest, although these
drugs are also exposed to rapid degradation and clearance, which is a strong limitation if persistent
pharmacological effects are needed.

For many neuroprotective agents, the amount of drug and time required to achieve the optimal
therapeutic effect is not addressed in the majority of studies, causing additional bewilderment.
After decades of study, the potential of many natural and artificial polymers to treat many diseases,
including those of neural origin, has come to light. Different biomaterials and formats can be designed to
have adequate biocompatibility with nervous tissue to sustain drug delivery, thus reducing the frequent
administration of particular compounds with poor half-lives due to their greater susceptibility to the rapid
degradation and decay of activity in the injured neurovascular microenvironment. Biomaterials might
satisfy the therapeutic need for pharmacologic release, extending the action of drugs, at least during
the time window of the salvage penumbra. In this review, we discuss relevant studies in the field
that anticipate an exponential leap in the use of advanced biomaterials as micro- and nano-pumps
to support the pharmacological delivery of neuroprotective compounds that maximize the duration
and effectiveness of the limited therapeutic window of stroke patients.

2. Neuroprotective Strategies for Recovery after Ischemic Stroke

Cell death after ischemia occurs rapidly in the regions that receive less blood flow. The duration
of ischemia and the site of occlusion define the affected site and the initial amount of damage in
the cerebral area. Oxygen deprivation causes Na+/K+-ATPase and membrane potential dysregulation.
After the onset of ischemia, the extension of damage is largely determined by the progressive
transformation of the salvaged penumbra into damaged tissue, with the ischemic penumbra
representing a zone of viable tissue adjacent to the ischemic core that has a high risk of cell death.
In the pathogenesis of stroke or in response to ischemia, different biochemical, molecular, and cellular
signals, including apoptotic factors, emanate from the ischemic core, propagating cerebral damage
towards the penumbra and surrounding initially non-damaged tissue. Taken together, death executors
include abnormal excitability, inflammation, oxidative stress, and spreading depolarization (Figure 1).

The variability of lesions between patients is creating new controversies regarding the proper
time windows for pharmacological and endovascular interventions [29]. In patients, the improvement
of clinical signs and responses to treatment is greater for smaller ischemic lesions. Because the size
of the damaged area, degree of affectation and recovery of ischemic patients depend on both blood
flow/oxygen deprivation and secondary damage, neuroprotective strategies have been developed
to control the events mostly responsible for this secondary damage during the acute phase of
a stroke [30,31].

2.1. Excitotoxicity

Excitotoxicity occurs after a stroke due to the uncontrolled release of neural excitatory
neurotransmitters. Correcting this dysregulation has been considered for decades as a potential
approach for neuroprotection following stroke. Oxygen deprivation causes energy (ATP) exhaustion
and the impairment of ionic gradients, especially intracellular potassium depletion and anoxic
depolarization. Changes in resting membrane potential occur parallel to the massive increase
of excitatory amino acid neurotransmitters in the extracellular space, which include adenosine
and mostly glutamate. In addition, energy depletion impairs neurotransmitter re-uptake and clearance.
The excessive activation of glutamatergic receptors (NMDA, AMPA, and kainate) is neurotoxic
with concomitant entrance of large amounts of calcium, oxidative stress, mitochondrial dysfunction,
and modifications in the expression of genes and the level of protein activation, thus inducing cell
necrosis or apoptosis. For example, calcium overload increases intra-mitochondrial calcium levels,
causing the opening of the mitochondrial permeability transition pore, which impairs the permselectivity
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of the mitochondrial barrier, releasing ions and distinct molecules to the cytosol, such as Cytochrome c,
which triggers cellular apoptosis. Calcium overload secondary to activation of excitatory glutamate
receptors boost anomalous increase of reactive oxygen and nitrogen species levels. Large amounts of
nitric oxide (NO) generated by neuronal NO synthase are produced after the large-scale stimulation of
the glutamate receptors. Excessive NO interacts with the superoxide anion (O2−) forming very toxic
reactive oxygen species (ROS) molecules, such as peroxynitrites (ONOO−). In the presence of a variety
of ROS, cellular proteins are vulnerable to damage by oxidative stress, which may take the form of
nitration or oxidation of various aminoacid residues. Oxidative stress produces the oxidation/nitration
of proteins and lipids and DNA fragmentation, leading to neuronal death. In addition, high levels
of glutamate cause blood–brain barrier dysfunction and brain edema [32]. Thus, the excitotoxicity
mediated by the binding of glutamate to NMDA and AMPA receptors is a major mechanism of
secondary damage and neuronal death after stroke, NMDA receptors being mainly responsible for
increasing calcium entrance and subsequent neurotoxicity.

Due to the transcendental importance of glutamate receptors in the pathogenic mechanisms of
stroke, glutamate excitotoxicity has been mainly taken as a target to design effective glutamate receptor
antagonists to prevent mitochondrial dysfunction and free radical generation. In this way, in models of
transient ischemia in rats, NMDA receptor antagonists, such as MK-801, have shown neuroprotective
effects by decreasing the infarct size and brain edema in parallel with an improvement of behavioral
deficits [33]. NMDA receptor activation depends on, in addition to glutamate, glycine binding. Thus,
glycine antagonists have been used successfully in preclinical studies [34,35]. As an example, the glycin
antagonist GV150526A has proved efficacious in reducing the infarct volume and partially preserving
the functionality of the cortical forepaw and hindpaw somatosensory areas [34]. In striking contrast,
several drugs that hypoactivate NMDA receptor function have failed at the clinical level [36–38].
Apart from the heterogeneity of patients in clinical trials and the lack of preclinical/clinical connections,
several interpretations have been drawn, including the very short time window for drug actions
and the masking of therapeutic efficacy due to significant side effects. Inhibitors of glutamate receptors
impair normal glutamate function in non-damaged networks, a fact likely ascribed to a lack of precision
in targeting the peri-lesional penumbra. In addition, the complexity of nature surpasses our more
simplistic expectations. Two different types of NDMA receptors have been defined in relation to its
cellular location. Synaptic NMDA receptors promote cell survival through ERK/CREB activation
and BDNF production, while the activation of NMDA receptors that are localized in non-synaptic areas
leads to pro-apoptotic events and the suppression of survival signals [37]. Thus, the direct targeting
of NMDA receptors might simultaneously produce opposite effects, pro-survival and pro-death
signals. These pro-death signals might contribute to masking the positive effects of excitoxicity
inhibition. Recent therapeutic approaches have been based on the inhibition of downstream pathways
instead of the direct blocking of NMDA receptors. These strategies have been specifically focused on
suppressing the death signals from pro-apoptotic extra-synaptic NMDA receptors, which are enriched,
unlike the synaptic NMDA receptors, with GluN2B subunits. Targeting the triad GluN2B-PSD95-nNOS
pathway represents a very attractive strategy, since nNOS overactivation leads to increasing levels of
NO, free radicals, and peroxynitrite. Different interfering peptides against PSD95 or nNOS have been
used with promising results, as was the case for the NA-1 peptide that dissociates NDMA receptors
from PSD95 subunits, reducing the infarct size and improving functional outcomes after stroke in
rodents and macaques [39,40]. In clinical trials, the NA-1 peptide has also shown significant benefits
by reducing the appearance of new lesions in stroke patients [41]. Recently, in a multicentre trial,
the NA-1 peptide produced a significant improvement among stroke patients that did not receive
t-PA, while unexpectedly, this PSD95 inhibitor did not show favorable outcomes in t-PA-treated stroke
patients [14].
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2.2. Oxidative Stress

Free radical generation and oxidative stress are pathological phenomena tightly linked to
excitotoxicity. The abnormal rise of intracellular calcium levels upon the abnormal release of excitatory
neurotransmitters leads to oxidative damage. Oxidative stress usually results from excessive ROS
production, mitochondrial dysfunction, failure of anti-oxidant mechanisms, or a combination of these
factors [42]. Oxidative stress plays an essential role in the pathogenesis of cerebral ischemia-reperfusion
(I/R) injury [43,44] and has a critical responsibility in the pathogenesis of post-stroke neural damage
by inducing neuronal death and apoptosis, severely impairing neurological function [45]. A main
source of ROS is the mitochondria. Most mitochocondrial and non-mitochocondrial ROS are able to
cross the cellular membrane towards the extracellular compartment, this spreading the pathology
to neighbour cells. After ischemia/reperfusion, reactive nitrogen and oxygen species (RNOS) are
overproduced, exceeding the capability of cellular systems for RNOS clearance. RNOS overproduction
after reperfusion plays an important role in the pathogenesis mechanisms of secondary damage,
although permanent ischemia with no recanalization might also induce the production of different
free radicals, including O2− [46]. As stated above, free radicals produce lipid peroxidation, protein
oxidation and denaturation, enzyme inactivation, protein aggregation, damage of cellular membranes,
DNA fragmentation, additional level of intracellular calcium by its release from intracellular organelles,
damage to the cytoskeleton, cerebral edema, and the breakdown of BBB, mostly because ROS
activate different matrix metalloproteinases [10,47]. In addition, ROS enhance central and peripheral
inflammation. It is widely accepted that free radicals and ROS contribute to extend the area
of damage affecting different cell populations, including neurons, astrocytes, oligodendrocytes
and endothelial cells.

Oxidative stress and hydroxyl radical formation can be prevented by complex scavenger systems
that are present in the cytoplasm and different cellular organelles (mitochondria). Several enzymes
such as superoxide dismutase (SOD), glutathione peroxidase and catalase; and non-enzymatic natural
compounds such as ascorbate, vitamin E, and glutathione, show anti-oxidant properties. For example,
SOD converts O2− in H2O2, which can later be detoxified by catalase and glutathione peroxidase,
producing O2 and H2O. This detoxification route is important because H2O2 can produce hydroxyl
radicals through a Fenton reaction mechanism involving Fe2+/F3+ species, inducing serious cellular
injury. In general terms, the experimental treatment with these antioxidant enzymes reduces the infarct
size after stroke. It has been shown that transgenic mice overexpressing SOD had less extensive damage
after cortical ischemia, as well as increasing levels of the anti-oxidants glutathione and ascorbate in
the non-damaged surrounding tissue [48]. In a model of transient ischemia in rats, treatment with SOD
and catalase conjugated with polyethylene glycol (PEG) increased by four hundred times the half-life
of both enzymes in circulation and reduced the total infarct volume [49]. Edavarone, a very powerful
antioxidant agent, has been used both pre- and clinically. This compound increases the activity of
SOD, catalase, and glutathione peroxidase for O2− and H2O2 detoxification, as well as modifies the NO
content [50]. The volatile intercellular messenger NO exerts a close relationship with stroke contributing
to brain damage. The toxic effect of NO closely associated with excitotoxicity, is related to its production
through inducible or neuronal NO synthase (iNOS; nNOs, respectively). Noxious NO is involved in
the production of nitrates and the release of deleterious free radicals. Edavarone has a strong scavenger
potential, capturing H2O2 -derived hydroxyl radicals and increasing the activity of endothelial eNOS,
while it downregulates the levels of iNOS and nNOS; thereby decreasing NO and ONOO− levels [50].
Edavarone has been associated with a reduction of the infarction size, secondary edema and BBB
dysfunction, and is clinically used in Japan to treat brain ischemia in patients [15]. Targeting key steps
in the cascade of I/R, including lowering NO production has been also proposed in our laboratory [45].
Other antioxidant compounds have been assayed with less success at the clinical level. This applies,
for example, to the free radical scavenger, nitrone NXY-059, an agent that, when administrated 3 h
after I/R (but not 6 h later), produced smaller infarctions in stroke rats [51]. This therapeutic efficacy
was corroborated in primates, where NXY-059 administrated 4 h after ischemia/reperfusion reduced
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the infarct volume in parallel to behavioral improvement [52]. However, the proof of concept of
the therapeutic potential of NXY-059 extracted from animal models of the disease did not translate into
clinical improvements in stroke patients [53]. Other promising scavenging molecules, such as uric
acid, have also failed to exert significant neuroprotection in clinical trials [54]. Except for edavarone,
no clear evidence of the efficacy of other antioxidant compounds has been obtained to treat human
stroke patients.

2.3. Inflammatory Response after Stroke

Inflammation is a central component in the pathophysiology of stroke. Preconditioning, a term
related to exposure to low-dose lipopolysaccharide (LPS) before cerebral ischemia, was found
neuroprotective in stroke models [55]. After stroke, central and peripheral inflammation is produced
in the peri-lesional and lesional regions. As previously commented, central inflammation is mostly
mediated by microglia, an immune brain-resident cell population of hematopoietic origin that becomes
activated after brain injury. Microglial activation is produced rapidly, minutes to hours after brain
ischemia, and becomes active for days or even weeks after a stroke [56,57]. Microglia activation leads
to the production of a wide spectrum of inflammatory molecules and reactive oxygen species, some of
which comprise BBB permeability, favoring peripheral blood cell infiltration into the brain.

2.3.1. Central Inflammation

After brain injury, the microglia experience a morphological transformation, extending their
processes toward the sites of damage. Then, the proliferation and phagocytic activity of the microglia is
increased, regulating the inflammatory response via the secretion of pro- and anti-inflammatory factors.
Similar to other hematopoitic-derived cells, such as macrophages, microglia cells function as immune
mononuclear plastic phagocytic cells that become activated in response to injury and repair. Microglial
activation in the central nervous system can be polarized towards two main opposite phenotypes,
M1 and M2, which show pro- and anti-inflammatory roles [58]. Thus, depending on the phenotypes
activated, microglia can produce either cytotoxic or neuroprotective effects. M1 microglia prevails
at the end stage of disease at the injury site, just when the action reparative process of M2 microglia
is dampened.

M1/M2 polarization phenotypes can be considered targets for stroke therapy. The discovery of
new drugs related to M1/M2 polarization has enabled the realization of targeted therapies [59].
The M1 phenotype can release inflammatory mediators, such as tumor necrosis factor-alpha
(TNF-alpha), interleukin-1Beta (IL-1-Beta), interleukin-6 (IL-6), metalloproteinases (MMP), iNOS,
and NO, thus promoting oxidative stress via peroxinitrite, superoxide, and H2O2. These inflammatory
mediators increase BBB permeability and promote the recruitment and infiltration of peripheral immune
cells. M1 microglia and ROS lead to the activation of several matrix metalloproteinases, a family of
endopeptidases that act outside cells and have pathological roles in the evolution of brain damage,
including excitotoxicity, neuronal death, degradation of extracellular matrix (ECM) proteins, activation
of different growth factors and cytokines, and cleavage of cell surface receptors and cell-to-cell adhesion
proteins [60]. After brain ischemia, increasing levels of MMP-2 and MMP-9 in the infarct and peri-infarct
areas degrade the ECM, thereby disrupting the endothelium and causing the BBB to open, as well as
brain edema and hemorrhagic transformation. After stroke, MMP-9 deficient mice were associated with
less damage and a better preservation of BBB integrity [61,62], and MPP-9 inhibition was translated
into neuroprotection after stroke [63]. In contrast, polarization to the M2 microglia phenotype produces
anti-inflammatory molecules, such as interleukin-4 and interleukin-13, facilitating both the clearance
of toxic products and wound healing in collaboration with astrocytes. During development and in
the adult, astrocytes play a role regulating brain morphology and function. Astrocytes help to
maintain neuronal homeostasis and repair the BBB, as well as stimulate neovascularization. After brain
damage, reactive astrocytes (astrogliosis) extend their processes around the site injury, creating a barrier
(glial scar) to isolate and compartmentalize the damaged/ inflammatory tissue, thereby preventing
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the unaffected brain from being exposed to harmful signals, although scar formation after injury
leaves permanent deficits in central nervous system (CNS) diseases [64]. Stroke provokes the loss
of function of resident astrocyte glutamate transporters, mainly in the synaptic cleft, which leads to
impaired astrocytic glutamate uptake reducing their ability to maintain low levels of extracellular
glutamate [65]. The glial scar imposes a physical and chemical barrier for neural cell infiltration
and axonal re-growth in the stroke cavity, avoiding functional rewiring and recovery after injury.
The classical pro-/anti-inflammatory M1/M2 phenotypic classification, extracted from in vitro studies
of microglial activation, is likely more complex, and additional phenotypes might coexist, as suggested
by transcriptome and proteome analyses [66]. Several strategies have been developed to modulate
microglia polarization and activation, as well as to regulate the expression, release, and effects of
different cytokines. For example, microglia polarization towards the anti-inflammatory phenotype has
been reported to ameliorate cerebral damage after ischemia [67,68].

2.3.2. Peripheral Cell Infiltration and Inflammation

As commented above, peripheral myeloid cells, mostly neutrophils and monocytes/macrophages,
are recruited after a stroke and transmigrate across the cerebral endothelium, crossing the BBB
and infiltrating in peri-lesional and lesional areas. Microglia-derived MMPs play significant roles in
disrupting the BBB, promoting leuckocyte infiltration. Peripheral cells produce different inflammatory
molecules and factors that influence infarct evolution during early stages and remodel the extracellular
matrix, producing structural/functional plasticity during the chronic stages. Neutrophils have shown
both deleterious and neuroprotective effects. Harmful neutrophils cause the additional disruption of
BBB, cerebral edema, hemorrhagic transformation, and damage due to the releasing of ROS, as well
as different proteases, including MMPs, elastase, cathepsin G or proteinase 3, and inflammatory
cytokines such as TNF-alpha, IL-1Beta, IL-6, which have been related to rapid neurotoxic effects [69].
The pro-inflammatory role of TNF-alpha remains controversial. For example, in a rat stroke model
of ischemia-reperfusion, antibodies against TNF-alpha reduced the infarction size, leading to better
neurological improvement [70]. Although these data support the neuroprotective benefits of inhibiting
TNF-alpha, TNF or TNF-receptor deficient mice showed larger infarctions and worse outcomes than
non-genetically modified mice, supporting the neuroprotective role of TNF in cerebral ischemia [71,72].
In contrast, inhibition of the IL-1 receptor produced less leukocyte infiltration from the peripheral blood
to the brain, smaller infarct volumes, and better functional outcome [73]. Preclinical studies have shown
that the inhibition of neutrophil infiltration enhances post-stroke functional recovery. For example,
the inhibition of CXC receptors and neutrophil recruitment with Reparixin reduced brain damage,
leading to functional improvement [74]. However, alternative studies have shown an opposite effect,
finding that the inhibition of neutrophil activity and infiltration was not associated with functional
improvement after stroke [75]. Similarly, monocytes/macrophages migrate to the injured brain, exerting
both protective and detrimental effects. For example, in a model of ischemia reperfusion injury,
C-C chemokine receptor type 2 (CCR2) deficient mice showed impaired monocyte and neutrophil
chemoattraction and infiltration into the brain, with smaller infarction sizes, and reduced brain edema,
which translated into neurological improvement [76]. In contrast, CCR2 inhibition with the antagonist
INCB3344 was associated with poor monocyte infiltration that did not translate into functional
post-stroke recovery [77]. The discrepancy between both studies might be related to the specific
contexts of the analyses and the temporal window of CCR2 silencing; the pharmacological inhibition
of CCR2 versus CCR2 genetic deficiency from development. These studies illustrate the complexity
of monocyte infiltration and its involvement in the pathological evolution of brain damage after
ischemia. Indeed, the infiltration of monocytes has been considered a positive signal for microglial
activation reducing secondary damage and neuronal dysfunction. This was illustrated in a recent study,
where C-X-C chemokine receptor type 4 (Cxcr4)-deficient stroke mice showed decreasing monocyte
infiltration and increasing expression of microglia pro-inflammatory factors that translated into worse
functional outcomes [78].
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2.4. Spreading Depolarization

After brain ischemia, waves of depolarization (SD) initiate mostly on the border of the ischemic
penumbra and propagate towards the peri-infarcted and non-damaged regions (Figure 1). These abrupt
waves are accompanied by a loss of neuronal transmembrane ion gradients and impaired
neurotransmitter release, energy metabolism failure, neuronal swelling, and dendritic beading.
The occurrence of SD has been reported in other brain disorders, including migraine, traumatic brain
injury, and subarachnoid and intracerebral haemorrhage. In non-metabolically compromised brain
tissue (for example, in a migraine), these depolarization waves essentially cause hyperemia (increasing
blood flow) as a normal hemodynamic response to recover ion gradients and energetic metabolism.
However, in metabolically compromised tissue, like those after brain ischemia, SD causes intense
vasoconstriction and blood flow reduction, preventing neuronal repolarization and propagating
hypoperfusion to peri-lesional areas, producing additional damage [79]. This relative simplistic
interpretation of hemodynamic changes in response to SD in healthy (hypermia) and non-healthy
(hypoperfusion) brains is changing toward a more complex scenario, where multiple vasodilatation
and vasoconstrictive responses occur [13]. Several studies on animal models and humans indicate that
the incidence of repetitive SD correlates with neuronal damage, thus worsening the clinical outcomes.
Thus, it is widely accepted that SD constitutes another major contributor to secondary damage [79,80].
Although SD can be modulated by different drugs in intact tissue, for example, by NMDA receptor
antagonists, SD waves are generally pharmacoresistant in metabolically compromised tissue, a fact
likely ascribed to the lack of deep knowledge of the mechanical aspects of the initiation and propagation
of SD in the ischemic brain. Although NMDA antagonists, such as ketamine or MK-801, might attenuate
SD in animals after brain injury [81], only few clinical cases have reported that antagonizing NMDA
receptors might prevent SD in patients [82]. The fact that targeting excitotoxicity through NMDA
receptors antagonists does not result in clear benefits in stroke patients brings even more controversy
as to whether NMDA receptors are adequate targets for abolishing SD and attenuating secondary
damage. Conversely, SD is considered a strong biomarker for monitoring the clinical evolution of
stroke patients [79], but the identification of promising compounds to target SD waves, and their
vasoconstrictive effects over the evolution of damage in an ischemic brain, remains a very attractive
area for therapeutics.

3. Biomaterials and Routes of Administration

Numerous materials have been used in medical applications over the centuries. With the emergence
of modern biomedical engineering and the ability to design and produce synthetic polymers or prepare
natural materials through standardized methods, we have significantly advanced in the prevention,
treatment, and diagnosis of a variety of human pathologies [86]. In the last few decades, there has
been an indefatigable search to cover the most pressing needs in biomedicine and tissue engineering.
This search includes exploring and characterizing the most highly compatible biomaterials and formats
with low cost, easy production, the ability to be sterilized, and reproducible manufacturing. The search
for biomaterials able to deliver molecules and factors, interact with cells and tissues, or simply serve
as support for skeletal tissues and different organs has been done on a large scale. For example,
this search has been fruitful in the fabrication of stents to recanalize clogged vessels, synthetic
valves for aortic/mitral stenosis/regurgitation, bone and orthopedic prostheses, intraocular lenses,
immunobiology, cell and drug delivery systems, or general materials for in vitro diagnosis [87–89].
Biomaterial-based biomedical applications have grown exponentially in parallel with the development
of better artificial/natural polymer designs, with a progressively greater capacity to innocuously adapt
to tissues and organs. In the case of the central nervous system (CNS), the applications of biomaterials
are very versatile. For example, popular polymers like hydroxyapatite or poly-methylmethacrylate
have been used for cranioplasty and skull reconstruction after craniectomy in patients that have suffered
ischemic and hemorrhagic stroke [90,91]. Endovascular embolization with platinum coils coupled
with hydrogels has been performed as an alternative to neurosurgical clipping for the treatment of
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intracranial aneurysms [92]. Other polymers, such as polyvinylpyrrolidone, have been used to coat
endovascular catheters and vascular devices [93].Cells 2020, 8, x 10 of 44 
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Figure 1. Secondary injury increases lesion extension after stroke. (A) The sudden occlusion of a brain
artery causes hypoperfusion and oxygen deprivation, producing a core of irreversibly damaged tissue
surrounded by a penumbral area at risk of being damaged. After hypoxia, stroke triggers excitotoxicity,
blood flow changes, inflammation, and oxidative stress, which produce secondary damage, thus
extending the area of the lesion. The relevant time phases post-stroke have been defined as acute,
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sub-acute and chronic [30,31]. During the acute phase (hyperacute ~0–24 h; late acute ~1–7 days) it
is possible to therapeutically neuroprotect the brain, thereby preventing the detrimental effects of
secondary damage. The definitive damage is relatively well established several days after stroke, when
neuroprotective agents are no longer efficient. During sub-acute (~7 days–6 months) and chronic
(>6 months) phases, tissue reorganization can take place via rehabilitation and neural repair strategies.
(B) Stroke produces peri-infarct depolarizations that cause vasoconstriction and blood flow reduction,
propagating hypoperfusion to peri-lesional areas and causing additional damage. The image shows
a mouse brain (MCAO model, scale bar 0.5 cm) 24 h after permanent ischemia (MCA ligation).
Immediately after MCA occlusion, a wave of terminal depolarization was electrophysiological
recorded in peri-lesional areas (parietal cortex, PtA) bordering the infarct core (asterisk in the image).
Note the existence of brief depolarization waves in non-damaged distant areas (occipital, OcA),
which, in metabolically compromised ischemic tissues, also might cause intense vasoconstriction
and hypoperfusion. (C) At the top, representative coronal brain sections from two mice stained with
TTC (2,3,5-triphenyltetrazolium chloride) 24 h after MCA occlusion at distal level respect the Circle
of Willis. In this specific stroke model, the infarct area (in a white colour) is mainly restricted to
the cortex (scale bar 0.5 cm) [83–85]. In the middle, as part of the inflammatory response, an intense
astrogliosis (Glial Fibrillary Acidic Protein staining) can usually be detected in the infarcted hemisphere
in relation to the contralateral hemisphere (scale bars 700 µm and 100 µm, respectively). In the bottom,
representative brain sections stained with dihydroethidium (DHE) to detect reactive oxygen species
and intracellular superoxide. In this example, as early as 8 h after MCAO, the most intense fluorescence
was detected in the peri-lesional tissue in perinuclear locations (the nuclei are stained with DAPI,
scale bars 700 µm and 10 µm respectively).

Different biomaterials have been used as adjuvants for drug and cell delivery to cover the lack
of clinical efficacy of many neuroprotective agents based on negligible systems of drug delivery
and to achieve therapeutic doses during the intervention window. The majority of classical
neuroprotective approaches ignore the optimal time point for drug application, as well as the length
of duration and quantity needed for a particular neuroprotective agent to remain active to achieve
its maximal clinical response. After injury, over time, positive and negative signalling emanates
from the brain [94,95]. Due to this fact, particular compounds might have antagonistic effects on
the time of application causing detrimental or neuroprotective actions. For example, early inhibition of
the chemoattractant C-X-C motif chemokine 12 (Cxcl12) might prevent the infiltration of peripheral
leukocytes into the brain, diminishing inflammation and leading to functional recovery [96]. However,
the inhibition of Cxcl12 at later time points after stroke would prevent tissue remodeling because
this cytokine stimulates the migration of endothelial and neural progenitors towards peri-lesional
and lesional regions. Although it is assumed that the modulation of activity in molecules related to
inflammation/oxidative stress/excitotoxicity pathways produces neuroprotection during the window
of intervention, the efficacy of such neuroprotective treatments is limited by a profound decay of
activity linked with the poor stability and rapid degradation of majority of neuroprotective compounds.
These factors, together with the restricted permeability of the BBB, the amount of unbound drug
compared to the drug bound to non-target intra and extracellular molecules, and the limited drug
distribution into the brain, indicate that the drug concentration generally falls below therapeutic levels,
thus narrowing the time of therapeutic action [97].

3.1. Intracranial Administration

As stated above, the BBB represents one of the most important restrictions to the passage of molecules
towards brain parenchyma when they are administrated systemically [98]. It has been estimated that
nearly 95% of small molecules do not cross the BBB [98]. Two main mechanisms might help molecules
pass through the BBB: free diffusion by crossing the lipid-composed membranes of endothelial capillaries
and transportation through specific receptors. The latter process represents the main mechanism for
the transport of small polar molecules, such as amino acids, glucose, or certain anions and cations
towards the brain [99]. These specific mechanisms strongly restrict the passage of the majority of
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molecules. It has been reported that only small (<400 Da) lipid soluble molecules have the ability to cross
the BBB. The molecular weight, lipophilicity, and hydrogen-bonding potential strongly influence this
process. For example the number of hydrogen bonds is negatively correlated with drug permeation [100].
To circumvent the BBB, different biomaterials have been uploaded with bioactive molecules and directly
implanted into the brain. With the intracerebral approach, the location of the implant in cortical
or subcortical structures can be reasonably chosen, thus establishing a core of delivery either in
the damaged area or in the surrounding tissue to reach therapeutic concentrations. This approach
reduces the dose that is needed to produce positive effects and decrease the toxicity associated with
systemic approaches that usually require higher doses of drugs. In addition, cerebral implantation
increases the drug half-life by preventing the drug’s exposure to the plasmatic proteins and molecules
responsible for drug removal. This approach might be particularly relevant for treating focal ischemias.
Although different biomaterials and formats can be implanted in the brain, thereby extending drug
activities, their biocompatibility and integration with host tissue still constitutes an important concern
that needs to be resolved. The cerebral microenvironment is extremely sensitive to minor damage.
Even the simple implantation of an inert foreign body, such as the tip of a needle, produces a rapid
inflammatory response [101]. Another major disadvantage of cerebral implantation is the invasiveness
of surgical procedures required to implant the biomaterial, which can displace healthy tissue, thereby
compromising the structure and function of the non-damaged brain regions, especially if the mechanical
properties of the implanted materials do not match the specific properties of the brain tissue, which also
vary between mammalian species and different brain structures [102–104]. To minimize damage,
epicortical implants have been performed to release drugs directly onto the brain’s surface, avoiding
penetration in deep brain structures [105]. This epicortical strategy is interesting when taking into
account that many stroke patients are treated with decompressive craniotomies and durotomies to
relieve intracranial pressure, thus exposing the brain surface [106]. However, these neurosurgical
procedures are not usually apply to aged patients as these interventions increase the risk of morbidity
and mortality [107]. Both intracerebral and epicortical implantation might establish a gradient of drug
concentration from the site of implantation towards other brain areas, limiting the ability of compounds
to reach therapeutic doses in the outermost regions (i.e., the subcortical areas). In this context, it has
been estimated that, for small molecules, drug concentration diminishes logarithmically for every mm
of distance from the capillaries towards the brain parenchyma [98].

3.2. Intravenous and Intraarterial Administration

Less invasive procedures have also been explored (for example, intra-venous and intra-arterial
routes). Different types of nanoparticles (NPs) have been delivered through these specific routes.
Although it has been suggested that a systemic route may extend the drug’s half-life, the restricted
permeability of the BBB, which limits the accessibility of the administrated compounds and nanoparticles
to the brain, remains a significant concern. Although the BBB is strongly hermetic under physiological
conditions, a breach in the BBB occurs in minutes after a brain injury and lasts for days. After a stroke or
traumatic brain injury the temporal course of impaired BBB permeability is complex, the permeability
of the BBB is substantially increased in a biphasic way, with maximal permeability a few hours after
stroke, followed by a decline and subsequent increase of permeability between three and seven days
after the insult [108,109]. In mice, transient ischemia causes substantial BBB opening, mainly at 6
and 72 h, similarly following biphasic evolution [110], a result previously found in other mammalian
species [111]. Although some patients may show impaired BBB permeability for weeks, for the majority
of stroke patients, the permeability of the BBB quickly returns to its physiological values. This creates
a temporal window of opportunity for bioactive compounds that usually do not cross the BBB
to reach the brain through the use of different nanomaterials coated with therapeutic compounds
that are systemically administrated. A widely used coadjutant for drug delivery is the NP format,
which may increase the stability of drugs in circulation by creating a shell against rapid degradation
and controlling the progressive drug release. In an interesting study, the systemic administration of
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PEGylated polystyrene NPs of a wide size (40–1000 nm) produced the maximum accumulation of NPs
in the brain one hour after injury [112]. However, at later time points (13 h), only the smallest particles
were clearly detected in the brain. This study suggests that, although the permeability of the BBB
is impaired after injury, the BBB still has some limitations in allowing particles and biomolecules
to enter the brain with absolute freedom. In addition, therapeutic intervention at very early time
points after BBB opening (for example, 1 h post-injury), precisely when maximal NP accumulation is
achieved in the brain [112], is not practical for a late clinical diagnosis. Because less than 5%–10% of
systemically administered NPs might reach the brain as the target organ [113], and because most NPs
are eliminated by glomerular filtration at the renal level, the non-invasive aspect of intra-venous/arterial
administration is counteracted by the limited ability of the NPs to reach the brain, even with a breach
in the BBB.

3.3. Intranasal Delivery

A third level of administration is the intranasal pathway. The anatomy of the nasal cavity might allow
the passage of substances directly towards the brain through this particular route [114]. Neuroprotective
agents could theoretically pass from the nasal cribriform plate and neuroepithelium to the brain via
the olfactory and trigeminal nerves, thus bypassing the BBB [115]. However, the olfactory epithelium has,
in general, reduced permeability to large molecules or polar molecules under non-injured conditions,
although hydrophobic small molecules might pass the nasal epithelium with fewer restrictions.
Although this route is less invasive than intraparenchymal administration, the rate of diffusion is
still highly reduced, thereby limiting the amount of total drug entering the brain to reach therapeutic
doses in the area of interest. It is estimated that only 1% to 10% of administrated drugs, depending
on their chemicals’ structure and size, can target the brain through this route [116]. Due to this
limitation, several strategies have been developed to improve the transport of different substances
through the intranasal route, such as the use of NPs decorated with ligands with an affinity for olfactory
epithelium receptors [117]. However, anatomic differences in the olfactory epithelium between humans
and rodents might account for the differences in the permeation rates between species. How this route
works in humans, however, is largely unknown [21].

To overcome the rapid dilution and degradation of neuroprotective drugs, most biomaterial-based
strategies use NPs and hydrogels, which, in general, have demonstrated significant neuroprotective
preclinical benefits with respect to the administration of free molecules. In the context of stroke,
hydrogels have been preferentially developed to deliver drugs/factors directly into the brain, especially
to treat focal injuries, with precise deposition of this biomaterial in the areas of interest (i.e., in the stroke
cavity or in peri-lesional areas). However, NPs are more versatile because they can be administrated
through all imaginable routes, including systemic (intravenous, intraperitoneal, and intranasal)
and cerebral routes, to treat focal and extensive (global) injuries, with greater biodistribution but higher
clearance rates (Figure 2). In addition, NPs might also target intracellular components by crossing
the cellular membrane. In the next two subsections, we will discuss the relevant properties of NPs
and hydrogels in relation to their potential uses for targeting secondary damage after brain injury.

3.4. Nanoparticles

A very attractive material format for biomedical applications is the NP, which usually results from
the association of bioactive compounds and molecules, drugs, peptides, protein factors, antibodies,
deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and interfering RNA, with a core structure
formed by natural or artificial polymers, lipids, or a combination thereof. For targeting stroke, most
studies to validate the neuroprotective efficacy of drugs/factors delivered from NPs have been carried
out in rodent models and very rarely in non-human primates (Section 4). To the best of our knowledge,
no NP-based applications have been used to target the human stroke brain. However, in non-stroke
clinical trials different NPs based on micelles, liposomes and various polymer composites have been
already used to deliver therapeutic compounds [118]. Apart from drug/factor delivery, NPs have also
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been used as contrast agents for brain imaging and diagnosis in rodents, and less frequently in human
and non-human primates [119–124]. Some studies have focused on developing multifunctional NPs
(for example, for drug delivery and imaging) [125,126].
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Figure 2. Main routes to target the stroke brain with biomaterial-based nanoparticles and hydrogels.
Intracranial (stroke cavity, epicocortical, and intracerebral), intranasal, and intravenous/intraarterial
routes are the commonly used to target the brain with distinct biomaterials and formats. The advantages
and limitations of each specific route are framed under a cyan and red background respectively.
Nanoparticles (NPs), such as micelles, liposomes, dendrimers, and inorganic NPs are strongly versatile
and can be administrated through all known routes to treat both focal and global injuries. NPs are
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more dynamic, with better dispersion and biodistribution properties than hydrogels, which usually
hold static positions in the area of implantation. NPs might also act on extracellular and intracellular
targets. In addition to the delivery of drugs/factors, different stem cells and differentiated cells with
neuroprotective abilities can be encapsulated in the interior of hydrogels. The limited diffusion,
reduced BBB penetrance, and excessive clearance of NPs might be overcome with biofunctionalization
strategies, for example, incorporating camouflage molecules (PEG or cellular shell membrane fragments),
or decorating the NPs with particular ligands to target receptors in the brain endothelium or
olfactory epithelium.

NPs work on a nanometric scale (~10–500 nm) and are thus able to interact with tissues extra-
and intra-cellularly. However, such interactions need to be strictly controlled since non-specific
interactions and retention in several tissues reduce the number of free NPs available for binding to
the selected targets. NPs show, in general, good stability and can be sterilized by different methods,
including γ-irradiation. For sizes of NPs, ranges between 10 and 100 nm are compatible with
the diameters of blood vessels in the brain and the sieving coefficient for the glomerular capillary wall
in the kidney for subsequent NP clearance, although large NPs might have limited diffusion rates in
the brain parenchyma. NPs can be constructed with different biodegradable and compatible materials
and polymers, including chitosan, poly-lactic acid (PLA), poly-lactide-co-glycolide (PLGA), poly-methyl
methacrylate, poly-N-isopropylacrylamide (PNIPAM), poly-butyl cyanoacrylate (PBCA), poly-isohexyl
cyanoacrylate (PIHCA), gelatine or albumin, and others. These materials influence the efficacy of
drug encapsulation and subsequent in vivo delivery in different ways. The sizes, charges, and shapes
of NPs can be tuned to modify the rate of cellular uptake, transport, biodistribution, and kinetics
for the fast or slow release of different compounds to reach extra-or intra-cellular compartments,
depending on the specific target location. NPs have been conventionally classified as different types,
including (1) polymeric NPs (i.e., dendrimers, micelles, chitosan, PLGA, and PGA), (2) lipid-based NPs
composed of fatty acids and triglycerides (i.e., liposomes), (3) inorganic NPs formed by silicon, pure
metals, and alloys, or (4) hybrid NPs.

3.4.1. Functionalization of Nanoparticles

The actual technology with NPs allows their surfaces to be decorated with chemical and biological
motifs to prevent the rapid decay of the drug concentration in circulation as a consequence of excessive
degradation and poor stability due to the body’s clearance/excretion and metabolism. NPs can be
externally decorated with targeting ligands, and it is possible to change the affinity and density of
these molecules (e.g., antibodies) to identify specific subsets of native or pathological cells in tissues
and organs and ensure the subsequent delivery of NPs in these selected targets. The particle size,
chemical structure, and zeta potential can be engineered to create a wide spectrum of particles with
different properties. As noted above, brain injury compromises the BBB, making it more permeable to
compounds that usually would not pass the BBB under physiological conditions. This increase in BBB
permeability gives NPs a temporary opportunity to gain access to the brain through a Trojan-horse
strategy when NPs are less-invasively and systemically administrated, although the NP size might
influence the rate of internalization and diffusion into the brain, as well as the amount of drug
released. Although brain injury produces a breach in the BBB, this does not necessarily mean that
the brain’s endothelium permeates almost every specific compound or NP type. The surfaces of NPs
might be modified covalently by incorporating certain molecules, such as Poly-ethylene glycol (PEG)
and surfactants, or by adsorbing targeting molecules; the latter facilitates NP uptake into the brain
through receptor-mediated endocytosis mechanisms. For example, NPs might be decorated with
apolipoprotein E (ApoE) fragments or anti-transferrin antibodies to cross the BBB though interactions
with low-density lipoprotein (LDL) and transferring receptors, respectively [127,128]. Uptake is also
favored when NPs are decorated with particular ligands to target glutathione or glucose transporters
present in the endothelial barrier [129]. Functionalization with surfactants, such as polysorbate 80,
pluronicP85, or poloxamer 188, drastically enhances the ability of NPs to cross the BBB via active
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transcytosis mechanisms [130]. These surfactants present in the NPs’ surface adsorb the Apo A-I and/or
Apo E present in the plasma to facilitate their subsequent interactions with LDL receptors. In one study,
for example, polysorbate 80 coated poly(butylcyanoacrylate) NPs enhanced the brain concentration of
low-molecular weight neuroprotective molecules, such as tacrine or rivastigmine [131,132]. Transcytosis
is an active mechanism of NP delivery that is very specific and can also enhance the intracellular
delivery of bioactive compounds. In contrast, the passive entrance of NPs into the brain via leaky
BBB vasculature as a consequence of injury results in non-specific targeting, but a large number
of NPs can pass into the brain. NPs have also been employed to deliver high-molecular factors
and enzymes. In one study, albumin-fluorescein isothiocyanate (FITC) delivered from PLGA NPs
modified with a particular heptapeptide sequence (g7) was found in the brain of wild type mice as
early as 2 h after intravenous injection, while the amount of albumin-FITC and NPs in the brain was
even greater in mice with mucopolysaccharidosis and impaired BBB permeability [133]. In another
study, high-molecular weight neuroprotective factors, such as brain derived neurotrophic factor
(BDNF) released by PEG-poly-L-glutamate-(PGA) diblock copolymer NPs administrated intravenously,
reduced the infarct size and promoted the recovery of neurological dysfunction after transient ischemia
in comparison with the application of free BDNF [134]. Nerve growth factor (NGF) adsorbed onto
PBCA NPs decorated with polysorbate 80 led to an improvement of deficits in a mouse model of
Parkinson’s disease [135]. Curiously, the degeneration of motor neurons has been associated with
a decrease in the expression of different transcytosis receptors, for example, transferrin receptor 1 [136].
Thus, particular pathologies might modify the ability of NPs to cross the BBB via receptor-mediated
transcytosis. As a very frequently used molecule to decorate NPs, PEG might make NPs practically
invisible to the immune system [137]. This is important because NPs rapidly adsorb serum proteins,
including opsinins (antibodies, complement factors, and Pentraxins), which mediate opsonisation,
thereby enhancing phagocytosis by peripheral macrophages augmenting the clearance of NPs from
circulation. Thus, decorating the surface of NPs with surfactants or PEG might prolong the NPs’ time
in circulation [138]. PEG-based NPs have been, for example, employed clinically as anti-tumoral
therapies. If NPs survive the hostility of the blood serum and cross the restricted BBB, they can be
modified with certain ligands to target specific subsets or neural cells into the brain parenchyma. This is
the case for the amino acid sequence “CLEVSRKNC”, identified via the screening of a phage library,
which might facilitate the mobilization of NPs towards ischemic penumbra areas due to the special
affinity of this peptide sequence to binding neuronal cells at risk of being damaged [139,140].

The stability and clearance of the NPs in circulation might be influenced by the NP charge.
The surfaces of cells, including the endothelium lining the blood vessels, contain negative charges
that can repel NPs with negative potentials. However, NPs with excessive amounts of both
positive and negative charges might also increase the phagocytic activity of monocytes/macrophages,
thereby diminishing the quantity of NPs. The positive charging of NPs with cationic peptides
and different molecules allows the interaction with the BBB surface, which is negatively charged.
However, highly charged anionic and cationic NPs might also disrupt the BBB [141]. Positive potentials
also promote NP aggregation with the negatively charged proteins present in serum, thereby increasing
the risk of embolisms. Thus, a neutral charge is desirable to provide better stability by diminishing
excessive clearance and toxicity at the expense of a minor rate of infiltration towards the brain [142].
The coating of NPs with PEG might bring the zeta potential closer to zero values [112]. The zeta
potential also influences the rate of intracellular internalization. Because the plasma membrane is
negatively charged, positively charged particles can enter more easily than negative particles. Another
concern is related to tolerability. In most preclinical research, the functionalization of NPs and the core
itself are not associated with substantial toxicity concerns, although there still exists a potential risk
that particular materials and biofunctionalization can produce toxic effects [143,144]. In humans,
the possible adverse effects of particular NPs and biomaterials at the systemic and cerebral levels are in
general largely unknown.



Cells 2020, 9, 1074 17 of 42

3.4.2. Dendrimers

Very specific carriers for drug delivery are dendrimers. This type of NP has a tree-like branched
topology formed by a core, from which multiple layers of branches emerge and incorporate distinct
functional groups that can bind different neuroprotective molecules and factors. This particular
structure and the versatility of these NPs’ functional groups allow the encapsulation and covalent
binding of a great variety of hydrophilic and hydrophobic molecules. A popular dendrimer is
poly-amide-amine (PAMAM), which, due its commercial availability, has been used in multiple
applications, including the treatment of stroke. This dendrimer is made of repetitive subunits of
amide and amine groups and shows greater biocompatibility than other dendrimer isoforms [145].
However, toxicity concerns have also been reported in specific PANAM variants carrying cationic
groups. Although the biological tolerability and lifetime in circulation increased after decorating these
dendrimers with PEG, PEG did not completely suppress toxicity, especially when higher proportions
of PANAM are were used [145].

3.4.3. Liposomes

Liposomes are spherical NPs that are formed by an amphiphilic lipid bilayer. Liposomes can
encapsulate both hydrophilic and hydrophobic molecules, including neuroprotective drugs, DNA/RNA,
peptides, and recombinant or natural proteins. Changing the lipid composition, size, and zero potential
might increase the lifetime in circulation and within the brain. Similarly, PEG or the incorporation
of gangliosides might prolong the time in circulation and reduce blood clearance. It is also
possible to reconstitute liposomes by incorporating recombinant ligands for specific receptors
to mediate brain uptake through endothelium receptor transcytosis. In one study for example,
Dimyristoylphosphatidylcholine-based liposomes were decorated with APOE to carry α-mangostin,
an inhibitor of Amyloid-β (Aβ) oligomer formation. These NPs, with size ranges of ~30/50 nm
and zeta potentials of −10/−20 mV, were able to cross the BBB after intravenous administration, reaching
the cortex and hippocampus [146]. In APPswe/PS1∆E9 Alzheimer mice, as a model of neurodegeneration,
these NPs decreased amyloid deposition and microgliosis, leading to improvement in spatial learning
and memory capacities [146]. Alternative approaches to increase the entrance and delivery of liposomes
in the brain have also been reported, for example, via the previous osmotic disruption of the BBB
using mannitol [147] or by surface modification with several ligands to promote receptor-mediated
endocytosis, such as ApoE or molecules that target BBB transferrin receptors [148,149]. As the main
handicaps, it has been established that liposomes have a poor control of time release, as well as limited
intracellular delivery, although these concerns are overcome by the versatility of NP applications for
drug delivery in stroke and several neurodegenerative disorders.

3.4.4. Micelles

Another type of NP around 5–50 nm in size are micelles, which are composed via self-assembly
in water from amphiphilic molecules, with hydrophilic groups facing the outside and hydrophobic
ones inside the micelle forming the core. Self-assembly in water occurs at a defined concentration
of surfactants to achieve minimal surface tension and the formation of micelles (critical micelle
concentration). Micelles are readily able to encapsulate and deliver poorly soluble molecules.
Their hydrophilic features also allow better integration with aqueous extracellular media, and micelles
are relatively easy to produce. In the context of neurological disorders, micelles have been used,
for example, to release anti-epileptic compounds, with a limited capacity to cross the BBB. For example,
a copolymer of pluronic acid derivates was used to deliver clonazepam, an anti-convulsant drug
that potentiates GABAergic signalling, thus reducing excitability [150]. With the most optimal
micelle formulation, a sustained release of clonazepam was obtained over an interval of eight
hours, although this contrasted with the peak of maximal concentration of this drug in the brain;
approximately 30 min after intranasal administration [150]. Interestingly, very few concentrations of
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clonazepam were detected in the brain after the intravenous administration of micelle–clonazepam
or the delivery of the free drug, thus highlighting the efficacy of the intranasal route for this
specific approach. In mice, this strategy offered better protection against epilepsy in a model of
pentylenetetrazole-induced epilepsy [150]. In other example, Pluronic-derived micelles reconstituted
with phosphatidylcholine and polysorbate80 have also been used to deliver Nimodipine, a calcium
antagonist that reduces cerebral vasospasm in subarachnoid haemorrhages [151]. More recently,
copolymers of PEG and PLA were used to fabricate self-assembling micelles in a nanometric range to
release the anti-oxidant and ROS scavenger compound Edaravone [152].

3.5. Hydrogels

Hydrogels offer an alternative perspective on pharmacological delivery relative to NPs, although
various strategies have simultaneously employed a combination of NPs and hydrogels, for example,
by encapsulating NPs carrying neuroprotective agents in the interior of hydrogels [153,154].
Most hydrogel-based applications seek to implant the hydrogel in a defined cerebral location while
different therapeutic factors are gradually delivered from this particular implant area, thus establishing
a gradient of concentration from the site of implantation towards the injured tissue. The therapeutic
opportunity of hydrogels to neuroprotect the stroke brain is inferred from the positive outcomes
observed in animal models (Section 4). At present, there are no known applications to target the human
stroke brain with hydrogels, although some initial approaches have been performed in non-human
primates, exploring the tolerability of several hydrogels formulations (PEG, hyaluronic acid) implanted
in the ischemic and non-ischemic brain [155,156]. Fortunately, the rapid evolution and characterization
of hydrogel-based materials for drug delivering in other mammalian species (mainly rodents) reinforces
our optimism to develop advanced hydrogels for clinical translation.

Hydrogels are formed by immersing a polymer or a mix of polymers into an aqueous solution,
thereby producing an insoluble three-dimensional gel state. Hydrogels have a strong affinity for
adsorbing water molecules, and most of their composition is water (>90%). This special architecture is
compatible with soft tissues/organs, such as the brain; given that the mechanical properties of hydrogels,
usually modifiable depending on polymer concentration and crosslinking-density, generally match
the compressive modulus of brain, estimated in the range of 25–50 kPa in rodents and 2–10 kPa in
humans [103,104,157]. For brain stroke, hydrogels have been preferentially designed for direct cerebral
administration, although hydrogels have also been applied via the intranasal route [158]. In cerebral
applications, hydrogels can be injected in a pregel state (liquid) to achieve in situ gelation over a time
window of a few minutes [101]. This strategy reduces invasiveness, prevents subsequent damage
of viable functional tissue, and is very appropriate for cell encapsulation. Different hydrogel-based
biomaterials have been implanted in the striatum [84,159], in the stroke cavity [160,161], or epicortically
above the brain’s surface [162,163]. A priori, the implantation of static hydrogels could be more able to
treat focal injuries, although alternative approaches should be explored for global damage caused by
severe stroke or neurodegenerative disorders, affecting several brain structures, such as the cortex,
hippocampus, and striatum (e.g., Alzheimer’s disease).

When comparing both biomaterial formats, NPs are more versatile and can be administrated
through all known routes (intraperitoneal, intravenous, intranasal, or cerebral). NPs show better
diffusivity properties than hydrogels, allowing them to reach almost every brain region, although this
dynamism might be counteracted by the sizes of NPs, the medium viscosity, and their non-specific
interactions with the extracellular components of brain parenchyma [164]. For example, NPs larger
than 200 nm show limited diffusivity through the cerebral area. It has been reported that PEG-coated
NPs with sizes near 100 nm and zeta potentials close to zero show efficient rates of diffusion through
brain tissue [165]. In agreement with this study, NPs smaller than 100 nm were efficiently able to
target and distribute through the injured brain after intravenous administration [166]. However,
even in smaller NPs, the diffusion rate and distribution across the brain area can be affected by NPs’
composition. In addition, NPs are subjected to higher clearance rates than hydrogels. Similar to NPs,
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hydrogels can be designed and fabricated with the incorporation of natural or artificial polymers,
or a combination of them. Thus, polymers formed by chitosan, PEG, PLGA, hyaluronan, collagen,
methylcellulose, alginate, and Matrigel are very popular [167]. These hydrogel-based biomaterials
have been used for the delivery of different neuroprotective and neurotrophic agents, for example
neurotrophin-3, ephrin-A, BDNF, and erythropoietin, among others [154,168–172].

Mechanical Properties, Degradation and Dynamic Hydrogels

Specific hydrogel formulations can define their mechanical and biological properties and their
capacity to integrate with the host tissue. The particular properties of hydrogels might make them
ideal not only for drug delivery but also for the encapsulation of terminal and undifferentiated cells.
In general terms, hydrogels provide suitable environments for the exchange of oxygen, nutrients,
and waste products between the encapsulated grafted cells and the recipient tissue. Hydrogels can also
facilitate the delivery of different bioactive molecules and factors released directly from the encapsulated
cells (secretome), such as factors with repercussions as modulators of inflammation, neurogenesis or
angiogenesis [173]. Far from being a passive structure for the delivery of biological factors, due to
its properties, a hydrogel can allow the encapsulated cells to continue interacting with the host
tissue to restore the functional circuits of damaged tissues and organs [174]. Thus, in the context
of cellular therapies, it is possible to tune the polymer concentration and cross-linking density to
select the mechanical properties of a hydrogel and its level of graft integration with the recipient [175].
For example, it is feasible to create highly compartmentalized hydrogels with very strict barriers to
prevent donor cell–host cell contact, thus avoiding the entrance of inflammatory and harmful signals,
which are usually present in the damaged tissues, towards the encapsulated cells [84]. Alternatively,
it is possible to design more open systems to achieve large-scale integration between donor and host
components [176].

In general terms, synthetic materials can efficiently reproduce the mechanical and physical
environment of the brain tissue relative to hydrogels constructed with natural materials. To better mimic
biological environments, hydrogels can even be formulated with adhesion-mediating molecules, such as
the tripeptide Arg-Gly-Asp (RGD), the principal adhesive ligand in fibronectin and other extracellular
matrix proteins, such as collagen, laminin, and vitronectin. Hydrogels with higher polymer content
and cross-linking density usually produce stiffer materials that generally are more resistant to biological
degradation. The vulnerability of a polymer to degradation depends on its structure and specific
hydrogel formulation, for example, due to the presence of hydrolyzable ester and amide groups.
For particular applications, it might be interesting to design hydrogels with controllable degradation,
for example, incorporating motifs sensitive to proteases and metalloproteinases, whose levels of activity
increase under pathological conditions. Degradation can also be induced by other advanced approaches,
for example, through photolytically degradable hydrogels [177]. In this study, photodegradation was
used to temporally control the crosslinking density and transform highly compartmentalized hydrogels
in more open platforms. This type of dynamic conversion might be applied at specific time points
after injury, depending on the pathological response of the host environment [177]. Additional reports
illustrate the progressive evolution of hydrogels towards more dynamic structures [178], for example
delivering immobilized molecules using photonic stimulation [179] or in response to increasing levels
of MMP-9 in the brain [180]. Interestingly, the cross-linking density, type of polymer, and content of
free and bound water not only influence the mesh size but also the permselectivity properties of every
hydrogel to sustain drug delivery over hours or days, depending on each application, the type of injury,
and the time of intervention.

3.6. Therapeutic Potencial of Biomaterials

In addition to its potential for drug release and cell therapy, several studies have shown the special
ability of different hydrogel and NPs formulations to mitigate, by themselves, the inflammation
and oxidative stress caused by brain injury. For example, when hydrogels of the extracellular matrix from
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a porcine urinary bladder were implanted in the stroke cavity, they promoted the infiltration of different
inflammatory and neural cell populations and neovascularization [181,182]. At concentrations above
8 mg/mL, these hydrogels produced a significant polarization of microglia towards anti-inflammatory
phenotypes, which are involved in brain tissue remodeling and repair after injury. Hyaluronic
acid-based hydrogels implanted in the stroke cavity have been linked to reduced inflammation,
creating a permissive environment for neural progenitors that migrated from neurogenic niches
towards the injured site [161]. These neuroprotective effects have also been observed with NPs.
For example, when hydrophilic carbon NPs decorated with PEG were intravenously administrated,
they showed anti-oxidant properties, thereby reducing the infarct volume and leading to functional
recovery in a model of transient ischemia in rats [183]. In another example, selenium NPs decorated
with PEG and OX26 antibodies to target the transferring receptor were able to reach the injured
brain after intraperitoneal injection [184]. These selenium NPs (zero potential +1.17 mV) reduced
the brain edema and decreased the infarct size in a model of transient ischemia in rats. These NPs
did not cause serious toxicity concerns in several organs that were histopathologically analyzed,
such as the lung, spleen, liver, and kidney. The neuroprotective effects of these selenium NPs were
ascribed to their specific targeting of several pathways involved in oxidative-stress, inflammation
and apoptosis [184]. It has been suggested that the neuroprotective and neurogenic effects induced by
particular hydrogels and NPs devoid of neuroprotective/neurogenic agents might be supported by
their mechanical, structural, and chemical characteristics, although the molecular/cellular mechanisms
have not been completely elucidated.

4. Neuroprotective Biomaterials for Brain Injury

In general terms, biomaterials can sustain the progressive release of therapeutic drugs and factors
preventing the early degradation and clearance of vulnerable compounds. This general characteristic
might prevent fluctuations in drug concentrations, ideally reaching zero order kinetics, thus avoiding
dangerous increases or decreases in drug concentrations to achieve concentrations that are relatively
constant, within therapeutic ranges. While the highly compartmentalized nanostructures of many
biomaterials and formats might have consequences on the fitness of the cells seeded within it,
this excessive compartmentalization does not generally limit the delivery of encapsulated drugs
and factors, although this delivery might be affected by the non-covalent interactions of distinct
encapsulated biomolecules with the constituent polymers and materials used to fabricate each particular
NP and hydrogel. For stroke, most biomaterial-based therapeutic applications have been focused
on the use of neuroprotective, angiogenic, and neurogenic agents. However, some nanoengineering
strategies have been acutely applied very early after stroke to re-establish the impaired blood flow
caused by the obstructive process. For example, in an interesting study, PLGA NPs were able to respond
before an increase in blood pressure (shear stress) was produced, thus disintegrating and releasing
the anti-thrombolytic agent t-PA, which, as mentioned previously, remains the gold standard compound
for treating ischemic stroke or myocardial infarction [185].

4.1. Hydrogels and Nanoparticles to Target Angiogenic and Neurogenic Niches

The so-called neurovascular unit is a frequently used term to illustrate the complexity of nervous
tissue, formed by a subset of undifferentiated and terminally different cells, which include stem cells
and neural precursors, neurons, astrocytes, oligodendrocytes, microglia, pericytes, and vascular cells
anchored to extracellular matrix components that provide physical support and mechanical stability,
as well as metabolic and electrical cooperation [186]. Although the classic perspective notes that
pericytes and vascular cells are key components of the BBB, the remaining neural cells also interact
with the brain’s microvasculature, thus helping to regulate the function and strict permselectivity of
the BBB [187]. Without vascular cells and neovascularization, it is not possible reconstruct the damaged
brain tissue through real tissue replacement and/or tissue remodeling to restore loss of function, thus
guarantying the long-term survival of new/remodeled tissue [188]. Many stimulators of angiogenesis
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are not only essential to enhance neural cell progenitors’ migration towards the ischemial penumbra,
but also permit the reestablishment of BBB permeability, with additional neuroprotective effects [188,189].
Different advanced biomaterials have been preclinically assayed with this intention. For example,
alginate/collagen hydrogels formulated as microspheres have been used as micro-factories for the release
of fibroblast growth factor -2 (FGF-2). This biomaterial induced the progressive and sustained release
of this angiogenic factor for at least one week, enhancing vascularization in zebrafish embryos [190].
Neovascularization has also been achieved after the brain implantation of the vascular endothelial
growth factor (VEGF) released by PLGA microparticles [191]. In stroke rats, this biomaterial-VEGF,
in combination with neural stem cells, facilitated the survival, attraction, and migration of endothelial
cells from peri-lesional tissue towards the biomaterial implanted into the stroke cavity, forming tube-like
vascular structures [191]. Post-stroke angiogenesis and tissue regeneration have been induced with
other sophisticated polymers carrying several therapeutic factors. For example, Hyaluronic acid
(HA)-based hydrogels loaded with PLGA-VEGF and PLGA-angiopoietin-1 microparticles [192]. In vitro,
these advanced polymers sustained the release of both factors for at least 12 days, although near 75% of
the factors previously encapsulated were trapped at this temporal point. In vivo, the implantation of
this composite in the stroke cavity of mice with permanent ischemia stimulated long-term angiogenesis,
enhancing the recovery of post-stroke sensorimotor deficits [192]. A release system based on a blend
of capped (hydrophobic ester end-groups) and uncapped (hydrophilic carboxyl end-groups) PLGA
particles sustained the gradual delivery of a RhoA inhibitor (CE transferase) for at least 25 days [193].
This is an interesting strategy based on the specific pro-apoptotic signaling role of RhoA, whose
inhibition constitutes an attractive paradigm for the treatment of central nervous system injuries,
including stroke. A pioneering study was performed on the delivery of basic fibroblast growth factor
(b-FGF) and epidermal growth factor (EGF) from a polymer composite of gelatine and 3-(glycidoxypropyl)
trimethoxysilane [194]. After focal brain damage, the release of both factors from this advanced scaffold
induced brain tissue remodeling based on a significant increase in neural cell proliferation and migration,
which was mostly preferentially restricted to glial cells. Other effects were related to angiogenesis
and neural structural changes (dendritic growth), although the kinetic release of both factors from
this biomaterial composite was not specifically assayed [194]. These previous examples illustrate how
different materials and formats are being used to stimulate the real tissue regeneration of damaged
areas (tissue replacement) and peri-lesional remodeling to enhance functional recovery. This type
of approach usually requires long periods of continuous stimulation and the sustained delivery of
neurogenic/angiogenic factors. However, neuroprotective agents should a priori be delivered in earlier
and shorter temporal windows after injury, in a range of hours to a few days (~7 days), during the acute
phase of stroke [31].

4.2. Hydrogels and Nanoparticles to Target Inflammation

The research related to neuroprotective strategies using different biomaterials is extensive, and most
studies have been performed at the preclinical level in ischemic and traumatic brain injury (TBI) rodent
models (Table 1). For example, a popular biomaterial commonly employed is chitosan. This polymer
has been used for the persistent release of different biomolecules, such as neurotrophin-3 [169].
After brain injury in rats, this molecule-biomaterial combination exerted a strong anti-inflammatory
effect based on the inhibition of leukocyte infiltration from peripheral blood to the brain, limiting
the activation of microglia [169]. The minor inflammatory and permissive brain microenvironment
induced by neurotrophin-3 favored neovascularization and stimulated endogenous neurogenesis while
also promoted the migration of neural progenitors from neurogenic niches to lesional and peri-lesional
areas, which differentiated into terminally functional neurons. All these mechanisms are essential for
creating new circuitry in lesional and peri-lesional tissue. The philosophy of using neurotrophin-3 in
combination with chitosan carriers has been extended to other scenarios, for example, after spinal cord
injury [195]. Other molecules have been released through distinct biomaterials, exerting significant
anti-inflammatory effects and stimulating endogenous neurogenesis. This is the case for Cyclosporin
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A. This immunosuppressant drug has been delivered through PLGA particles dispersed in a blend
of hyaluronan and methylcellulose [153]. This advanced biopolymer was implanted epicortically in
the brains of stroke rats, thus reducing the invasiveness of alternative administration routes, such as
the intra-cerebral or intra-ventricular routes. In this study, Cyclosporin A was gradually released
in the injured brain for at least 14 days. The effects of Cyclosporin A clearly increased the neural
progenitor cells’ survival, proliferation, and migration to the peri-lesional tissue, although recovery
after injury in response to this treatment was not specifically examined [153]. Reported by the same
group, Cyclosporin A delivered epicortically from the same biomaterial composite in a non-damaged
mouse brain produced significant amounts of this factor for more than 25 days in brain regions 1 mm
below the cortical surface [162]. These studies illustrate the importance of analyzing, for every specific
neuroprotective compound, the temporal patterns of delivery, as well as the biodistribution (spatial)
in cortical and subcortical structures. This is relevant considering that not all types of stroke are similar
in terms of their location (affected regions); moreover, differences in drug biodistribution might affect
the efficiency of particular drugs to treat certain forms of injury. The same biomaterial composite based
on PLGA particles dispersed on hyaluronan and methylcellulose was used to sequentially release
erythropoietin and EGF, two molecules with known neuroprotective and neuroregenerative capacities.
When administrated epicortically in mice with focal stroke in the endothelin-1 model, both molecules
showed tissue repair potential based on a significant increment in the survival and proliferation of neural
precursors from neurogenic niches [154]. This strategy was also associated with minor astrogliosis
and microgliosis. In contrast, the anti-inflammatory and neurogenic capacity of erythropoietin and EGF
was even smaller when both factors were administrated by intracerebroventricular injection [154].
Similar to Cyclosporin A, a significant advantage of this advanced polymer is that it provides the gradual
release of both factors, achieving higher concentrations in an interval of 7–21 days after the biomaterial’s
implantation. Similarly, in a neonatal ischemic model, the intraperitoneal injection of erythropoietin
delivered from PLGA nanoparticles caused a significant reduction in infarct volume that translated
into post-stroke behavioral improvement [196]. A similar neuroprotective effect could only be reached
with doses ~16.6 times higher of the free molecule. This latter effect is a general observation of using
distinct biomaterials and highlights the efficacy of employing distinct polymers to achieve better
post-stroke outcomes with smaller doses of the total administrated drug. The neuroprotective effect
of erythropoietin has also been tested in other models of brain injury (hemorrhagic strokes) using
formulations based on PLGA [197] and PBCA [198] NPs. Another interesting neuroprotective molecule
is Osteopontin, which is strongly upregulated after brain injury. Different studies have reported
that Osteopontin plays anti-inflammatory, anti-apoptotic, and neurogenic roles and participate in
tissue repair mechanisms. The striatal injection of gelatin microspheres loaded with Osteopontin
reduced the infarction size of rats submitted to focal brain ischemia. These effects were considerable
even when this treatment was administrated late [199]. The encapsulation of Osteopontin in this
polymer provided in vivo sustained delivery of this drug for at least four days after implantation,
causing an improvement in post-stroke sensorimotor deficits. Osteopontin has also been intranasally
delivered from gelatine NPs, showing significant neuroprotective effects when administrated 6 h after
stroke (middle cerebral artery occlusion model in rats), while no effect was detected after the equivalent
administration of free Osteopontin [200].

4.3. Antioxidant Strategies

PANAM dendrimers have been used to deliver antioxidants and anti-inflammatory molecules,
such as N-acetyl cysteine [201]. In in vitro studies, these NPs attenuated the production of free
radical nitric oxide (NO) from the microglia in response to lipopolysaccharide (a very common
pro-inflammatory molecule). Different evidences have shown the dual neuroprotective and neurotoxic
roles of free radical NO, but as commented previously, many studies have reported that the production
of NO contributes to exacerbating the post-stroke inflammatory response and the extent of damage,
as well as increasing BBB permeability. Thus, for example, inhibitors of iNOS and nNOS have been



Cells 2020, 9, 1074 23 of 42

shown to reduce cerebral edema and infarct sizes in different animal models. In comparison with
the application of free N-acetyl cysteine, the sustained release of N-acetyl cysteine through PANAM
dendrimers produces significant reductions in NO production, requiring fewer doses of N-acetyl
cysteine to achieve the same effects induced by the administration of free anti-oxidant molecules [201].
These types of strategies based on the use of antioxidants released through biocompatible polymers are
not only of interest for stroke but also to treat other brain disorders in which inflammation and oxidative
stress influence the course of the disease [202]. As commented previously, reactive oxygen species
(ROS) are basic mediators of neural inflammation and toxicity, especially in ischemia-reperfusion
injury. Thus, oxidative stress and ROS are relevant pathological mechanisms that contribute to
extending brain damage after a stroke. Oxidative stress has been combated by approaches based on
the delivery of free radical scavengers, such as N-acetyl cysteine (previously described) or superoxide
dismutase (SOD). This is because SOD is able to detoxify ROS by converting superoxide anions to
H2O2, while H202 can be converted to water via the action of catalase. Thus, both SOD and catalase
have been considered excellent candidates to diminish the oxidative stress caused by ischemic injury.
However, the half-lives of SOD and catalase are very short, this limiting their therapeutic uses as free
molecules. Two studies from the same group reported the possibility of delivering SOD and catalase
in a sustained manner through PLGA NPs to achieve better anti-oxidant stability and prolonged
therapeutic effects [203]. In in vitro studies, these PLGA particles sustained concentrations of SOD
beyond 90 days. In stroke rats, intracarotid arterial administration of PLGA particles loaded with SOD
reduced post-ischemic ROS levels, decreasing the infarct size and improving post-stroke behavioral
deficits [203]. The internalization of catalase in PLGA nanoparticles protected human neurons from
oxidative stress induced by H2O2. Significantly, these NPs released large amounts of catalase for
at least 30 days, thereby protecting the cell membrane’s integrity and morphology after oxidative
shock [204]. In another study, SOD was delivered from nano-polyion complexes, with cationic block
copolymers decreasing the infarct size and improving functional recovery after systemic administration,
despite few NPs reached the brain in comparison with the rest of organs where they remained trapped,
including the spleen, liver, kidneys and lungs [205]. A very original and interesting therapeutic
mechanism was also proposed in this study. The authors stated that the efficacy of this treatment
was based on the ability of NPs to accumulate in damaged blood vessels within the ischemic
hemisphere, thereby contributing to thrombus formation and attenuating the oxidative stress caused
by ischemia–reperfusion [205,206]. Another interesting antioxidant compound is Thymoquinone,
which plays a role in reducing ROS content after brain injury. However, similar to what occurs
with other biomolecules, the strict permeability of BBB limits the entrance of this molecule into
the brain’s parenchyma. In addition, Thymoquinone is rapidly eliminated from plasma following
intravenous and oral administration, showing relatively slow absorption rates [207]. In an in vitro
study, Thymoquinone was gradually delivered from PLGA NPs at an interval of 24 h [208]. In vivo,
the intranasal administration of Thymoquinone from PLGA-Chitosan NPs rendered, for at least
72 h, higher levels of this bioactive molecule in the blood and brain compared to when these NPs
where injected by the intravenous route. In stroke rats, in comparison with the oral and intranasal
delivery of the free molecule, the intranasal delivery of Thymoquinone from PLGA-Chitosan NPs led
to a decrease in the infarct volume and better behavioral outcomes. These effects were associated with
a significant elevation of the scavenging and anti-oxidant capacity of the brain in response to ROS
accumulation after ischemia-reperfusion, since SOD and catalase activity, as well as glutathione levels,
were substantially augmented [208]. Chitosan NPs have been used to deliver other neuroprotective
compounds, such as venlafaxine and Acetyl-11-keto-β-boswellic acid. Venlafaxine is an antidepressant
drug whose intranasal delivery from chitosan NPs significantly increased its uptake to the brain [209].
Acetyl-11-keto-β-boswellic acid is a poorly soluble molecule with a limited half-life in plasma
but powerful antioxidant and anti-inflammatory effects. The intravenous administration of this
compound incorporated into o-carboxymethyl chitosan NPs produced higher concentrations of
this bioactive compound in plasma (at least five times more) compared to the administration of
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the free molecule [210]. In a cerebral ischemia–reperfusion model, the Acetyl-11-keto-β-boswellic
acid reduced neuronal death and decreased the extension of damage, leading to an improvement
of behavioral deficits through an increase of the HO-1/Nrf2 anti-oxidative pathways and a decrease
in the content of inflammatory molecules, such as NF-kB and 5-LOX [210]. An anti-inflammatory
and anti-oxidative stress agent, Fenofibrate, was gradually delivered for at least seven days using
PLGA NPs [211]. The intracerebral administration of fenofibrate-PLGA moderately reduced the infarct
size in stroke rats, although this effect was not statistically significant, a fact that could not be ascribed
to the possible degradation of the drug and was more likely related to the limited biodistribution
of fenofibrate in the brain (however, this hypothesis was not tested) [211]. Nitrones are a family
of interesting reactive oxygen species (ROS)-trapping compounds that have shown neuroprotective
effects in neurodegenerative and cerebrovascular disorders, including stroke [212]. Because nitrones in
circulation have a relatively short half-life, their encapsulation in different polymers might increase
the durability of therapeutic effects, thus presenting better outcomes. The nitrone NXY-059, a disulfonyl
derivate of phenyl butyl nitrone, has shown neuroprotective properties in stroke models. However,
this compound failed to exert significant benefits in patients [53]. Whether this lack of efficacy
is due to the poor stability of this antioxidant compound in humans versus rodents is unknown.
Nitrones are now being preclinically delivered from advanced materials. For example, phenyl butyl
nitrones have been stabilized in chitosan NPs decorated with PEG, where significant amounts of this
nitrone were delivered over an interval of 24 h. However, the therapeutic efficacy of this formulation
was not explored [213]. In contrast, the in vivo neuroprotective ability of the prostacyclin agonist,
ONO-1301, has been examined after its subcutaneous delivery through PLGA microspheres [214].
However, drug encapsulation did not produce better benefits compared with the oral administration
of the free molecule. In stroke rats, both types of delivery reduced the cerebral edema and extensive
damage that lead to similar post-stroke functional recovery after treatment. Considering the clinical
context, a remarkable aspect of this study is related to the unique injection of ONO-1031 from PLGA
particles in comparison with the repetitive oral administration of the free molecule [214]. Edaravone,
a compound approved to treat stroke patients in Japan, has shown neuroprotective benefits by
decreasing oxidative stress and inflammation. Due its reduced half-life, the clinical effect of edaravone
is likely suboptimal. Biomaterial-based strategies have been developed to overcome this poor stability.
In a recent study, edaravone was delivered via micelle NP formulated with an amphiphilic copolymer
methoxypoly (ethyleneglycol)-b-poly (D,L-lactic acid) [152]. In addition to edaravone, this specific
micelle formulation was decorated with an adenosine 2A receptor agonist to favor its entrance through
the BBB and increase its penetration into the cerebral area after intravenous injection. In comparison
with the administration of free molecule, the delivery of Edaravone from these NPs reduced the content
of ROS and the infiltration of inflammatory cells, thereby reducing the infarct volume and promoting
behavioral recovery in a photochemically-induced stroke model in mice [152]. Notably, these positive
effects were observed even when the NPs were injected late after stroke, thereby extending the time
window of opportunity to rescue the cerebral tissue in risk of damage. This study also assessed
a model of permanent ischemia, which mimics a common condition (irreversible occlusion) among
stroke patients. Another interesting anti-inflammatory and antioxidant compound, curcumin, has been
delivered by different materials to overcome its limited stability in circulation. For example, NPs coated
with Polysorbate 80 and lecithins to increase intestinal adsorption were used to deliver curcumin in
a model of global ischemia in rats. This therapeutic approach significantly improved the functional
recovery of stroke animals based on the analysis of memory consolidation, an effect that was not
seen in rats treated with the free molecule [215]. Thermosensitive Pluronic F127/Poloxamer 188-based
hydrogels have been developed to deliver curcumin through the intranasal route [158]. In healthy
rats, this hydrogel formulation sustained the delivery of this compound for a minimum of 6 h (the
time period analyzed), with higher curcumin concentrations in several brain regions compared to
the intravenous administration of the free molecule [158]. Neuroprotection has also been achieved with
additional technology, e.g., via the incorporation of boronic ester groups as ROS-responsive elements
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and the decoration of NP surfaces with erythrocyte membranes to camouflage the NPs from clearance
after intravenous administration [140].

4.4. Biomaterials to Target Excitoxicity

Another line of research is the use of neuroprotective compounds to directly target excitoxicity.
For example, the peptide NR2B9 (KLSSIESDV), derived from the carboxyl-terminal domain of
the NMDAR NR2B subunit, is used to disrupt the interactions between the NMDA receptor with
post-synaptic density protein 95 (PSD-95), to prevent the hyperproduction of NO and subsequent
neuronal toxicity. Although this peptide is small (<1 KDa), its sequence contains polar and charged
amino acids that represent the main obstacle to crossing the BBB or reaching the intracellular neuronal
compartment. In a very interesting study, this peptide was delivered intranasally from PLGA
NPs to circumvent the BBB [117]. The technological strategy used to increase the permeability
of this material towards the brain was based on decorating the surface of the NPs with PEG to
promote its penetration into mucus barrier. The authors also incorporated the wheat germ agglutinin
(WGA), which binds to the N-acetyl-D-glucosamine and sialic acid present in the olfactory nasal
epithelium and neuronal surface. This approach increased the content of NR2B9 in the brain
relative to the intranasal administration of the free peptide. This more efficient delivery translated
into a reduced infarct size and improvement of neurological deficits in a transient ischemic stroke
model in rats [117]. Positive neuroprotective effects were also obtained with the same NR2B9C
peptide delivered via dextran NPs decorated with the peptide CLEVSRKNC, which specifically
targets neurons in ischemic areas [140]. These NPs were fully compatible in mice, and this strategy
considerably reduced the infarct size, leading to the substantial functional recovery of rats with
transient ischemia [140]. In another example, disruptors of GluN2B-PSD95-nNOS signalling were
administrated from liposome-based NPs. This was the case for the experimental molecule, ZL006,
which was delivered by an advanced soybean/lecithin/cholesterol-based liposome decorated with PEG,
the CLEVSRKNC peptide, and the HAIYPRH peptide, which recognizes the transferring receptor
of the brain’s endothelium [216]. In vitro, this engineered NP sustained the delivery of ZL006 over
30 h, with 50% of the molecule delivered in a time window of 3–5 h. In a transient focal ischemia
rat model, these NPs reduced the infarct volume and improved neurological deficits, a fact ascribed
to the neuroprotective effects of ZL006 and the special ability of these NPs to permeate the BBB
and enter the brain during a temporal window of opportunity of at least 24 h [216]. Inhibitors of
MMP-9, such as TIMP-1, have been used to reduce neuronal excitotoxicity and neuronal damage.
This has been achieved even more efficiently through biomaterial-based delivery systems, such as
PLGA-NPs, which promoted neuroprotection in hippocampal organotypic cultures and presented
strong penetration through the BBB after decoration with polysorbate 80 [217,218]. Riluzole, an inhibitor
of excitotoxicity, has been used in the treatment of Amyotrophic lateral sclerosis to increase patient
survival. The mechanisms of action for Riluzole are not well understood, although their effects
are variable, including the interruption of glutamatergic signalling and antagonizing the NMDA
glutamate receptor or/and blocking the voltage-gated calcium and sodium channels, thereby promoting
neuroprotection. To overcome the limited stability of Riluzole, this compound has been delivered
through chitosan NPs formulated with N-isopropyl acrylamide and tween80 to favour the passage of
these NPs through the BBB after intraperitoneal injection [219]. Interestingly, in an ischemia transient
rat model, these engineered NPs reduced the extensive damage and improved neurological deficits
in a dose-dependent manner. The positive effects of this therapy were due to the decreasing content
of lipid peroxide and the increasing level of glutathione, as well as the activity of ROS detoxification
enzymes, which translated into post-ischemia neuroprotection. However, although Riluzole has
a reduced half-life, the effect of Riluzole administrated as a free molecule was not examined in this
study, preventing to corroborate the additional advantages of encapsulating the drug in this specific
NP formulation [219].
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4.5. Other Strategies for Inducing Neuroprotection

Antagonists of the Nogo-66 receptors have been used to enhance neural plasticity and axonal
rewiring after stroke or spinal cord injury [220]. In addition, Nogo-66 receptors are linked with the family
of BCL-2, which regulate cell death, suggesting that suppressing Nogo receptor signaling might favor
neuroprotection [221]. In this context, the intravenous injection of PLGA NPs decorated with chlorotoxin
(to target MMP-2) and lexiscan (to transiently increase BBB permeability) allowed the delivery of
the Nogo-66 receptor antagonist peptide, NEP1-40. This approach translated into a decrease in infarct
volume and a better functional outcome in a transient ischemic model in mice [222]. Alternative
strategies have been focused on preventing the disruption of the BBB and vascular networks in
ischemic areas. This is the case for Cilostazol, which shows vasodilatation and platelet anti-aggregation
properties, as well as anti-inflammatory and antioxidant potential. Significant neuroprotective effects
related to a reduction in infarct size were observed when Cilostazol was delivered intravenously from
methylcellulose NPs into a mouse brain ischemia/reperfusion model [223]. However, no significant
differences were observed in the Cilostazol pharmacokinetics in plasma administrated as a free
molecule or via methylcellulose NPs. Moreover, a direct comparison between the neuroprotective
and functional outcomes of both methods of delivery was not performed [223].

One interesting approach is related to the delivery of genes and small interfering RNAs (siRNAs)
coated in different polymers as a way to overexpress/silence specific genes that are abnormally
down/up-regulated after injury [224]. The encapsulation of genes/siRNAs in advanced biomaterials
constitutes an intelligent system for intracellular delivery to prevent the rapid enzymatic induced
degradation of DNA/siRNAs in the extracellular space or bypass the low rate of transfection in terminally
differentiated cells, such as neurons. Unlike the usual delivery of drugs/factors in the extracellular
compartment, genes/siRNAs coated in NPs are directly internalized by specific cell populations.
Based on their specific composition, these NPs might be used for gene/siRNA delivery and also
for in vivo cell tracking with magnetic resonance imaging of the transplanted cells. For example,
a peptidic-based micelle (R3V6) was stabilized in an aqueous solution with the anti-inflammatory
and hydrophobic compound dexamethasone to deliver and overexpress the heme oxygenase-I (HO-I)
in the brain [225]. This gene encodes an anti-oxidant enzyme that, when delivered from R3V6 NPs,
reduced the infarct size in a rat model of transient ischemia; however, in this case, the treatment
was applied one hour before ischemia reperfusion [225]. PAMAM dendrimers were coated with
siRNAs to silence the expression of the High Mobility Group Box 1 factor, which is released from
the damaged brain tissue leading to inflammation. The internalization of these dendrimers by neurons
in vitro and in vivo decreased the post-ischemia neuronal mortality while reduced the infarct volume
of stroke rats submitted to middle cerebral artery occlusion [226]. In other study, polyethylenimine
superparamagnetic iron oxide NPs were used as carriers for silencing the hypoxia-inducible factor
prolyl hydroxylase (PHID2) gene, with siRNAs delivered in endothelial progenitor cells [227]. In this
study, the silencing of PHD2 caused an increase in the expression of Cxcr4, the receptor for Cxcl12.
The axis of Cxcr4/Cxcl12 constitutes a signaling pathway that regulates stem cell mobilization, migration,
and retention in different tissues, such as bone marrow and the brain [228]. This strategy enhanced
the migration of endothelial progenitor cells intracardially injected towards the ischemic brain,
thus stimulating endogenous vascularization and neurogenesis, as well as reducing the infarct size.
All these effects were translated into the recovery of post-stroke sensorimotor deficits over a two-week
study period [227]. Considering this particular signaling pathway, alternative approaches have
employed pH-sensitive micelles to deliver Cxcl12 in the ischemic core whose acidic environment might
release this factor as a result of charge repulsion [229]. In ischemic rats, the intravenous injection of
urethane amino sulfamethazine-based NPs promoted angiogenesis and neurogenesis, although they did
not exert any significant neuroprotective effect by reducing the infarct volume [229]. Although different
neuroprotective drugs and recombinant factors might be loaded directly into NPs and hydrogels (such as
VEGF, NFG, or Cxcl12), another interesting area is based on the encapsulation of undifferentiated or
terminal cells in hydrogels and other biomaterial formats for the delivery of neuroprotective cytoquines
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and factors directly secreted from cells through exocytosis mechanisms. For further information on
this very specific topic, a number of comprehensive reviews on the combination of therapeutic cells
and biomaterials are given in the reference section [230–233].

5. Conclusions

Very few neuroprotective compounds have reached clinics after decades of preclinical research.
This has been the case for Edaravone, an exclusive antioxidant and ROS scavenger compound that
is currently being used to treat stroke patients in Japan. However, the actual context of such drugs
problematizes the exploration of therapeutic solutions that are able to overcome the unexpected lack
of clinical translatability, despite successful animal trials. In recent years, considerable progress has
been made in the identification of advanced biomaterial formulations for the controlled delivery of
neuroprotective molecules. The vast majority of studies have demonstrated that these formulations
deliver neuroprotective molecules in the brain at therapeutic doses for prolonged time periods,
achieving greater therapeutic responses than those obtained with the simple administration of a free
molecule. Different administration routes have been tested. While hydrogels have preferably been
used for intracranial applications (infarcted cavity, epicortical, and peri-lesional regions), nanoparticles
have shown greater versatility of use, as they can be administered through almost all known routes.
Among the latest trends, intranasal delivery is very promising to avoid invasive intracranial procedures
by bypassing the blood–brain barrier and avoiding the rapid decay and degradation observed with
molecules administrated systemically (for example, intravenously). However, it would be necessary
to move the actual research on this area in several directions. Firstly, there is great versatility
and heterogeneity between studies and a lack of connections between them. In the majority of trials,
no comparisons have been done between different material formulations in similar stroke models
to determine which of them have better performance rates. In addition, for a given material,
we lack a rational comparison between the routes and times of administration. The inherent
complexity of biomaterial-based studies covering several disciplines (physical, chemistry, and biology)
and the difficulty and variability of animal trials have likely contributed to this scenario. A consequence
of this is the lack of consensus on the best route and optimal window of administration. Secondly,
the molecular, cellular, and functional mechanisms of behavioral improvements in response to
biomaterial-based treatments are also largely unknown. Thirdly, connections with clinics have failed.
Certainly, none of the known stroke animal models are a perfect representation of human disease,
but most animal trials have been performed in ischemia/reperfusion models. However, ischemia
and reperfusion do not reflect the most frequent forms of stroke in humans, since the majority of
stroke patients are refractory to treatment or are outside of the therapeutic windows, as indicated
by the Stroke Academic Industry Roundtable (STAIR). The most invasive administration routes
(for example, intracerebral), although very effective in animals and a valuable proof of concept for
biomaterial-based therapeutics, will probably be of little value in a clinical context when treating real
patients. Although most of the tested nanoparticles and hydrogels appear to be harmless in animal
trials, there is an unknown horizon with respect to their safety and tolerability in the human brain.
To the best of our knowledge, no single material has reached the clinical setting with the aim to control
the delivery of therapeutic molecules in the brain. An exception is Gliadel, a polyanhydride polymer
that is used against glioblastoma multiforme by delivering the anti-tumoral drug carmustine [234].
The clinical ineffectiveness of neuroprotective compounds in parallel to the need for large/expensive
trials compared with other biomedical areas, has probably conditioned/restricted the use of biomaterials
in clinical stroke. Given the realistic impossibility of obtaining extensive clinical information on this
matter, significant steps in the screening of biomaterials/drugs for clinical use could be achieved
using relatively recent technologies, such as organoids, to model the human blood–brain barrier
and the structured neurovascular tissue.
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Table 1. Examples of in vivo studies with the aim to neuroprotect and functionally recover the damaged
brain using nanoparticle- and hydrogel-based biomaterials.

Stroke Model, Species Therapeutic Molecule,
Main Properties

Biomaterial and Format,
Administration Route, Time

Window of Application
Main Therapeutic Effects References

MCAO (permanent), rat
Superoxide

dismutase/Catalase,
anti-oxidant enzymes

PGA NPs, intravenous injection, ~
1 min post-stroke Reduction of infarct volume [49]

MCAO (transient), mouse
BDNF, neuroprotective,

neurogenic,
and regenerative factor

PEG/PGA NPs, intravenous injection,
3–24 h post-stroke Reduction in cerebral tissue loss [134]

MCAO (transient), rat

Osteopontin,
anti-inflammatory,

anti-apoptotic,
and neurogenic roles

Gelatin microspheres, intrastriatal
delivery, 1–12 h post-stroke Reduced infarct volume [199]

Photothrombotic stroke
model (permanent), mouse

Edaravone, antioxidant
compound/ROS scavenger

PEG-PLA micelles, intravenous
injection, 6 h post-stroke

Higher efficiency of Edaravone
delivery. Reduction of ROS,

decreasing of ischemic area that leads
to behavioural improvement

[152]

Endothelin-1 model, rat

Cyclosporin-A,
immunosuppressant

and anti-inflammatory
compound. Neurogenic

and regenerative properties

PLGA microparticles encapsulated in
hyaluronan and methylcellulose
hydrogels, epicortical delivery,

immediately after
entothelin-1 injection

Sustained delivery of Cyclosporin-A
for 14 days. Decreasing infarct

volume. Neuroprotective effect even
with the hydrogel formulation alone.

[153]

Endothelin-1 model, mouse

EGF/erythropoietin,
stimulators of neural
precursors formation
and neuroprotective

properties

PLGA-PEG NPs encapsulated in
hyaluronan and methylcellulose

hydrogels, epicortical administration,
4 days post-stroke

Attenuation of injury response
and cell death. Reduction of infarct
cavity. Increasing content of mature

neurons in damage
and peri-lesional areas

[154]

Focal aspiration brain injury
model, rat

Neurotrophin-3, neurogenic,
angiogenic,

and anti-inflammatory factor

Chitosan particles, intracerebral
delivery (lesion cavity, cortex),

immediately after tissue aspiration

Reduction of inflammation
(peripheral leukocytes and microglia) [169]

Hypoxia-ischemia exposure
model, neonatal rat

Erythropoietin, enhances
oxygen delivery,

neurogenesis, anti-oxidant
properties

(decreases ROS formation)

PLGA NPs, intraperitoneal, 1, 24,
and 48 h after hypoxia

Reduction of infarct volume
and improvement of behavioral
deficits with lower doses than

the administration of free
Erythropoietin

[196]

MCAO (transient), rat

Osteopontin,
anti-inflammatory,

anti-apoptotic,
and neurogenic roles

Gelatin microspheres, intranasal,
6 h post-stroke Reduction of infarct volume [200]

MCAO (transient), rat Superoxide dismutase,
anti-oxidant enzyme

PLGA NPs, arterial (intracarotid),
immediately after reperfusion

(1 h post-ischemia)

Reduction of infarct volume leading
to functional recovery [203]

MCAO (transient), mouse Superoxide dismutase,
anti-oxidant enzyme

Polyion-cationic complexes-PEG,
intravenous injection, immediately

after reperfusion (1 h post-ischemia)

Reduction of infarct volume (no effect
with superoxide dismutase alone) [205]

MCAO (transient), rat
Thymoquinone,

anti-inflammatory
and anti-oxidant factor

PLGA-Chitosan NPs, intranasal,
administration for 12 days: from -5
(pre-stroke) to 7 (post-stroke) days

Reduction of infarct volume
and significant motor improvement
associated with stronger scavenging

and anti-oxidant capacity

[208]

Control (healthy), rat Venlafaxine,
antidepressant molecule Chitosan NPs, intranasal delivery

Efficient delivery of Venlafaxine into
the brain via the intranasal route in
comparison with the intranasal or

intravenous delivery
of free Venlafaxine

[209]

MCAO (transient), rat

Acetyl-11-keto-β-boswellic
acid, anti-oxidant

and anti-inflammatory
effects

Chitosan NPs, intravenous injection,
1 h after reperfusion
(2 h post-ischemia)

Higher rates of delivery in the brain
with respect to the administration of
the free molecule. Reduction of infarct

volume that leads to behavioral
improvements. Positive outcomes
related with decreasing oxidative
stress/inflammation and reduced
neuronal mortality post-ischemia

[210]

MCAO (transient), rat

Fenofibrate, activator of
Peroxisome Proliferator

Activated Receptors
(anti-inflammatory and anti-oxidative receptors)

PLGA microparticles, intracerebral
administration, 24 h before ischemia

Moderate (non-significant) decrease
of infarct volume with respect to

the effect of free Fenofibrate.
Evolution of infarct volume on

untreated MCAO animals is
non-determined

[211]

MCAO (transient), rat
ONO-1301, prostacyclin

agonist with thromboxane
synthase inhibitory activity

PLGA microspheres, subcutaneous
injection, immediately after MCAO

Significant reduction in the infarct
volume and cerebral edema.

Oral administration of the free
molecule produced similar

neuroprotective efficacy, although
repetitive doses were needed.

[214]

Global cerebral (transient),
rat

Curcumin, antioxidant
and anti-inflammatory effects

Polysorbate 80/lecithin-based NPs,
oral administration, starting 5 days

before ischemia for 3 days

Motor and cognitive improvement.
No positive effect with

the free molecule
[215]
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Table 1. Cont.

Stroke Model, Species Therapeutic Molecule,
Main Properties

Biomaterial and Format,
Administration Route, Time

Window of Application
Main Therapeutic Effects References

MCAO (transient), rat

NR2B9, prevents
the excitotoxocity

and hyperproduction of NO
by disrupting

NMDA-PSD-95 signaling

PLGA-PEG nanoparticles decorated
with wheat germ agglutinin (WGA) to
target olfactory epithelium receptors,
intranasal delivery, immediately after

reperfusion (2 h post-ischemia)

Increasing content of NR2B9 in
the brain with respect to the intranasal

administration of free molecule.
Significant reduction in infarct size

and better neurological improvement

[117]

MCAO (transient), rat

NR2B9, prevents
the excitotoxocity

and hyperproduction of NO
by disrupting

NMDA-PSD-95 signaling

Dextran NPs decorated with
ROS-responsive boronic ester and red
blood shell membrane, intravenous

injection, immediately after
reperfusion (2 h post-ischemia)

NR2B9: Increasing time in circulation
and highly efficient to target NR2B9
in the brain. Significant reduction in

infarct size and better
neurological outcome

[140]

MCAO (transient), rat

ZL006, prevents
the excitotoxocity

and hyperproduction of NO
by disrupting

NMDA-PSD-95 signaling

Soybean-lecithin-cholesterol-based
liposome-PEG decorated with

peptides against transferring receptor
of the brain endothelium,

intravenous injection

Reduction of infarct volume.
Behavioural improvement [216]

MCAO (transient), rat

Riluzole, variable effects
antagonizing NMDA

receptors or/and blocking
voltage-gated

Calcium/sodium channels

Chitosan NPs formulated with
N-isopropyl acrylamide/tween80,

intraperitoneal injection, 1 h
post-ischemia

Decreasing content of lipid peroxide
and increasing levels of glutathione

and ROS detoxification enzymes.
Reduction of lesion and improvement

of behavioral deficits

[219]

MCAO (transient), mouse
Cilostazol, vasodilatating,
anti-inflammatory with
anti-oxidant properties

Zirconia/Methylcellulose NPs,
intravenous delivery, 3 h after

reperfusion (5 h post-ischemia)
Reduction of infarct size [223]

MCAO (transient), mouse

NEP1-40, antagonist of
the Nogo-66 receptor,.

enhances neural plasticity
and suppresses cell death

after injury

PLGA NPs decorated with
chlorotoxin to target MMP-2

and lexiscan to transiently increase
the BBB permeability, intravenous
injection, 3 doses (0, 24, and 48 h

after MCAO)

Reduction of infarct volume
and better neurological outcome [222]

MCAO (transient), rat Heme oxygenase-1,
anti-oxidant enzyme

R3V6-peptide -based micelles
stabilized with Dexamethasone,
intracerebral injection (striatum),

1 h before ischemia

Reduction of infarct volume [225]

MCAO (transient), rat
siRNA against HMGB1,

(HMGB1 is
a pro-inflammatory signal)

PAMAM-based dendrimers,
intracerebral injection (cortex).

6–24 h before ischemia

Reduction of neuronal mortality
and infarct volume [226]

Photothrombotic stroke
model (permanent), mouse

siRNA to silence PHID2,
(PHD2 is a factor involved in
the up-regulation of genes

related to a cellular response
to hypoxia)

Polyethylenimine superparamagnetic
iron oxide NPs delivered from

endothelial progenitor cells,
intra-cardiac injection, 24 h

after stroke

Significant reduction of infarct
volume at 7 days after treatment.

Stimulation of endogenous
vascularization and neurogenesis.

Significant Improvement of
behavioral deficits (at 2 weeks

after treatment)

[227]

MCAO (permanent), rat
Cxcl12, a chemoattractant

and neuroprotective
molecule

pH-responsive copolymer poly
(urethane amino sulfamethazine)
(PUASM) micelles, intracerebral

delivery, 24 h after ischemia

Significant angiogenesis
and neurogenesis, lack of
a neuroprotective effect

[229]

MCAO (transient), rat
VEGF, an angiogenic
and neuroprotectant

molecule

Alginate-based hydrogels,
intracerebral injection (striatum),

15 min before ischemia

Higher content of VEGF
administrated in the striatum than

delivery of the free molecule.
Behavioral recovery and significant

reduction of infarct volume

[168]

Focal aspiration brain injury
model, rat

Neurotrophin-3,
neuroprotective, neurogenic,
and anti-inflammatory factor

Chitosan particles, intracerebral
administration (cortex), immediately

after injury

Increasing neurogenesis
and synaptogenesis,

anti-inflammatory effects,
and behavioral improvement

[169]

Endothelin-1 model, rat
BDNF, a neuroprotector
molecule and inductor

of plasticity

PLGA NPs dispersed on
the hyaluronan and methylcellulose

hydrogels, epi-cortical administration
(brain surface), immediately

after stroke

Significant behavioral recovery
and reduced cortical lesions (these

positive effects were seen even with
the biomaterial alone)

[170]

Endothelin-1 model, mouse

Dual delivery of EGF
and EPO, neurogenic,

anti-inflammatory,
and neuroprotective factors

PLGA NPs dispersed on
the hyaluronan and methylcellulose

hydrogels, epi-cortical administration
(brain surface), 4 days after stroke

Increasing neurogenesis
and reduction of injury response,

inflammation and cell death
(attenuation of inflammation

and injury were also observed, even
with the biomaterial alone)

[154]

MCAO (transient),
hyperglycemic rat

Carbon-HCCs,
antioxidant potential

Carbon-PEG NPs, intravenous
administration, two doses

(immediately before reperfusion
and 2 h after reperfusion)

Reduction in infarct size
and behavioral improvement [183]

MCAO (transient), rat
Selenium, modulator of

neurogenesis with
anti-oxidant properties

Selenium-PEG NPs decorated with
Anti-transferrin receptor antibody,

intraperitoneal injection,
1 h before stroke

Reduction in infarct size, high levels
of myelination, neural, and axonal
density. Behavioral improvement.

No toxicity concerns
at therapeutic doses

[184]
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Table 1. Cont.

Stroke Model, Species Therapeutic Molecule,
Main Properties

Biomaterial and Format,
Administration Route, Time

Window of Application
Main Therapeutic Effects References

MCAO (permanent), mouse

Hyaluronic acid hydrogel
(porous), promotes cell

neural stem cell infiltration
and reduces inflammation

MAP-HA-based hydrogels,
intracerebral delivery (stroke cavity),

5 days post-stroke

Reduction of inflammation
and astrogliosis, increasing

neurogenesis and angiogenesis.
Remarkable neural progenitor cell

migration to lesional
and peri-lesional areas

[161]

MCAO (transient), rat

Porcine urinary bladder
ECM, promotes cell neural

stem cell infiltration
and reduces inflammation

Porcine urinary bladder ECM
hydrogels, intracerebral

administration (stroke cavity),
14 days post-stroke

Increasing microglia polarization
towards anti-inflammatory

phenotypes
[181]

MCAO (transient),
macaque monkey

Hemoglobin, oxygen carrier
supporting tissue

oxygenation

Phosphatidylcholine-cholesterol-liposome
decorated with PEG,
intravenous injection,
5 min after ischemia

Reduction of infarct area,
behavioral improvement [235,236]

MCAO (transient),
macaque monkey

BDNF, neuroprotective,
neurogenic,

and regenerative factor

HA-PEG based hydrogel,
intracerebral administration (stroke

cavity), 3 months post-stroke

Significant increase of BDNF content
in peri-infarct tissue in relation to

the delivery of free BDNF
[156]

Control (healthy), St. Kitts
green monkey No therapeutic compound

PEG-PLA-based hydrogel,
intracerebral injection
(cortex and striatum)

Moderate inflammation
and astrogliosis. Full degradation of

material four months
after implantation

[155]

Table abbreviations; NPs: nanoparticles; PGA: poly(glycolic acid); PLGA: poly(Lactide-co-Glycolide); PLA: Poly
(Lactic Acid); PEG: Polyethylene glycol; HA: hyaluronic acid; NO: Nitric oxide; MCAO: middle cerebral artery
occlusion; BNDF: brain-derived neurotrophic factor; EGF: Epidermal Growth Factor; VEGF: Vascular endothelial
growth factor; EPO: Erythropoietin; ROS: Reactive oxygen species; NMDA: N-methyl-D-aspartate receptor;
PSD-95: postsynaptic density protein 95; WGA: Wheat germ agglutinin; MMP-2: Matrix Metallopeptidase 2; BBB:
blood–brain barrier; HMGB1: high mobility group box 1; PAMAM: Polyamidoamine; siRNA: Small interfering
RNA; Cxcl12: stromal cell-derived factor 1 or C-X-C motif chemokine 12; PHD2: hydroxylase domain protein 2;
ECM: extracellular matrix.
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