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a b s t r a c t 

Many brain imaging studies aim to measure structural connectivity with diffusion tractography. However, bi- 

ases in tractography data, particularly near the boundary between white matter and cortical grey matter can 

limit the accuracy of such studies. When seeding from the white matter, streamlines tend to travel parallel to 

the convoluted cortical surface, largely avoiding sulcal fundi and terminating preferentially on gyral crowns. 

When seeding from the cortical grey matter, streamlines generally run near the cortical surface until reaching 

deep white matter. These so-called “gyral biases ” limit the accuracy and effective resolution of cortical structural 

connectivity profiles estimated by tractography algorithms, and they do not reflect the expected distributions 

of axonal densities seen in invasive tracer studies or stains of myelinated fibres. We propose an algorithm that 

concurrently models fibre density and orientation using a divergence-free vector field within gyral blades to en- 

courage an anatomically-justified streamline density distribution along the cortical white/grey-matter boundary 

while maintaining alignment with the diffusion MRI estimated fibre orientations. Using in vivo data from the Hu- 

man Connectome Project, we show that this algorithm reduces tractography biases. We compare the structural 

connectomes to functional connectomes from resting-state fMRI, showing that our model improves cross-modal 

agreement. Finally, we find that after parcellation the changes in the structural connectome are very minor with 

slightly improved interhemispheric connections (i.e, more homotopic connectivity) and slightly worse intrahemi- 

spheric connections when compared to tracers. 
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. Introduction 

By tracing continuous paths along the distributions of axonal fibre

rientations estimated for each voxel of the brain, diffusion MRI (dMRI)

ractography aims to infer the trajectories of white matter fibre bundles.

his technique has been used to map the paths of major tracts cours-

ng through white matter or to estimate the connectivity between grey

atter regions. This connectivity is often expressed as a “structural con-

ectome ”, which is a matrix that contains area to area non-invasive esti-

ates of anatomical connectivity ( Sporns, Tononi, and Kötter 2005 ). Es-

imating accurate connectivities in the cortex is limited however, by the

trong bias of tractography streamlines to avoid sulcal fundi and walls
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nd instead to terminate on gyral crowns and has been termed a “gyral

ias ” ( Van Essen et al. 2014 ; Reveley et al. 2015 ; Schilling et al. 2018 ;

otiropoulos and Zalesky 2019 ). This gyral bias limits the accuracy

nd spatial resolution at which the termination points of white mat-

er bundles can be localised or of grey matter to grey matter connection

trength estimation. For example, tractography may localize the termi-

ation zone of a streamline to an entire gyrus but not accurately assign it

o either sulcal wall, instead leaving it to terminate on the gyral crown.

mportantly, we do expect some preference for axons to terminate in the

yral crowns based on the geometry of the gyri (i.e., because of their

onvex surface curvature, gyral crowns have a greater ratio of overly-

ng grey matter volume to their white matter surface area, sulcal walls

ave a neutral ratio, and concave sulcal fundi have a smaller overly-
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Fig. 1. Sketch of possible fibre configurations in white matter of a gyral blade (represented by 10 streamlines). A) Typically, the dominant voxel-wise fibre orientation 

estimated from diffusion MRI is closely aligned with the gyral wall and points to the gyral crown. This causes two types of gyral biases (B and C): B) It causes local 

tractography streamlines uniformly entering from deep white matter to preferentially terminate in the gyral crown resulting in a biased density in the cortex. C) 

Similarly, local tractography streamlines uniformly seeded from the cortex tend to remain close to the gyral walls, resulting in a biased density in the white matter. 

Note that these streamlines are uniform per associated unit of volume of cortical grey matter rather than uniform across the white/grey-matter boundary. D) By 

enforcing uniform densities both for the streamlines entering the gyral white matter and in the cortex, more realistic fibre configurations can be obtained, (E) 

especially if additional constraints such as radiality at the surface are added. Note that the fibre configurations in panels B, C, and E (but not D) are all consistent 

with the diffusion MRI orientations in panel A. 
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ng grey matter volume to white matter surface area ratio ( Van Essen

t al. 2014 )). However, the gyral bias observed in tractography is much

arger than that expected from the geometry of the gyri. 

The gyral bias may reflect the strong tendency for fibre bundles

o run parallel to the white/grey-matter boundary in the superficial

hite matter, because even high resolution dMRI fails to adequately

apture the sharply curved trajectories of axons ‘peeling off’ to connect

ith grey matter sulcal walls and fundi seen with histology ( Van Essen

t al. 2014 ). U-fibres connecting neighbouring gyri may be a large con-

ributor to these bundles ( Reveley et al. 2015 ). These parallel fibres lead

o the fibre orientations estimated from dMRI to closely align with the

earby white/grey-matter boundary in superficial white matter along

ulcal walls and fundi ( Fig. 1 A; Cottaar et al. 2018 ). Hence most trac-

ography streamlines keep running parallel to the sulcal walls and fundi

ntil they reach the gyral crown, which results in the gyral bias ( Fig. 1 B;

otiropoulos et al. 2016 ). While seeding from the cortical volume can

educe this gyral bias by ensuring a uniform distribution of seed points

ithin the cortex, this now creates a bias in the streamline density in

hite matter, with most streamlines remaining close to the gyral wall

 Fig. 1 C; Smith et al. 2012 ). Moreover, the gyral bias problem persists

or the eventual grey matter terminations of these streamlines as tractog-

aphy will still overestimate their terminations on gyral crowns versus

ulcal fundi. Here we propose a model for gyral white matter that aims to

oth reduce the overestimation gyral streamline terminations relative to

ulcal terminations and the bias of streamlines seeded in the sulcal walls

o remain close to the sulcal walls. For our target streamline density dis-

ribution when counting on cortical surfaces, we make the first-order as-

umption that the density of streamline crossing the white/grey-matter

oundary in any cortical region should be proportional to the cortical

olume divided by the underlying white matter surface area ( Van Es-

en et al. 2014 ). Thus, our fundamental assumption is that the cortical

treamline density per unit cortical volume is uniform; accordingly, we

ill display our results normalized to unit cortical volume. 

Our model aims to find a fibre configuration consistent with the dif-

usion MRI data that has both a uniform density in the white matter

ithin gyral blades as well as a uniform distribution of fibre end-points

ithin the cortical grey matter volume ( Fig. 1 D,E). This requires not

nly constraining the streamline orientation, but also its density. Hence,

e can no longer model a single streamline at a time as in local trac-

ography, but instead need to model the complete set of streamlines at

nce. To make our initial formulation tractable, we assume that stream-

ines within gyral blades do not cross or intermix. This means we cannot

econstruct fibres crossing from one side of a gyral bank to the other,

hich need to be estimated in a different way. Given this assumption,
2 
he resultant density constraints create a fibre configuration where the

treamlines entering the gyrus at the left will connect to the left gyral

all, while those entering on the right connect to the right gyral wall and

hose in the centre continue upwards towards the gyral crown ( Fig. 1 D).

ore realistic 3D fibre configurations can be created by adding addi-

ional constraints such as having radial fibre orientations when they

each the cortex ( Fig. 1 E) and alignment with the fibre orientations es-

imated from diffusion MRI. With this set of geometric and anatomical

onstraints, the streamlines disperse towards the surface qualitatively

imilar to that seen in histology ( Budde and Annese 2013 ; Van Essen

t al. 2014 ) and high-resolution diffusion MRI data ( Miller et al. 2011 ;

eidemann et al. 2012 ; Sotiropoulos et al. 2016 ). 

. Gyral white matter model 

.1. Defining gyral white matter 

We split the white matter into gyral white matter, which is the white

atter contained within the gyral blades, and deep white matter. For the

yral white matter we propose a novel tractography algorithm to de-

cribe the white matter configuration not as individual streamlines, but

s a continuous vector field. This algorithm is likely to be most accurate

n regions where the white matter fibre configuration (i) is constrained

y the geometry of the cortical folds (which is typically neglected in

ocal tractography approaches) and (ii) can be accurately described us-

ng only single dominant fibre population filling up the available space.

hile this may be a reasonable description of the white matter over

uch of the gyral blades, deep white matter is not generally well de-

cribed in this way. Hence, we implemented a way to apply the novel

ractography model to the gyral blades and use standard probabilistic

ractography algorithms in the underlying deep white matter. 

To define the boundary between the gyral and deep white matter, we

ntroduce a new “gyral thickness ” measure for each voxel. This measure

s defined as the length of the shortest straight line through the voxel

onnecting the white/grey-matter boundary on both sides ( Fig. 2 A). This

easure is small between the neighbouring sulcal walls and fundi, but

arge for any white matter below the sulcal fundi. The gyral white matter

s any white matter with a gyral thickness less than some threshold.

here tends to be a sharp increase in gyral thickness just below the

ulcal fundi, so the boundary location is not very sensitive to the exact

alue chosen for the gyral thickness threshold ( Fig. 2 B). In this study we

dopt a threshold of 10 mm. 
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Fig. 2. Definition of deep/gyral white matter interface. A) “gyral thickness ” is defined as the length of the shortest line through the voxels that hit the white/grey- 

matter boundary at both ends. B) Thresholding the “Gyral thickness ” map separates the white matter in the gyral blades from the deep white matter underneath. 
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.2. Gyral white model overview 

Within the gyral blades we model the fibres as a continuous vector

eld 𝑓 ( ⃗𝑥 ) . The norm of this vector field |𝑓 ( ⃗𝑥 ) | defines the local fibre

ensity at position �⃗� , and the orientation of this vector field ( 𝑓 ( ⃗𝑥 ) ≡
f⃗ ( ⃗𝑥 ) 

|𝑓 ( ⃗𝑥 ) | ) defines the local fibre orientation. Hence, this model allows us to

epresent, and potentially impose constraints on, both fibre density (e.g.,

niform density across the cortex) and fibre orientation (e.g., matching

he voxel-wise fibre orientations observed from diffusion MRI). 

To produce a realistic fibre configuration, an important constraint is

hat fibres avoid terminating in white matter. This is strictly enforced

y constructing the vector field to be divergence-free: 

 ⋅ 𝑓 = 

𝜕 𝑓 𝑥 
𝜕𝑥 

+ 

𝜕 𝑓 𝑦 

𝜕𝑦 
+ 

𝜕 𝑓 𝑧 
𝜕𝑧 

= 0 . (1)

Setting the divergence to zero implies that any decrease in the num-

er of fibres travelling in one direction must be compensated by an in-

reasing number of streamlines in another direction, so that the total

umber of streamlines traveling along a tract remains constant. This

nsures that no streamlines terminate in the white matter. 

This single vector field only defines a single fibre orientation and

ensity at every (infinitesimally small) point ( ⃗𝑥 ) in the brain and hence

oes not allow for crossing fibres. Crossing fibres could be modelled by

escribing each white matter tract as a different vector field, which can

verlap. However, in this initial formulation we model the superficial

hite matter as a single, divergence-free vector field, hence ignoring any

rossing fibres within this region. Fibre crossings are taken into account

or deeper white matter, where we use probabilistic tractography based

n a crossing-fibre model ( Behrens et al. 2007 ; Jbabdi et al. 2012 ), as

vailable in FSL. 

Fig. 3 shows an overview of our tractography algorithm for the gyral

hite matter. An initial estimate of the fibre configuration is provided

y distributing negative charges at each centre of the triangles in the

ial surface mesh and a single, positive charge in deep white matter.

he field at any point ( ⃗𝑥 = ( 𝑥, 𝑦, 𝑧 )) ) in the white matter is hence given

y: 

 ⃗charge 
(
�⃗� ; 𝑞 𝑖 , ⃗𝑝 𝑖 

)
= 

∑
𝑖 

𝑞 𝑖 
(
�⃗� − ⃗𝑝 𝑖 

)
4 𝜋||�⃗� − ⃗𝑝 𝑖 

||3 , (2)

here the 𝑝 𝑖 ‘s are the positions of the point charges and the 𝑞 𝑖 ’s are

he charge at point 𝑝 𝑖 . The negative charges at the pial surface are

et proportional to the cortical volume represented by that triangle

 Winkler et al. 2010 ). These charges generate streamlines proportional

o the cortical volume. The single positive charge in deep white matter

s set to the negation of the sum of all negative charges and hence acts
3 
s the other termination point for streamlines generated at the pial sur-

ace. Note that the resulting vector field is divergence-free, except at the

harge locations. 

These charges ensure an initial vector field through which stream-

ines run from deep white matter up to the cortical surface, but the

treamlines are not constrained to respect the observed diffusion data

r even to remain within the white matter. This vector field is then ad-

usted while remaining divergence-free by adding a linear combination

f dipole-like basis functions (see Section 2.3 ), whose orientation and

trength is determined by fitting to a predefined cost function describ-

ng constraints on the fibre density and orientation (see Section 2.4 ).

or the example in Fig. 3 , the cost function encourages both a uniform

ensity distribution along the white/grey-matter boundary and a radial

rientation at this surface. The best-fit vector field is used to guide trac-

ography streamlines through the white matter in the gyral blades (see

ection 2.5 ). 

.3. Dipole basis functions 

While streamlines travelling through the vector field generated by

he charges defined in Section 2.2 will tend to travel from the posi-

ive charge in deep white matter to the negative charges along the pial

urfaces, they are not constrained to align with the fibre orientations

stimated from dMRI or even to traversing through the white matter.

y adding divergence-free dipole basis functions to the initial vector

eld, we can adjust the path of these streamlines ( Fig. 4 ) to make them

ore realistic. In this section we examine these dipole basis functions;

n Section 2.4 we investigate the various terms in the cost function used

o optimise the dipole orientations and strengths. 

The dipole basis functions are used to update the field distribution

rom the charges ( Eq. 2 ) given a set of weights �⃗� . In order to efficiently

valuate the vector field 𝑓 ( ⃗𝑥 ) we choose to restrict ourselves to a linear

nd sparse mapping M between the parameters and the vector field: 

 ⃗

(
�⃗� 
)
= 𝑓 charge 

(
�⃗� ; 𝑞 𝑖 , ⃗𝑝 𝑖 

)
+ 𝐌 

(
�⃗� 
)
⋅ �⃗� . (3)

Hence the vector field is modelled as a linear combination of the

olumns in the matrix M (which represent the individual dipole-like

asis functions). The shape of the matrix 𝐌 ( ⃗𝑥 ) is 3x 𝑁 , where each row

efines the x-, y-, and z-component at position �⃗� for each of the N basis

unctions. This vector field will be divergence-free by construction if

ach individual column in the matrix M is itself divergence-free, because

he divergence operator is linear. 

The vector field generated by actual dipoles extend infinitely far from

he dipole and they are therefore challenging to handle as a basis func-

ion in our application. Infinite extent of dipoles means that the mapping

 ( ⃗𝑥 ) defined above will be dense, which makes the optimisation of any
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Fig. 3. Procedure for modelling the gyral 

white matter. An initial vector field is esti- 

mated from negative electrostatic charges at 

the pial surface and an equal positive charge 

in the deep white matter (left). This initial vec- 

tor field is updated by adding dipole basis func- 

tions, where the dipole strengths and orienta- 

tions are determined by minimizing a cost func- 

tion, which imposes data fidelity (on fibre ori- 

entations) and anatomical constraints (on fibre 

density and orientation). This step may be it- 

erative with an updated cost function and/or 

smaller dipoles as basis functions. The result- 

ing vector field configuration can then be used 

for tractography within the gyral white matter 

(right). The vector colour encodes the stream- 

line density (colourbar in lower right). The in- 

dividual steps are explained in Sections 2.3-2.5 . 

Fig. 4. Effect of adding dipoles to a uniform 

vector field running from left to right. The num- 

bers above each panel show the weights of 

the dipole, which set the dipole strength in re- 

spectively the x- and y- direction. Because the 

dipoles are divergence-free, they only alter the 

shape of the existing streamlines rather than 

allow them to terminate or reconnect. How- 

ever, for sufficiently strong dipoles new, closed 

streamline loops might be generated (see panel 

in upper left). 
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on-linear cost function unfeasible. Instead, we devise dipole-like basis

unctions that only extend a limited range from the dipole centre, which

nsures that the mapping 𝐌 ( ⃗𝑥 ) is sparse and hence the optimisation is

ractable. 

We start the construction of these dipole-like basis functions by

efining a radial basis function. A radial basis function is any scalar func-

ion 𝑔( ⃗𝑥 ) that only depends on the distance from some control point 𝑦 .

o ensure the sparsity of 𝐌 ( ⃗𝑥 ) we use compactly supported radial basis

unctions ( Wendland 1995 ; Buhmann 2000 ), which are only non-zero

ithin a sphere around the control point, i.e. 𝑔( 𝑟 = 

|�⃗� − ⃗𝑦 |
𝑠 

) = 0 if 𝑟 > 1 ,
here 𝑟 is the distance to the control point normalized by the extent of

he radial basis function 𝑠 . Here we use a compactly supported radial

asis function from Wendland (1995) : 

 ( 𝑟 ) = ( 1 − 𝑟 ) 6 
(
35 𝑟 2 + 18 𝑟 + 3 

)
for 𝑟 ≤ 1 (4)
 ⎝

4 
This radial basis function has the advantage that it is 4 times con-

inuously differentiable at both 𝑟 = 0 and 𝑟 = 1 in 3-dimensional space

 Wendland 1995 ), which means there will be no discontinuities in the

ector field (or its first derivative), when defined from the second deriva-

ives of this radial basis function. 

The vector field basis functions are defined as ( − ∇ 

2 I + ∇ ⋅ ∇ 

𝑇 ) 𝑔( ⃗𝑥 )
 Narcowich and Ward 1994 ), where 𝑔( ⃗𝑥 ) is the radial basis function de-

ned above ( Eq. 4 ). The operator ( − ∇ 

2 I + ∇ ⋅ ∇ 

𝑇 ) is chosen, so that the

olumns of the resulting matrix are divergence-free and hence can be

sed as basis functions. These columns are: 

 

 

 

 

 

 

− 

𝜕 2 𝑔 
𝜕 𝑦 2 

− 

𝜕 2 𝑔 
𝜕 𝑧 2 

𝜕 2 𝑔 
𝜕 𝑥𝜕 𝑦 
𝜕 2 𝑔 
𝜕 𝑥𝜕 𝑧 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
, 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝜕 2 𝑔 
𝜕 𝑥𝜕 𝑦 

− 

𝜕 2 𝑔 
𝜕 𝑥 2 

− 

𝜕 2 𝑔 
𝜕 𝑧 2 

𝜕 2 𝑔 
𝜕 𝑦𝜕 𝑧 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
, 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝜕 2 𝑔 
𝜕 𝑥𝜕 𝑧 
𝜕 2 𝑔 
𝜕 𝑦𝜕 𝑧 

− 

𝜕 2 𝑔 
𝜕 𝑥 2 

− 

𝜕 2 𝑔 
𝜕 𝑦 2 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
. (5)
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Table 1 

List of the available cost functions to constrain the fibre distribution. 

Constraints on fibre orientation ( ̂𝑓 = 𝑓 ∕ |𝑓 |) 
Von Mises − ̂𝑓 ⋅ �̂� Aligns with �̂� (signed); used for 𝐶 radial 
Watson ∗ − ( ̂𝑓 ⋅ �̂� ) 2 Aligns with �̂� (unsigned); used for 𝐶 DTI 
Bingham 

∗ −( ̂𝑓 ⋅ 𝐁 ⋅ 𝑓 ) Aligns with fibre orientation with anisotropic configuration (encoded by the Bingham matrix B ) 

Constraints on fibre density ( |𝑓 |) 
Volume density ∗ ( |𝑓 | − 𝑑 ) 2 Target fibre density 𝑑

Surface density ( ⃗𝑓 ⋅ �̂� − 𝑑 ) 2 Target fibre density 𝑑 crossing surface with normal �̂� ; used for 𝐶 surf−density 
Total surface density ( ∫ 𝑓 ⋅ �̂� 𝑑𝑆 − 𝑁 ) 2 Total number of streamlines 𝑁 crossing surface 𝑆 , which has normal �̂� 

L 1 norm |𝑓 | Reduced fibre density 

L 2 norm |𝑓 |2 Reduced fibre density; used for 𝐶 L2 
Spatial smoothness constraint between neighbouring voxels with fields ⃖ ⃖⃖⃗𝑓 1 and ⃖ ⃖⃖⃗𝑓 2 
Density ∗ ( |⃖⃖⃖⃗𝑓 1 | − |⃖⃖⃖⃗𝑓 2 |) 2 Smooths density variations 

Orientation − ̂𝑓 1 ⋅ 𝑓 2 Smooths orientational variations 

Both ( ⃖⃖⃖⃗𝑓 1 − ⃖⃖⃖⃗𝑓 2 ) 2 Smooths density and orientational variations 

∗ These cost functions have two distinct minima as they give the same result for 𝑓 = − ⃗𝑓 and don’t have a minimum for |𝑓 | = 0 , so they 

should only be added to the cost function once a reasonable field estimate has already been produced (i.e., a field estimate where within 

each voxel the estimated fibre orientation is within 90 degrees of the correct one) to ensure the fitting converges to the global rather than a 

local minimum. 
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We can define N different radial basis functions ( 𝑔( ⃗𝑥 ) ) by defining

hese dipole-like basis functions around N control points. This will give

s 3 N basis functions ( Eq. 5 ), whose contribution to the vector field is

etermined by 3 N parameters ( ⃗𝑤 ; Eq. 3 ). 

To fit to an arbitrary orientation field, we place these dipoles in a

exagonal grid with the distance between neighbouring dipoles given

y 1/3 of the size 𝑠 of their full extent. When these dipole-like fields are

mbedded within a larger field they can locally alter the shape of the

eld in 3 dimensions ( Fig. 4 ) to fit any target density or vector orienta-

ion, e.g. white matter orientations estimated from diffusion MRI. 

The mapping from the weights ( ⃗𝑤 ) to the vector field ( ⃗𝑓 ( ⃗𝑥 ) ) de-

cribed above has been implemented in the accompanying code for both

PU and GPU. On both CPU and GPU, the matrix 𝑀( ⃗𝑥 ) can either be

re-computed to allow for fast evaluation or can be computed on the fly

f there are memory constraints. 

.4. Cost function and anatomical constraints 

We use both the geometry of the cortical folds as well as fibre ori-

ntations estimated from diffusion MRI data to constrain the shape and

ensity of our white matter model (i.e., optimise the strength and orien-

ation of the dipoles defined in Section 2.2 ). Here we discuss the terms

dopted for the cost function in this work. Additional terms available in

he accompanying code are listed in Table 1 . 

For white matter voxels within the gyral blades our main data fidelity

erm in the cost function constraint will be encouraging alignment with

he fibre orientations estimated from the diffusion data. As we do not

odel crossing fibres in this work, we define this by alignment between

he principal eigenvector of the best-fit diffusion tensor ( ⃗𝑉 1 ) and the

ector field 𝑓 averaged over each voxel: 

 DTI = − ⟨(𝑓 (�⃗� 𝑖 ) ⋅ V̂ 1 ,𝑖 
)2 ⟩, (6)

here the triangular brackets ⟨⋅⟩ refer to taking the average across all

oxels. Note that this is a constraint on the normalized vector field

 ̂( ⃗𝑥 ) ≡ f⃗ ( ⃗𝑥 ) 
|𝑓 ( ⃗𝑥 ) | , since we don’t have access to voxel-wise estimates of the

bre density in the tensor model. Because this constraint adds a degen-

racy to the cost function by giving the same result for 𝑓 ( ⃗𝑥 𝑖 ) and - 𝑓 ( ⃗𝑥 𝑖 ) ,
e only add it to the cost function once a decent initial estimate of the

ector field has been obtained. 

To encourage a smooth density distribution throughout the white

atter, we also add an L2 norm constraint to the streamline density: 

 L2 = ⟨|||𝑓 
(
�⃗� 𝑖 
)|||2 ⟩. (7)

We set additional constraints at both the white/grey-matter bound-

ry and mid-cortical surface (i.e., a mesh halfway between the
5 
hite/grey-matter boundary and the pial surface). These constraints are

pplied to the vector field 𝑓 averaged over each triangle in the cortical

urfaces. A constraint on density at the surface is defined for a given

arget density 𝑑 𝑖 by: 

 surf−density = ⟨(𝑓 (�⃗� 𝑖 ) ⋅ �̂� 𝑖 − 𝑑 𝑖 

)2 ⟩, (8)

here �̂� 𝑖 is the surface normal. The target surface density is set to en-

ourage a uniform density of streamline endpoints through the cortical

rey matter volume ( Van Essen et al. 2014 ). 

Finally, a radial fibre orientation at the surface is encouraged by

ncluding the following term to the cost function: 

 radial = − ⟨𝑓 (�⃗� 𝑖 ) ⋅ �̂� _ 𝑖 ⟩ (9)

Minimising this term will maximise the alignment between the ori-

ntation of the vector field and the surface normal. 

The total cost function is then given by: 

 = 𝐶 surf−density + 𝜆radial 𝐶 radial + 𝜆DTI 𝐶 DTI + 𝜆L2 𝐶 L2 , (10)

here the individual cost functions are defined in Eqs. (6) - (9) and the

s give the relative weights of the different cost functions (which will

e given in Section 2.5 ). 

.5. Interface with probabilistic tractography 

The vector field produced by optimising the cost function above can

e thought of as providing a one-to-one mapping between any location

n the cortical surface with a location for streamlines to enter into deep

hite matter. We take each vertex on the cortical surface and move it

long the vector field as described below to the interface between the

yral and deep white matter (right in Fig. 2 ). This creates a deformed but

opologically equivalent version of surface around deep white matter,

hich excludes the cortical convolutions. This surface can then be used

s a seed and/or target mask in any tractography algorithm. 

.6. Building whole-brain connectomes 

Given cortical surface models, surfaces (e.g. extracted from an

natomical T1w image) and diffusion MRI data for a single subject, we

uild a dense (i.e. vertex/voxel-wise rather than parcel-wise) connec-

ome using the following steps: 

• First, we create a mask of the white matter within the gyral blades.

This mask is designed to include any voxels within the gyral white

matter and includes those voxels through which the shortest line con-

necting the gyral walls on both sides is shorter than 10 mm ( Fig. 2 ).
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• Within the gyral white matter we estimate the fibre configuration in

three steps. These are run independently for each hemisphere: 

1 An initial estimate of the vector field is generated by placing uni-

form “negative ” charges across the pial surface. These charges

are compensated for by an equal-sized positive charge in the cen-

tre of the deep white matter in each hemisphere. These charges

generate a vector field flowing from the pial surface into the brain

according to eq. 2. 

2 This initial field is refined using the dipole-like basis functions

Eqs. (3) - (5) . These basis functions have a finite extent of s ( = 20

mm used here) and are interspersed on a hexagonal close pack-

ing configuration at a distance of 𝑠 3 mm. The strength and ori-

entation of the dipoles is optimised by minimizing the cost func-

tion using the quasi-Newton method L-BFGS-B ( Byrd et al. 1995 ;

Zhu et al. 1997 ): 

𝐶 = 𝐶 surf−density + 𝜆radial 𝐶 radial + 𝜆L2 𝐶 L2 ., (11)

which encourages a uniform density of streamline endpoints in

the cortical volume ( Eq. 8 ), a radial orientation at the cortical

surface ( Eq. 9 ) and imposes an L2 norm on the volumetric fibre

density ( Eq. 7 ). Both surface constraints C surf-density and C radial 

are enforced at the white/grey-matter boundary as well as the

mid-cortical surface. 

3 Finally, a set of smaller dipoles (extent of 7 mm, interspersed

on a hexagonal grid with distance of 7 
3 mm) is optimized by

the cost function above and additionally enforcing alignment be-

tween the principal eigenvector of the diffusion tensor and the

proposed fibre orientation (eq., 6) 

𝐶 = 𝐶 surf−density + 𝜆radial 𝐶 radial + 𝜆L2 𝐶 L2 + 𝜆DTI 𝐶 DTI . (12)

Here we use 𝜆radial = 1 , 𝜆DTI = 1 , and 𝜆L2 = 10 −3 . These values

were determined through trial-and-error based on the quality of

the resulting fit and visual inspection of the resulting vector field.

How these parameters should be set to robustly work across a

large number of datasets, remains to be investigated. The final

vector field is given by the sum of the contribution of the initial

field (step 1), the large dipoles (step 2) and the smaller dipoles

(step 3). 

• The final vector field is used to guide the vertices of the white/grey-

matter boundary through the gyral white matter. This provides a

1:1 mapping and results in a new deformed surface at the interface

between the gyral and deep white matter that encloses deep white

matter. 

• During tracking from the white/grey-matter boundary neighbour-

ing vertices do not always remain immediately adjacent to one an-

other, which leads to a very ragged-looking mesh. To resolve this,

we smooth the mesh at the gyral and deep white matter interface by

moving each vertex towards the mean of its neighbours. During this

smoothing the vertices moved a median distance of less than 1 mm,

with 95% of vertices moving less than 3 mm. The smoothed surface

(which has a mesh density that varies greatly across the interface)

was used as seed and target for tractography. 

.7. Data and analysis 

We tested our algorithm on pre-processed data from 20 subjects of

he Human Connectome Project (HCP) ( Van Essen et al. 2012 ) from

he S1200 data release. The pre-processed data includes white/grey-

atter boundaries and pial surfaces extracted from the T1-weighted

nd T2-weighted images using the HCP Pipelines ( Glasser et al. 2013 ).

he diffusion constraint was obtained by fitting a diffusion tensor

o the b = 1000 shell of the pre-processed HCP diffusion MRI data

 Sotiropoulos et al. 2013 ; Andersson and Sotiropoulos 2016 ). Group-

verage analysis were carried out on datasets aligned using MSMAll in-

ersubject registration ( Robinson et al. 2014 ; 2018 ; Glasser, Coalson,

t al. 2016 ). 
6 
We used FSL’s probtrackx2 ( Behrens et al. 2007 ; Hernandez-

ernandez et al. 2019 ) to compare the features of the connectome when

eeding/terminating streamlines at either the white/grey-matter bound-

ry or at the new interface between the gyral and deep white matter. For

hese two surfaces we (i) compared the density distribution of stream-

ine endpoints when seeding from the subcortical volume or from the

ontralateral hemisphere, (ii) assessed the similarity in the path that

treamlines seeded from the surface take through deep white matter,

nd (iii) performed a comparison between the functional and structural

onnectome. In each case the structural connectivity was estimated by

ividing the number of streamlines connecting two voxels or vertices

y the cortical volume associated with the target vertex or voxel. This

akes our structural connectivity from A to B measure proportional to

he probability of streamlines seeded in voxel/vertex A to terminate in

ach mm 

3 of voxel/vertex B. 

In four subjects these connectomes were parcellated using the

ubject-specific multi-modal parcellations from Glasser et al. (2016) .

he connectivity from parcel A to parcel B was estimated by adding up

ll the streamlines going from A to B and then dividing by the number of

ertices in A and the total cortical volume associated with B. This con-

ectivity measure is once again proportional to the average probability

f streamlines seeded in parcel A to terminate in each mm 

3 of parcel

. This parcellation allows quantification of the connectivity between

omotopic and heterotopic interhemispheric connections. 

For comparison with tracer data from Markov et al. (2011 ; 2014 )

e also computed a parcellated connectome in an ex-vivo macaque dif-

usion MRI dataset in the same manner as described above, except for

caling down the threshold to define gyral white matter (10 to 4 mm)

nd the size of the dipoles (in initial fit from 20 to 9 mm, in final fit

rom 7 to 3 mm) to compensate for the smaller brain size. As the tracer

ata is reported as the fraction of labelled cells within a given ROI, we

lso applied such fractional scaling to the connectome from tractogra-

hy using the algorithm described by Donahue et al. (2016) . The dif-

usion MRI data and its preprocessing have been previously described

n Jbabdi et al. (2013) . In brief, ex-vivo diffusion data was acquired on

 4.7 T scanner using a 3D-segmented spin-echo EPI sequence (430 𝜇m

sotropic resolution, TE = 33 ms, TR = 350 ms, 120 directions, 𝑏 max = 8000

/mm 

2 ). 

Results that are displayed as Connectome Work-

ench scenes are available via the BALSA database

 https://balsa.wustl.edu/study/show/0LGM2 ). Code, documenta-

ion, and a tutorial of the proposed algorithm can be found at

ttps://git.fmrib.ox.ac.uk/ndcn0236/gyral_structure . 

. Results 

First, we defined for each subject a gyral white matter mask includ-

ng those white matter voxels that lie between the gyral folds ( Fig. 2 ).

ithin this gyral white matter we found the best-fit vector field (by

inimising Eq. 10 ) that aligns with the primary eigenvector of the dif-

usion tensor and is both uniform and radial at the white/grey-matter

oundary and mid-cortical surface. 

Fig. 5 shows maps of the best-fit vector field density and orienta-

ional alignment with the diffusion tensor for a sample subject as well

s histograms of the full distribution for both hemispheres in 20 subjects.

onsistently across both hemispheres in 20 subjects we find an excellent

lignment with the diffusion tensor primary eigenvector ( Fig. 5 B) in all

egions apart from the boundaries where the vector field becomes radial,

s well as a fairly uniform density distribution at both the white/grey-

atter boundary ( Fig. 5 C) and the mid-cortical surface ( Fig. 5 E). While

he orientation field has become mostly radial at the mid-cortical surface

 Fig. 5 F), at the white/grey-matter boundary the field is still far from ra-

ial for large parts of the cortical surface ( Fig. 5 D). The radiality can be

mproved by increasing its influence in the cost function or reducing the

ize of the dipoles in the basis function (which allows for sharper cur-

ature of the vector field), however the lack of perfect radiality at the

https://balsa.wustl.edu/study/show/0LGM2
https://git.fmrib.ox.ac.uk/ndcn0236/gyral_structure
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Fig. 5. The distribution of the different terms 

of the cost function for the best-fit vector field. 

This cost function includes an L2 norm on the 

volumetric streamlines density (A), increases 

alignment with DTI V1 (B), approximates a 

uniform density per cortical volume element 

across both the white/grey-matter boundary 

(C) and the mid-cortical surface (i.e., halfway 

between the white/grey-matter boundary and 

the pial surface) (E), and finally increases align- 

ment with the surface normal at both surfaces 

(D & F). For each variable a volumetric or sur- 

face map is shown for a single subject and the 

density distributions for 20 subjects (left hemi- 

sphere in blue and right hemisphere in red). 

Note that this plot illustrates the density of the 

best-fit vector field in the superficial white mat- 

ter. The density of this vector field might not re- 

flect the density of streamlines resulting from 

tractography running through the deep white 

matter (which is illustrated in later figures). 
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Fig. 6. Vector field configuration in sample gyri for a single subject. Note that 

the vector field itself is a continuous 3D function defined at every intermediate 

point, but here we discretise it by averaging the vectors within each image voxel 

and showing a grid of these mean vectors extracted from the vector field. The 

colour map shows the absolute value of the dot-product between the continuous 

vector field sampled at the centre of each voxel and the primary eigenvector of 

the diffusion tensor at that voxel. The deep/gyral white matter interface (blue) 

has a one-to-one vertex correspondence with the white/grey-matter boundary 
hite/grey-matter boundary is expected in a realistic fibre configuration

 Budde and Annese 2013 ; Reveley et al. 2015 ; Cottaar et al. 2018 ). 

While the L2 norm ( Eq. 7 ) attempts to reduce the volumetric stream-

ine density ( Fig. 5 A), the divergence-free constraint limits its effective-

ess as the streamlines crossing the surface must go somewhere. The

eight on the L2 norm is chosen to be low enough not to significantly

ower the number of streamlines crossing the white/grey-matter bound-

ry, but high enough that it discourages those streamlines from taking a

ircuitous route through the gyral white matter (which would increase

he average streamline density). 

The resulting best-fit fibre configuration is illustrated in Fig. 6 for

 few gyri. This vector field is used to guide the vertices from the

hite/grey-matter boundary to the deep white matter. This creates

 new deep/gyral white matter interface (blue) where each vertex

as a one-to-one correspondence with the white/grey-matter boundary

turquoise). Note that the deep/gyral white matter interface shown here

as been smoothed. 

Fig. 7 compares the density of the estimated vector field (A) with the

treamline density from seeding tractography at the white/grey-matter

oundary (B) or the deep/gyral white matter interface (C). While seed-

ng from the white/grey-matter boundary is (by construction) uniform

n the surface, the resulting distribution is very non-uniform in the gy-

al white matter (left in Fig. 7 B). Streamlines tend to stick closely to

he white/grey-matter boundary following the U-fibres and relatively

ew reach deep white matter. On the other hand, streamlines seeded

rom deep/gyral white matter interface tend to have a higher density

n the central part of the gyri and avoid the white/grey-matter bound-

ry (left in Fig. 7 C) until they reach the top of the gyral crown (right

n Fig. 7 C). Our vector field model uniformly connects the white/grey-

atter boundary with most (although still not all) of the gyral white

atter ( Fig. 7 A). 

It is worth noting that even if the vector field describing the gyral

hite matter is uniform per cortical volume element, this does not guar-

ntee that the tractography streamlines will be uniformly distributed per

ortical volume element after travelling through deep white matter. The

ector field merely provides a one-to-one mapping between points on

he cortical surface and points at the interface between the deep and

(turquoise) and pial surface (green). 

7 
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Fig. 7. For a single subject volumetric den- 

sity (left) and surface density (per cortical vol- 

ume element) at the white/grey-matter bound- 

ary (right) for the vector field model (A), prob- 

abilistic tractography from the white/grey- 

matter boundary (B) and from the deep/gyral 

white matter interface (C). Overlaid are the 

pial surface (green), white/grey-matter bound- 

ary (cyan) and deep/gyral white matter inter- 

face (blue). Because the streamline density has 

very different scaling in the different panels, 

the density in each panel was normalised in- 

dependently before applying the same linear 

mapping to colour. While the vector field has a 

smooth density in the white matter (A; left) and 

on the surface (A; right), tractography seeded 

from the white/grey-matter boundary leads to 

a bias of streamlines close to the cortex (B; left), 

while tractography seeded from the deep/gyral 

white matter interface has a strong gyral bias 

on the surface (C; right). 
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yral white matter. Whether this leads to a reduction in the gyral bias

epends on the distribution of streamlines along this deep/gyral white

atter interface. 

Thus, to further investigate the gyral bias, we run tractogra-

hy streamlines seeded in the contralateral cortex and subcortical

rey matter regions (as defined in the HCP grayordinate space)

 Glasser et al. 2013 ) up to either the deep/gyral white matter interface

top in Fig. 8 ) or the white/grey-matter boundary (bottom in Fig. 8 ).

ue to the one-to-one correspondence of the vertices between the two

urfaces, we can assign each streamline terminating at the deep/gyral

hite matter interface to the equivalent vertex at the white/grey-matter

oundary. This is equivalent to propagating these streamlines to the

hite/grey-matter boundary along the best-fit vector field. 

When only considering these streamlines from other grey matter

rain regions, the large effect of the gyral bias can be appreciated. Tens

f thousands of streamlines terminate in part of the cortex (in partic-

lar the gyral crowns and the insula), while large parts of the cortex

et no streamlines at all (bottom in Fig. 8 A). When terminating at the

eep/gyral white matter interface a great increase in the coverage can

e seen (top in Fig. 8 A), however many of the sulcal fundi are still not

overed (see Figure S3A for a similar result in the macaque). This cor-

esponds to a reduction in the dependence of the streamline density on

ulcal depth ( Fig. 8 B). 
8 
Fig. 8 C illustrates in more detail the connectivity profile of the com-

issural streamlines. Commissural streamlines seeded at the white/grey

atter surface are very likely to terminate in the gyral crown of the con-

ralateral white/grey matter surface (bottom in Fig. 8 C). While this trend

s reduced for the deep/gyral white matter interface, some preference

or terminating at the gyral crown is still present (top in Fig. 8 C). The

ame preference for gyral crowns is now found for streamlines traveling

n the other direction, with streamlines seeded from the gyral crowns

eing more likely to reach the contralateral cortex (top in Fig. 8 C). It is

nclear whether this remaining dependence on sulcal depth is genuine,

ut in any event its magnitude is minor compared with the gyral bias

bserved when tracking between the contra-lateral white/grey matter

oundaries (bottom in Fig. 8 C). 

Next, we investigate the behaviour of streamlines seeded from the

ortical surface, rather than the gyral bias of those approaching the sur-

ace. Fig. 9 illustrates the dissimilarity of the path that streamlines take

hrough deep white matter between neighbouring vertices. A large dis-

imilarity corresponds to a sudden change in the structural connectivity

rofile, indicating a potential border between two distinct cortical areas

 Johansen-Berg et al. 2004 ; Fan et al. 2016 ). 

When seeding from the white/grey-matter boundary, narrow strips

ith high dissimilarity are widespread across the cortex ( Fig. 9 A). These

end to follow the gyral crowns and sulcal fundi with streamlines seeded
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Fig. 8. Reduction in gyral bias by tracking to the deep/gyral white matter interface (top) rather than to the white/grey-matter boundary (bottom). Seeding is 

from subcortical grey matter and the contralateral cortex. A) Streamline termination density per mm 

3 of cortex on left cortical surface for a single subject using a 

logarithmic scale spanning five orders of magnitude. B) Streamline termination density per mm 

3 of cortex for five sulcal depth bins (all bins have an equal total area 

on the mid-cortical surface). C) Streamline termination density per mm 

3 of one hemisphere per 10 6 streamlines seeded in the contralateral hemisphere for the same 

five sulcal depth bins. 

Fig. 9. Dissimilarity of the structural connectivity profiles in the deep white matter between neighbouring vertices for streamlines seeded from the white/grey 

matter surface or the deep/gyral WM interface. The dissimilarity is computed as one minus the Pearson-r correlation across the connectivity with all voxels below 

the deep/gyral WM interface. High dissimilarity indicates that streamlines seeded from that vertex take a very different path through the deep white matter from 

the neighbouring vertices (i.e., there is a strong gradient in structural connectivity). A-D: dissimilarity maps for a single subject (A & C) and averaged across 20 

subjects (B & D) for streamlines seeded from the white/grey-matter boundary (A & B) and the deep/gyral white matter interface (C & D). White arrows point to the 

parieto-occipital sulcus; E: sulcal depth map for single subject (sulci are dark; gyri are bright); F: trend lines of the dissimilarity with sulcal depth for 20 subjects 

(each line represents a single subject) with seeding from the white/grey-matter boundary in blue and seeding from the deep/gyral white matter interface in red. 

Trend lines were created using median-filtering of the dissimilarity after sorting by sulcal depth. 

9 
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Fig. 10. Comparison of the structural connectome (averaged over 20 subjects) with the functional connectome (averaged over all HCP subjects). The connectivity 

from a reference vertex with from left to right: functional connectivity (i.e., the full Pearson correlation between the resting-state time series in the reference vertex 

and each other vertex), structural connectivity when using deep/gyral white matter interface (using reference vertex as seed on left or as target on right), and finally 

structural connectivity using white/grey-matter boundary (again using reference vertex as seed on left or as target on right). From top to bottom reference vertices 

are in the parietal lobe, frontal lobe, insula, and cingulate (marked by white dots and the blue arrow). Green arrows mark distant intrahemispheric connections 

where the agreement with the functional connectome seems to have improved when using the deep/gyral white matter interface, while the magenta arrow marks 

an area where using the white/grey-matter boundary works better. 
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rom the gyral walls being very similar between neighbouring vertices

 Fig. 9 F). This likely reflects the tendency of streamlines seeded from the

yral walls to stick close to the cortex as illustrated in Fig. 7 B, which

auses streamlines seeded from the gyral walls to enter deep white mat-

er close to each other. When seeding from the deep/gyral white matter

nterface this alignment of the structural connectivity gradient with the

yrification is reduced ( Fig. 9 C), although on average the dissimilarity

emains largest in the sulcal fundi ( Fig. 9 F). 

When averaging across subjects, most of the detail in these structural

onnectivity boundary maps disappears ( Fig. 9 B,D). Still, some plausible

oundaries remain such as in the parieto-occipital sulcus, which sep-

rates the parietal and occipital lobes on the medial surface (marked

y white arrows). These boundaries are less well defined when seeding

rom the white/grey-matter boundary than from the deep/gyral white

atter interface, which likely reflects the better alignment of the struc-

ural connectivity profile gradients when the effect of the gyrification

n the tractography is reduced. 

Fig. 10 compares the estimated group structural connectivity pro-

les for selected seeds when using the deep/gyral white matter interface

ather than the white/grey-matter boundary. For comparison the aver-

ge functional connectome has been included on the left. The resting

tate fMRI data were generated as described in Glasser et al. (2018) af-

er spatial and temporal ICA cleanup, MIGP group PCA across 210 sub-

ects, and Wishart Filtering ( Glasser, Smith, et al. 2016 ). While the struc-

ural connectivity profiles are generally similar, many differences are

vident. In general, there appear to be more long-distance connections

hen seeding from and targeting the deep/gyral white matter interface.

n some regions this improves the agreement with the functional con-

ectome (green arrows in Fig. 10 ), although counter-examples can also

e found (magenta arrow in Fig. 10 ). 
10 
Fig. 10 shows a qualitative comparison in the connectivity pro-

les for four reference vertices. For a quantitative comparison we com-

ute the correlation between these connectivity profiles and investi-

ate the distribution of these correlations across all vertices as refer-

nce ( Fig. 11 ). Overall, the correlations between the (log-transformed)

tructural and functional connectome are very low (left two columns),

hether we consider nonlocal intrahemispheric connections (top), in-

erhemispheric connections (middle) or connections with the subcortex

bottom). A slight improvement in the correlation is seen in the inter-

emispheric connections when adopting the deep/gyral white matter

nterface. Adopting the deep/gyral white matter interface does greatly

oost the symmetry of tractography, with the distribution of streamlines

eeded from a vertex being more similar to the distribution of stream-

ines terminating in a vertex (right column in Fig. 11 ). 

So far, we have exclusively focussed on the dense (i.e., vertex-

ise) connectome. Further evaluation can be obtained using the par-

ellated connectome, which reduces noise by averaging within func-

ionally similar regions. We use the multi-modal parcellation from

lasser et al. (2016) to parcellate the cortical connectome (Figure S2A).

ecause we only alter the tractography within the gyral blades, the con-

ectivity strengths in these parcellated connectomes are strongly con-

erved between using the white/grey-matter boundary or deep/gyral

hite matter interface (Figure S2B,C). However, these minor changes

n the parcellated connectomes still allow for some additional evalu-

tion. The results of this experiment appear to be mixed. In the HCP

ata adopting the deep/gyral white matter interface increases the in-

erhemisphere connectivity between homotopic regions, while decreas-

ng the interhemispheric connectivity between heterotopic regions (Fig-

re S2D), which is in line with the predominance of homotopic con-

ections seen in tracer studies (e.g., Oh et al. 2014 ). However, when
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Fig. 11. Distribution of the correlations between the structural and functional connectivity profiles when seeding from the white/grey-matter boundary (blue) or 

gyral/deep white matter interface (red) with each line showing the distribution for one out of 20 subjects. Using each vertex as reference the correlation is computed 

between the connectivity estimates with respect to either all other vertices in the same hemisphere excluding local and U-fibres as defined in Figure S1 (A), or all 

vertices on the contralateral hemisphere (B), or all sub-cortical grey meter voxels as defined in the HCP grayordinate space (C). As illustrated at the top for a single 

reference vertex, the correlations are computed between the functional connectome with either the log-density of streamlines terminating in a vertex (left panels) 

or the log-density of streamlines seeded in a vertex (centre panels). The right panels compare the log-density of the two structural connectivity profiles (i.e., seeding 

from or targeting a vertex). 
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pplied in a macaque diffusion MRI dataset previously described in

babdi et al. (2013) , the correlation with the “ground-truth ” connec-

ome based on neuroanatomical tracers from Markov et al. (2011 ; 2014 )

lightly decreases. 

. Discussion 

Here we present a model for the white matter in gyral blades, which

educes the overestimation of gyral connectivity and underestimation of

ulcal connectivity by considering the shape of the gyrus when running

ractography in the gyral white matter ( Fig. 8 ). This is done by imposing

wo physical constraints on the gyral white matter fibre configuration:

1) fibres do not terminate in the white matter (i.e., the vector field is

ivergence-free) and (2) fibres do not cross each other. The first conti-

uity constraint ensures that all these streamlines uniformly entering

he gyral white matter have to go somewhere and the only possible

estination is deep white matter. The second non-crossing constraint

nsures that when the streamlines converge on the interface with the

eep white matter, those from the left gyral wall remain on the left,

hose from the right gyral wall remain on the right, while those from

he gyral crown get compressed into the centre of the gyral white mat-

er ( Fig. 1 ). It has previously been argued that such an assumption of

patial organisation within a white matter bundle is crucial for trac-
11 
ography to be able to claim any relation between where fibres enter

nd leave a white matter bundle ( Jbabdi et al. 2015 ). With these con-

traints, we optimise a cost function to create a uniform (and radial)

bre distribution at the white/grey-matter boundary and mid-cortical

urface and to align with the primary eigenvector of the diffusion tensor

n each voxel. The optimisation routine is consistently able to achieve

 fairly uniform distribution with excellent alignment with the DTI

cross all 20 HCP subjects tested here ( Fig. 5 ). While this does lead to a

ealistic-looking fanning fibre configuration (e.g., compare Fig. 6 with

 Heidemann et al. 2012 ; Budde and Annese 2013 ; Van Essen et al. 2014 ;

otiropoulos et al. 2016 )), this model does have some limitations. 

.1. Model assumptions and limitations 

The method assumes that there is a one-to-one mapping from each

oint on the cortical surface to where the fibres enter deep white matter.

here is evidence for such organisation from tracer studies, at least for

ong-distance fibres, such as those connecting with many sub-cortical

egions and the contralateral hemisphere. Many long-distance axons (in

articular those connecting to the striatum, corpus callosum, cingulum

undle or the capsules) tend to be well-clustered in a narrow “stalk ”

hile travelling through the gyral white matter and only disperse in

eep white matter ( Fig. 12 ) ( Krieg 1973 ; Safadi et al. 2018 ). Hence,
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Fig. 12. Traced axons from a bidirectional 

tracer (Lucifer Yellow) in the prefrontal cor- 

tex (left) of an adult male monkey ( Macaca fas- 

cicularis ). Long-distance axons can be seen to 

travel together from the injection site in a rel- 

atively “narrow ” stalk (middle) until enter the 

deep white matter (right) and divide into sepa- 

rate bundles that travel to the corpus callosum, 

cingulum bundle and capsules, and the stria- 

tum. U-fibres and axons connecting within the 

same gyrus and those traveling to other cor- 

tical regions do not form part of this “stalk ”

and are far more spread out (insets). For exper- 

imental details see Lehman et al. (2011) and 

Safadi et al. (2018) . The tracing experiment 

was performed in accordance with the Institute 

of Laboratory Animal Resources Guide for the 

Care and Use of Laboratory Animals and ap- 

proved by the University Committee on Animal 

Resources at University of Rochester. 
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hese long-distance fibres might be well represented by the one-to-one

apping provided by the proposed model. On the other hand, the vec-

or field does not represent the U-fibres or other short-distance fibres.

hese are unlikely to follow this path to deep white matter and are

ound to be in general far more spread out ( Fig. 12 ). Although these

bres could be included in the model by superimposing a second (or

ven third) vector field on top of the single one modelled here, the fact

hat they are spread out suggests that they might be better represented

y a model that allows for fibres to cross within a single white matter

undle, such as local probabilistic tractography or the spin-glass model

y Reisert et al. (2011) . 

A major assumption made by the vector field model is that the fibres

epresented by the vector field do not cross each other. This assump-

ion is intrinsic to our choice of modelling the fibre configuration as a

ector field, where at any point we only have a single fibre orientation.

lthough a crossing fibre bundle could be added to the model by rep-

esenting it with a second vector field (e.g., to model the U-fibres), the

ector field model would still ensure that within each fibre bundle the

bres cannot cross each other. In other words, we assume that while

he “stalks ” seen in Fig. 12 might cross the U-fibres or local axons, they

o not cross “stalks ” connected with different parts of the cortex (i.e.,

stalks ” from the left gyral wall stay on the left, those from the right

yral wall stay on the right). As far as we are aware, this assumption is

s yet untested. 

While the vector field does not allow for crossing fibres, it can con-

ain unrealistic closed loops (see top-left panel in Fig. 4 ). If these closed

oops roughly follow the local fibre orientations, the adopted local op-

imisation algorithm might struggle to get rid of them (i.e., it gets stuck

n a local minimum). We employ several strategies to avoid such loops,

amely: (1) initialising the field with fibres already running from the

ortex to deep white matter, (2) including an L2 norm, which increases

he cost of having loops by minimising the streamline density, and (3)

ot considering the fibre orientations during the initial stages of the op-

imisation. Any remaining imperfections due to looping streamlines are

itigated by smoothing the deep/gyral white matter interface before

omputing the dense connectome. 

Finally, the target density distribution adopted in this work (i.e., a

niform streamline termination density per unit of cortical volume) is

nly a first-order approximation of the true expected density distribu-

ion. In reality there will be significant variation between cortical re-

ions in the density of long-distance connections. Given the limitations

f tractography in estimating the density of long-distance connections,

ore accurate estimates of the expected density distribution across the

urface likely have to come from detailed histological studies, which is

eyond the scope of this article. 
o  

12 
.2. Validation 

Adopting the vector field model for the gyral white matter can be

iewed as a regularisation algorithm, where we take some of the stream-

ines which would have terminated on the gyral crown and move them

o the sulcal walls or fundi, following anatomical constraints. We show

hat this reduces the gyral bias when streamlines travel up to the cortex

 Fig. 8 ). By allowing streamlines not to have to track through the gyral

hite matter, we find many more streamlines connecting to the cortex.

till some more subtle trends with the sulcal depth remain, with com-

issural streamlines showing a residual gyral bias, although this bias is

ow the same for the hemisphere where we are seeding from and the

arget hemisphere ( Fig. 8 C). 

Even when seeding from the white/grey-matter boundary this reduc-

ion of the gyral bias becomes obvious when examining boundaries in

he cortical connectivity profile to the deep white matter ( Fig. 9 ). When

eeding from the white/grey-matter boundary these borders align pref-

rentially with the sulcal fundi and gyral crowns as all the streamlines

eeded from the gyral walls tend to cluster together ( Fig. 7 B). Seeding

rom the deep/gyral white matter interface eliminates this bias. This

eduction of the gyral bias creates a better alignment of the structural

onnectivity gradients across subjects, which leads to more robust de-

ection of these gradients when averaging across subjects ( Fig. 9 ). It also

ncreases the symmetry in tractography with the connectivity estimated

y seeding streamlines in a vertex becoming much more similar to the

onnectivity estimated when considering the streamlines terminating in

 vertex ( Fig. 11 ). 

More promising evidence comes from comparison between the struc-

ural and functional connectome for which we show a qualitative

mprovement in the intrahemispheric connectivity (green arrows in

ig. 10 ) and a small quantitative improvement for the connectivity with

he contralateral hemisphere ( Fig. 11 ) when adopting the divergence-

ree model to guide the streamlines through the gyral white matter. 

Further validation could come from comparing the connectome es-

imated from tractography with some known connectivity “ground-

ruth ”, such as that interhemispheric connections are stronger between

omotopic than heterotopic regions, which our results suggest. An even

tronger validation is a comparison with neuroanatomical tracers in

on-human primates. Unfortunately, such ground truth connectivity has

een published only at the level of cortical regions, not at the level of

ndividual vertices. Because many of these cortical regions span both

ulcal fundi and gyral crowns, the changes in tractography in the gyral

lades proposed here has only a minor effect on the parcellated connec-

omes (Figure S2B,C). Still for completeness, we do include such com-

arisons in the supplementary materials, where we find that adopting

ur approach increases the preference for interhemispheric streamlines
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o connect between homotopic regions (Figure S2D), but find a slightly

ecreased correlation with tracer data in a macaque dataset (Figure S3).

.3. Alternatives 

Explicit constraints on the streamline density like the ones used here

o reduce the gyral bias could also be used as part of the cost function in

ther algorithms. This would not work for local tractography algorithms

hat only model a single streamline at a time as there is not a meaningful

easure of the streamline density. Global tractography algorithms such

s the spin glass model ( Mangin et al. 2002 ; Kreher, Mader, and Kise-

ev 2008 ; Fillard, Poupon, and Mangin 2009 ; Reisert et al. 2011 ) that

odel all streamlines at once could be used to measure and constrain

he streamline density. The spin-glass model might be a better model

or U-fibres or other local axons as it allows streamlines within a sin-

le bundle to cross each other. Recently, Teillac et al. (2017) proposed

n extension on the spin-glass model to reduce the gyral bias, although

heir proposal alters the target fibre orientations close to the sulcal walls

o allow streamlines to smoothly bend into the gyral walls rather than

n explicit constraint on the streamline density. Wu et al. (2020) also

howed a reduction in the gyral bias by encouraging a smooth transition

etween the radial fibre orientation in the grey matter and the tangential

rientation underneath using asymmetric fibre orientation distribution

unctions ( Bastiani et al. 2017 ). 

Density constraints on streamline endpoints could also be added as

art of the cost-function, when filtering or weighting streamlines in

ost-processing ( Daducci et al. 2016 ) by algorithms such as Contrack

 Sherbondy et al. 2008 ), SIFT/SIFT2 ( Smith et al. 2013 ; 2015 ), LiFE

 Pestilli et al. 2014 ), or COMMIT ( Daducci et al. 2015 ). These algo-

ithms have in common that they filter or assign weights to streamlines

roduced by local tractography algorithms to represent their relative

ontribution. While so far these weights are only fitted to the diffusion

RI data, the surface density could be added as an additional constraint.

f course, this does require generating enough streamlines that there

s a sufficient population of streamlines connecting to the sulcal walls

nd fundi. Streamlines connecting sulcal fundi at both ends are so rare

 Fig. 8 ) that even after post-processing they might be underrepresented

n the final fibre population. Therefore, this post-processing approach

ight achieve a reduction of gyral bias simply by upweighting the fundi-

o-crown connections and not include the many fundi-fundi connections

ound when tracking to the deep/gyral white matter interface ( Fig. 8 C).

In our approach, the gyral bias is reduced not due to the enforcement

f a uniform density across the cortical surface for the vector field, but

n using the vector field to map the cortical surface to a less convo-

uted surface, namely the deep/gyral white matter interface. Tractog-

aphy to this less convoluted surface does not suffer from a gyral bias.

t-Onge et al. (2018) proposed using a mean-curvature flow model to

roduce such a less convoluted surface. Their model has the advantage

f being much less computationally expensive than the fitting of a vec-

or field to the gyral white matter proposed here. While the reported de-

rease in the gyral bias seen in St-Onge et al. (2018) is less than found

ere, this might simply reflect that their final surface is still far more

onvoluted than the deep/gyral white matter interface adopted here.

deally, tracer data such as the one shown in Fig. 12 would be used to

alidate the paths proposed by these algorithms through the gyral white

atter. 

While these alternative algorithms discussed above reduce the gy-

al bias, the degree of reduction of the gyral bias as shown in Fig. 8 ,

as not been shown before. This might increase the accuracy of long-

istance connections although perhaps at the cost of losing any informa-

ion about short-distance connections, in particular those within a gyrus

r U-fibres. 

Code, documentation, and a tutorial for the algorithm pro-

osed in this paper can be found at https://git.fmrib.ox.ac.uk/

dcn0236/gyral_structure and the surface maps displayed are available

n the BALSA database ( https://balsa.wustl.edu/study/show/0LGM2 ). 
13 
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