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Objective. Several discriminating techniques have been proposed to discriminate between β-thalassemia trait (βTT) and iron
deficiency anemia (IDA). These discrimination techniques are essential clinically, but they are challenging and typically
difficult. This study is the first application of the Bayesian tree-based method for differential diagnosis of βTT from IDA.
Method. This cross-sectional study included 907 patients with ages over 18 years old and a mean (±SD) age of 25 ± 16:1 with
either βTT or IDA. Hematological parameters were measured using a Sysmex KX-21 automated hematology analyzer. Bayesian
Logit Treed (BLTREED) and Classification and Regression Trees (CART) were implemented to discriminate βTT from IDA
based on the hematological parameters. Results. This study proposes an automatic detection model of beta-thalassemia carriers
based on a Bayesian tree-based method. The BLTREED model and CART showed that mean corpuscular volume (MCV) was
the main predictor in diagnostic discrimination. According to the test dataset, CART indicated higher sensitivity and negative
predictive value than BLTREED for differential diagnosis of βTT from IDA. However, the CART algorithm had a high false-
positive rate. Overall, the BLTREED model showed better performance concerning the area under the curve (AUC).
Conclusions. The BLTREED model showed excellent diagnostic accuracy for differentiating βTT from IDA. In addition,
understanding tree-based methods are easy and do not need statistical experience. Thus, it can help physicians in making the
right clinical decision. So, the proposed model could support medical decisions in the differential diagnosis of βTT from IDA
to avoid much more expensive, time-consuming laboratory tests, especially in countries with limited recourses or poor health
services.

1. Introduction

Iron deficiency anemia (IDA) and β-thalassemia trait (βTT)
are the two most common hypochromic microcytic anemia.
βTT is more prevalent in theMediterranean region, in specific
geographical areas, including the Caspian Sea and Persian
Gulf regions; the 10% prevalence was reported [1]. The differ-
ential between βTT from IDA is crucial for preventing iron

overload and related complications caused by misdiagnosis
and inaccurate treatment [2].

Differentiation of β-thalassemia trait from iron defi-
ciency anemia is also essential for premarital counseling in
developed countries; for patients with microcytic anemia,
complete blood count (CBC), in conjunction with hemoglo-
bin variant analysis by high-performance liquid chromatog-
raphy (HPLC), is interpreted to differentiate iron deficiency
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from thalassemia traits. Then, iron studies and molecular
testing are also performed. Hemoglobin electrophoresis,
serum iron, and ferritin levels are considered to make a
definitive differential diagnosis between βTT and IDA [3–5].

However, in low-resource settings where HPLC andmolec-
ular testing are not available, different studies proposed dis-
crimination indices to distinct between βTT and IDA. These
indices have been defined to quickly discriminate between
IDA and βTT and avoid more time-consuming and expensive
methods. Mentzer [3], Shine and Lal [4], England and Fraser
[5], RBC [6], Srivastava and Bevington [7], Ricerca et al. [8],
Green and King [9], Bessman and Feinstein (RDW) [10],
Gupta et al. [11], Jayabose et al. (RDWI) [12], Telmissani-
MCHD [13], Telmissani-MDHL [13], Huber-Herklotz [14],
Kerman I [15], Kerman II [15], Sirdah et al. [16], Ehsani et al.
[17], Keikhaei [18], Nishad et al. [19], Wongprachum et al.
[20], Dharmani et al. [21], Pornprasert et al. [22], Sirachainan
et al. [23], Bordbar et al. [24], Matos et al. [25], Janel (11T)
[26], CRUISE Index [27], and Index26 [27] are all hematolog-
ical discrimination indices used for discriminating between the
IDA and the βTT. However, these indices were obtained
empirically and have an inconsistent performance for differen-
tial diagnosis of βTT and IDA in the same patient [28]. On the
other hand, sometimes, the same indices showed different dis-
crimination power in varied age groups [29, 30].

Recently, the accessibility of powerful statistical software
has provided data mining techniques for health-related data.
Many studies have proposed advanced statistical methods
and data mining techniques such as decision tree methods
[31] for differential diagnostic between βTT and IDA to avoid
much more expensive, time-consuming, and complicated
laboratory procedures and nonsatisfactory hematological indi-
ces in discriminating between βTT and IDA [32–38]. [32,
35–39]. Urrechaga, Aguirre, and Izquierdo [39] used multivar-
iable discriminant analysis for differential diagnosis of micro-
cytic anemia. Wongseree et al. [37] implemented neural
network and genetic programming for thalassemia classifica-
tion. Dogan and Turkoglu [35] proposed a decision tree for
detecting iron deficiency anemia from hematology parameters.

Jahangiri et al. [32] used classic decision-tree-based
methods for constructing a differential diagnosis scheme and
investigating the performance of several tree-based methods
for the differential diagnosis of βTT from IDA. Decision trees
have advantages over traditional statistical methods like dis-
criminant analysis and generalized linear models (GLMs).
The main advantage of tree-based methods is a tree structure
that makes it easy to interpret the clinical data and be accepted
by medical researchers and clinicians. CART is one of the best-
known classic tree algorithms. However, this algorithm suffers
from some problems such as greediness, instability, and bias in
split rule selection. Bayesian tree approaches were proposed to
solve the greediness of the CART algorithm. The greedy search
algorithm has disadvantages such as limit the exploration of
tree space, the dependence of future splits to previous splits,
generate optimistic error rates, and the inability of the search
to find a global optimum [40]. Also, the Bayesian approaches
can quantify uncertainty and explore the tree space more than
classic tree approaches. Bayesian approaches combine prior
information with observations, unlike classic tree methods

(these methods use only observations for data analysis). The
Bayesian approaches define prior distributions on the compo-
nents of classic tree methods and then use stochastic search
algorithms through Markov Chain Monte Carlo (MCMC)
algorithms for exploring tree space [41–47]. So, in the last
two decades, many studies have developed Bayesian Treed
Generalized Linear Models. These models fit a parametric
model such as GLMs instead of using constant models in each
tree node. So, these treed algorithms create smaller trees than
tree models and improve the tree’s interpretation [43].

This paper aims to compare the Bayesian Treed General-
ized Linear Models and CART for the differential diagnosis
of βTT from IDA based on simple laboratory test results.
The outcome variable of the present study is qualitative, so
we must use the Bayesian Logit Treed (BLTREED) algo-
rithm for discrimination between these two disorders. This
Bayesian treed model fits the logistic regression model in
each tree node for data prediction and uses the Metropolis-
Hastings algorithm for exploring tree space.

2. Material and Methods

2.1. Criteria for Selecting Patient Groups. In this study, a total
of 907 patients aged over 18 years old diagnosed with IDA
(n = 370) or βTT (n = 537) were selected. The mean (±SD)
age of the patients was 25 ± 16:1 years. Most of the patients
(n = 592 (65%)) were women, and 315 (35%) were men.

CBC analysis of EDTA-K2 anticoagulated blood samples
was performed using the Sysmex KX-21 automated hema-
tology analyzer (Japan) to measure differential parameters.
Hematological parameters like hemoglobin (Hb), mean cor-
puscular volume (MCV), mean corpuscular hemoglobin
(MCH), Red Blood Cell Distribution Width (RDW), Mean
Corpuscular Hemoglobin Concentration (MCHC), and
Red Blood Cell count (RBC) were measured for all patients.

2.2. Inclusion Criteria. In the IDA group, patients had hemo-
globin (Hb) levels less than 12 and 13 g/dl for women and
men, respectively. Mean corpuscular hemoglobin (MCH)
and mean corpuscular volume (MCV) were below 80fl and
27 pg for both sexes, respectively, and for men, ferritin of
<28 ng/ml was considered as IDA. In the βTT group,
patients had an MCV value below 80fl. Patients with
HbA2 levels of >3.5% were considered as βTT carriers.

2.3. Exclusion Criteria. In the IDA group, the patients who had
mutations associated with αTT (3.7, 4.2, 20.5, MED, SEA,
THAI, FIL, and Hph) were excluded. For the βTT group,
patients with αTT confirmed by mutations in the molecular
analysis were excluded. All patients with malignancies or
inflammatory/infectious diseases were also excluded.

2.4. Ethical Consideration. This study was approved and
supported by the Ethical committee affiliated with the Ahvaz
Jundishapur University of Medical Sciences (AJUMS), Ahvaz,
Iran.Written informed consent was filled before the enrollment.

2.5. Machine Learning Analysis. Tree-based machine-learning
methods are valuable tools in data mining techniques. These
methods empower predictive models and could provide a
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solution for constructing the diagnostic test with high accu-
racy [48, 49]. Tree-based models do not need any assumptions
about the functional form of the data.

One of the advantages of these methods is the graphical
presentation of results that make them easy to interpret and
no need for statistical experience for the understanding result
of models [50–53]. Tree-based models also were constructed
based on Bayesian algorithms. Chipman et al. proposed the
Bayesian approach of the CART model (BCART) with defin-
ing a prior distribution. Chipman et al. also developed the
Bayesian Logit Treed (BLTREED) model as an extension of
BCART. The BLTREED model fits a logistic regression model
for data prediction in the terminal nodes [43, 54].

2.5.1. Bayesian Logit Treed (BLTREED) Model. The Bayesian
approach (BCART) was implemented by using a prior distri-
bution on the two components (Θ, T) of the CART model; T
is a binary tree with K terminal nodes or tree with size K ,
and Θ = ðθ1, θ2,⋯, θKÞ is the parameter set in the terminal
nodes (θi = pij, i = 1,⋯,K , j = 1,⋯,N : the number of dis-
tinct classes of the response variable and pij shows the prob-
ability of the jth class of response variable in ith terminal
node). The joint posterior distribution of parameters and
tree structure was as the following equation:

p Θ, Tð Þ = p Θ Tjð Þp Tð Þ, ð1Þ

where pðTÞ and pðΘ ∣ TÞ show the prior distributions for
tree and parameters in terminal nodes, respectively.

Usually, the Bayesian approach defines prior distributions
as unknown; so, tree structure and parameters in terminal
nodes were considered unknown [42]. BCART was extended
by fitting a parametric model such as a logistic regression
model for data prediction and describing the conditional
distribution of Y jX in each terminal node [43, 54]. In the
BLTREED model, the conditional distribution of Y jX, unlike
the BCART model, depends on X (Y ∣ X ~ f ðY ∣ X, θiÞÞ and
also by fitting sophisticatedmodel at terminal nodes (by fitting
logistic regression model for data prediction in each terminal
node), smaller trees and more interpretable were generated.
In the BLTREED model, one subset of X can be used to
generate the tree and other subsets were used to fit models
in terminal nodes (these subsets can be joint and/or disjoint).
In the Bayesian approach, θi = Bi shows the regression coeffi-
cients for the logistic model fitted in an ith terminal node.

The recursive stochastic process using a tree-generating
stochastic process for tree growing (pðTÞ) is as follows [42, 43]:

(1) Start from T that has only a root node (terminal
node η)

(2) Calculate the probability for splitting node η as follows:

PSplit = α 1 + dη
� �−β, ð2Þ

where dη is the depth of the node η, α is the base proba-
bility of tree growth of splitting a node, and β is the rate that

determines the propensity to split decreases with increased
tree size.

Actually, α andβ are parameters that control the shape
and size of trees, and these parameters provide a penalty to
avoid an overfitting model

(3) If the node η splits into left and right nodes accord-
ing to the distribution of pRULEðρ ∣ η, TÞ, then let T
as the newly created tree from step 3 and reapply
steps 2 and 3 to the new children nodes

The BLTREED model was fitted based on standardized
data. So, the same prior distribution can be used indepen-
dently for parameters in the terminal nodes, and they were
considered a multivariate normal distribution with zero mean
and variance matrix proportional to the identity for these
parameters [43, 54].

Posterior distribution function p ðT ∣ X, yÞ was com-
puted by combining the marginal likelihood function p ðY
∣ X, TÞ and tree prior p ðTÞ as follows:

P T ∣ X, yð Þ∝ p y ∣ X, Tð Þp Tð Þ: ð3Þ

In this study, no informative priors were considered. The
priors were uniform on variables at a particular node, and all
possible splits for variables.

Where p ðY ∣ X, TÞ is as follows:

P Y ∣ X, Tð Þ =
ð
p y ∣ X,Θ, Τð Þp Θ ∣ Tð Þ dΘ

=
YK

i=1

ðYni

h=1
p yih ∣ xih, Bið Þp Bið ÞdBi,

ð4Þ

which pðy ∣ X,Θ,ΤÞ, ðyih, xihÞ, and ni show the data like-
lihood function, observed values for hth observation in ith
node, and the number of observations in ith node, respec-
tively. The integral of equation four has no closed form, so
the Laplace approximation was used to solve it [43, 54].

Chipman et al. [42, 43] utilize a Metropolis-Hastings
algorithm to simulate equation (3) for finding trees with
the high posterior distribution. The Metropolis-Hastings
algorithm simulates a Markov chain sequence of trees,
namely, T0, T1, T2,⋯:

The simulation algorithm was implemented with multi-
ple restarts for reasons mentioned in Chipman et al. [42, 43].

Table 1: Comparison between hematological parameters of study
groups using the Mann–Whitney U test (data are presented as
median (IQR)).

βTT
(n = 537)

IDA
(n = 370) P

MCV (fl) 62 (5.4) 72.2 (9.7) <0.001
MCH (pg) 19.6 (1.8) 21.9 (4.2) <0.001
Hb (g/dl) 11 (1.6) 10.5 (2.6) <0.001
RDW (%) 15.7 (1.7) 15.7 (3.3) 0.94
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2.5.2. Classification and Regression Trees (CART). Breiman
et al. proposed the CART model [55]. The CART algorithm
generates a tree using a binary recursive partitioning, and
the tree-generating process contains four steps: (1) tree
growing: tree growth is based on a greedy search algorithm,
and this algorithm generates a tree by sequentially choosing
splitting rules. The CART algorithm uses traditional split-

ting functions for choosing splitting rules (entropy and Gini
index). (2) Tree-growing process continues until none of the
nodes can split. (3) Tree pruning: this tree algorithm uses the
cost-complexity pruning method for tree pruning to avoid
overfitting. This pruning method generates a sequence of
pruned trees, and each tree in this sequence is an extension
of previous trees. (4) Best tree selection: CART uses an

MCV
≤67.40

HB
≤9.05

MCV
≤50.45

MCV
≤71.95

MCH
≤21.90

HB
≤10.65

Figure 1: The tree structure of the CART algorithm based on the Gini index (blue terminal node: βTT and yellow terminal node: IDA).

Figure 2: The tree structure of the CART algorithm based on the entropy index (blue terminal node: βTT and yellow terminal node: IDA).
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independent test dataset or cross-validation to estimate the
prediction error of each tree and then selects the best tree
with the lowest estimated prediction error.

2.6. Data Analysis. The BLTREED model and classic CART
algorithm based on the two splitting functions like entropy
and Gini index (after that, we named the CART method-
based Gini index as CART1 and CART method-based
entropy as CART2) were fitted by using predictor variables
such as hemoglobin (Hb), mean cell volume (MCV), mean
cell hemoglobin (MCH), and red cell distribution width
(RDW) for differential diagnosis of βTT from IDA.

The BLTREED model fitted using eight restarts with
6000 iterations per restart and a prior standard deviation
of 20 for the logit coefficients [54]. For determining the pair
of (α, β), the BLTREED model was fitted with two choices,
0.5 and 0.95 for the α parameter, and four choices for β (a
range 0.5-2 by step 0.5), then select the pair of (α, β) that
generate the best tree with smallest FNR.

Based on the acceptable method of cross-validation in
machine learning studies, for assessing the performance of
the three models, the dataset was split randomly in the ratio
2 : 1 into a training and a test dataset, respectively, using a
stratified random sample to ensure equal allocation of pres-
ences and absences (for a classification tree). The model was
then fit to the training dataset, and the set of the best trees
was determined. For each tree, the posterior predictive dis-
tribution was computed for both the training data and the
test dataset; this was implemented for each iteration of the
BLTREED algorithms, thus incorporating the uncertainty
of the model parameters and the data in the evaluation of
models. Finally, the predictive performances were calculated
based on the confusion matrix of the posterior predictive
distribution for both the training and the test dataset [43,
47, 54, 56, 57].

Differential performance of the Bayesian classification tree
and CART was evaluated using criteria such as sensitivity
(TPR), specificity (TNR), false-negative rate (FNR) and false-
positive rate (FPR), positive predictive value (PPV) and nega-
tive predictive value (NPV), positive likelihood ratio (PLR)
and negative likelihood ratio (NLR), accuracy, Youden’s index,
and the area under the curve (AUCROC). AUCROC repre-
sents the degree of separate ability showing how much the
machine learning model can distinguish between the classes
(IDA and βTT); actually, it is a global measure of diagnostic
accuracy. A perfect classification algorithm has an AUCROC
= 1. The interpretation of the AUCROC is described as fol-
lows: AUCROC > 0:9: excellent differentiation, AUCROC >
0:8: very good differentiation,AUCROC > 0:7: good differenti-
ation, AUCROC > 0:6: sufficient differentiation, AUCROC >
0:5: bad differentiation, and AUCROC < 0:5: classification
method is not useful for discriminating between IDA and β
TT [58, 59]. Criteria such as Youden’s index, accuracy, PLR,
NLR (an excellent diagnostic test has NLR < 0:1 and PLR >
10), and AUC take both sensitivity and specificity into consid-
eration, so that can present the performance of the model more
accurately than other criteria. In addition, AUC values were
compared using DeLong et al. method [60]. A P value < 0.05
was considered a statistically significant difference.

2.7. Software. Data were analyzed by free software (http://
gsbwww.uchicago.edu.fac.robert.mcculloch.research.code
.CART.index.html) based on Chipman et al. (2002) that
was developed for fitting BLTREEDmodel, R 3.0.3 used for fit-
ting CART algorithm (package rpart), computing performance
measures (package ePiR and package pROC), and splitting data
to training dataset and test dataset (package caTools).

3. Results

A total of 537 patients were diagnosed as βTT with an aver-
age of age (±SD) 22 ± 16:4 including 299 (56%) women and
238 (44%) men, while 370 patients (mean of age (±SD): 29
± 14:6) were diagnosed as IDA including 293 (79%) women
and 77 (21%) men. Table 1 shows the median and interquar-
tile range (IQR) of laboratory parameters as predictor vari-
ables across the type of hypochromic microcytic anemia
(βTT and IDA).

MCV
≤72.70

HB
≤12.70

MCV
≤70.70

Figure 3: Decision tree for the BLTREED model (α = 0:95, β = 1,
Log integrated likelihood = 123:43) (blue terminal node: βTT and
yellow terminal node: IDA).

Table 2: Confusion table of the BLTREED model and CART
algorithm for training dataset and test dataset.

Dataset Algorithm
Disease
status

TP FP FN TN (TP+TN)

Training

BLTREED
βTT 363 25 13 234

597
IDA 234 13 25 363

CART1
βTT 366 46 10 213

579
IDA 213 10 46 366

CART2
βTT 358 23 18 236

594
IDA 236 18 23 358

Test

BLTREED
βTT 155 8 6 103

258
IDA 103 6 8 155

CART1
βTT 160 33 1 78

238
IDA 78 1 33 160

CART2
βTT 159 12 2 99

258
IDA 99 2 12 159
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The tree structure of CART1, CART2, and BLTREED
models is shown in Figures 1–3, respectively. The first split of
the three methods of classification trees was based on MCV,
which showed that MCV has a higher importance value in dif-
ferentiation between the βTT and the IDA. Another predictor
that was used as the second splitting variable in tree structure
was HB. According to the presented trees, the BLTREED
model produced a smaller tree size and was more interpretable
than the CART algorithm (Figures 1 and 2). This model
showed values of MCV ≤ 72:6 screening the βTT patients.
The BLTREED model extracted four homogenous subgroups
for differentiating between the βTT and the IDA (Figure 3).

The predictive performance of models in differentiation
between βTT and IDA was calculated based on the confusion
matrix (Table 2). The BLTREED model, CART1, and CART2
trees showed the high TPR, TNR, PPV, NPV, Youden’s Index,
and accuracy in differentiation between βTT and IDA
(Table 3). However, the BLTREED model had a higher accu-
racy and Youden’s index other than CART1 and CART2.

In addition, all the models haveNLR < 0:1 that three clas-
sification tree algorithms have good diagnostic accuracy for
discriminating the patients. Table 4 shows the AUCs of the
three tree models from ROC analysis that were statistically
significant (P < 0:001) and revealed that all three classification
methods had an excellent diagnose accuracy (AUC > 0:9:
excellent differentiation) in differentiation between the βTT
and the IDA. In addition, Figure 4 displays the receiver oper-
ating characteristic curves of the BLTREED model, CART1,
and CART2 algorithms for the test dataset, and the compari-
sons of AUC values between the models. According to the
exhibited figure, there was no significant difference between
the methods (P > 0:05).

4. Discussion

In this paper, we used the BLTREED model as the differen-
tial diagnostic tool for thalassemia diagnosis. In addition, we
compare the predictive performance of the BLTREED model

Table 3: Sensitivity (TPR), specificity (TNR), false-positive rate (FPR), false-negative rate (FNR), positive predictive value (PPV), negative
predictive value (NPV), accuracy, Youden’s index, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio
(DOR) of the BLTREED model in prediction of IDA and βTT groups and their 95% exact confidence interval for training and test dataset.

BLTREED CART1 CART2
Accuracy measure Training dataset Test dataset Training dataset Test dataset Training dataset Test dataset

TPR
97

(94, 98)
96

(92, 99)
97

(95, 99)
99

(97, 100)
95

(93, 97)
99

(96, 100)

TNR
90

(86,94)
93

(86, 97)
82

(77, 87)
70

(61, 79)
91

(87, 94)
89

(82, 94)

FNR
3

(2, 6)
4

(1, 8)
3

(1, 5)
1

(0, 3)
5

(3, 7)
1

(0, 4)

FPR
10

(6,14)
7

(3, 14)
18

(13, 23)
30

(21, 39)
9

(6, 13)
11

(6, 18)

PPV
94

(91, 96)
95

(91, 98)
89

(85, 92)
83

(77, 88)
94

(91, 96)
93

(88, 96)

NPV
95

(91, 97)
94

(88, 98)
96

(92, 98)
99

(93, 100)
93

(89, 96)
98

(93, 100)

Youden’s index
87

(80, 92)
89

(78, 95)
80

(72, 85)
70

(57, 79)
86

(80, 91)
88

(77, 94)

Accuracy
94

(92,96)
95

(91, 97)
91

(89, 93)
87

(83, 91)
93

(91, 95)
95

(91, 97)

PLR
10

(7, 14)
13.36
(7, 26)

5.48
(4, 7)

3.34
(2, 4)

10.72
(7, 16)

9.14
(5, 16)

NLR
0.04

(0.02, 0.07)
0.04

(0.02, 0.09)
0.03

(0.02, 0.06)
0.01

(0, 0.06)
0.05

(0.03, 0.08)
0.01

(0, 0.06)

Table 4: The area under ROC curve (AUC) of BLTREED and CART algorithms in the prediction of IDA and βTT groups for training and
test dataset (SE: standard error of AUC; CI: confidence interval).

BLTREED CART1 CART2
Training dataset Test dataset Training dataset Test dataset Training dataset Test dataset

AUC 0.99 0.98 0.93 0.94 0.97 0.97

SE 0.003 0.009 0.011 0.015 0.006 0.011

95% CI (0.98, 0.99) (0.96, 0.99) (0.90, 0.95) (0.91, 0.97) (0.96, 0.99) (0.95, 1)

P value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
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as a Bayesian decision tree with the CART algorithm. It is
the first study that uses the BLTREED model in the hemato-
logical data.

The Bayesian decision tree was used to solve uncertain
problems of conventional tree-based methods [43, 54, 61].
This model was implemented by using Hb, MCV, MCH,
and RDW as independent variables.

Our dataset included 537 (59%) patients with βTT and
293 (41%) patients with IDA. However, there was not any
degree of relative imbalance between the IDA and βTT clas-
ses. [62, 63].

Based on our result, MCV and Hb were the main predic-
tor parameters in differential diagnostic, and it showed that
the patient with βTT has lower values of MCV.

In previous studies that used the different conventional
decision trees for differential diagnosis βTT from IDA, the
first split of all algorithms was based on MCV. They also
concluded that MCV was a significant predictor variable in
the discrimination of IDA and βTT [32, 36]. The perfor-
mance of the BLTREED model that was evaluated using
sensitivity, specificity, false-negative and positive rate, and
positive and negative predictive value exhibited the high per-
formance of the differential diagnosis of βTT from IDA. In
addition, positive likelihood ratio, negative likelihood ratio,
accuracy, and Youden’s index showed that BLTREED has
good diagnostic accuracy for discriminating the patients. It
was indeed classified as 96% of βTT patients. Furthermore,
AUC as an overall performance index showed excellent
and significant accuracy (99, 98) in training and test data,
respectively, in differential diagnostic of βTT and IDA.
BLTREED has also generated a tree with a smaller size,
and it is more interpretable other than the CART algorithms
and indicated better diagnostic performance.

Our study has a limitation, which should be considered.
The investigated patients have included just IDA and βTT
cases and excluded concomitant diseases and αTT cases.
Therefore, considering αTT patients in the study would
affect the performance of the presented models and changed
the interpretation of the result. Particularly when only sim-
ple hematologic parameters are used like in the present
study, it may be difficult to distinguish αTT from βTT.

Other studies that used different data mining techniques
and decision trees based on the frequentist approach of fit-
ting revealed the high performance and accuracy but lower
than our result [32, 34–36, 38]. In many studies which had
imbalanced datasets, Oversampling Technique (SMOTE)
was applied for handling this problem [34, 64].

The BLTREED model improves the classification per-
formance by solving the uncertainty of previous models
[43, 54]. The diagnostic performance of the BLTREED
was better than other discrimination methods (classification
trees or hematological discrimination indices) in past stud-
ies for differentiating βTT from IDA. These studies are as
follows: Setsirichok et al. used a C4.5 decision tree, naϊve
Bayes (NB) classifier, and multilayer perceptron (MLP)
for classifying eighteen classes of thalassemia abnormality
[38]. Bellinger et al. used classification algorithms like the
J48 decision tree, support vector machines (SVM), k-near-
est neighbors (k-NN), MLP, and NB for differentiating
between βTT, IDA, and cooccurrence of these disorders.
In this study, the imbalanced dataset was a cause for the
weaker performance [34]. AlAgha et al. compared the diag-
nostic performance of different classification algorithms
such as J48, k-NN, artificial neural networks (ANN), and
NB for classifying β-thalassemia carriers. They showed that
SMOTE helped decrease the problem of highly imbalanced
class distribution and consequently improved the predictive
performance [64]. Jahangiri et al. utilized classification tree
algorithms such as CHAID, E-CHAID, CART, QUEST,
GUIDE, and CRUISE for differential diagnosis of βTT from
IDA. They indicated that the CRUISE algorithm has the
best diagnostic performance similar to the present study,
but this classic algorithm uses the greedy algorithm for tree
generating and cannot explore the tree space more than the
Bayesian tree approaches. Also, many studies compared the
diagnostic performance of hematological discrimination
indices, and BLTREED showed better performance in com-
parison to them [16–19, 23, 25–30, 65–80].

5. Conclusion

In the present study, the BLTREED model showed excellent
diagnostic accuracy for differentiating βTT from IDA.
According to the advantages of Bayesian tree-based methods
like generating a small and more interpretable tree, and lack
of uncertainty of different conventional decision trees, this
method can be helpful along with other laboratory parame-
ters for discriminating between these two anemia disorders.
Also, understanding tree-based methods are easy and do not
need statistical experience. So, it can help physicians in mak-
ing the right clinical decision.

Test data
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and CART algorithms in the prediction of IDA and βTT groups
for test dataset.
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