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Hepatocellular carcinoma (HCC) is one of the most common and lethal malignancies. Recent studies reveal that tumor mi-
croenvironment (TME) components significantly affect HCC growth and progression, particularly the infiltrating stromal and
immune cells. 1us, mining of TME-related biomarkers is crucial to improve the survival of patients with HCC. Public access of
1e Cancer Genome Atlas (TCGA) database allows convenient performance of gene expression-based analysis of big data, which
contributes to the exploration of potential association between genes and prognosis of a variety of malignancies, including HCC.
1e “Estimation of STromal and Immune cells in MAlignant Tumors using Expression data” algorithm renders the quantification
of the stromal and immune components in TME possible by calculating the stromal and immune scores. Differentially expressed
genes (DEGs) were screened by dividing the HCC cohort of TCGA database into high- and low-score groups according to stromal
and immune scores. Further analyses of functional enrichment and protein-protein interaction networks show that the DEGs are
mainly involved in immune response, cell adhesion, and extracellular matrix. Finally, seven DEGs have significant association
with HCC poor outcomes. 1ese genes contain FABP3, GALNT5, GPR84, ITGB6, MYEOV, PLEKHS1, and STRA6 and may be
candidate biomarkers for HCC prognosis.

1. Introduction

Hepatocellular carcinoma (HCC) is one of the most com-
mon and deadly malignancies worldwide, with approxi-
mately 841,000 new cases and 782,000 deaths annually [1].
Currently, the treatment strategies of HCC include surgical
resection, transplantation, radiofrequency ablation, trans-
arterial chemoembolization, chemotherapy, and radiother-
apy [2]. However, the effectiveness of these therapies is
limited in most patients with HCC diagnosed at the middle
or advanced stages. A latest study shows that high genetic
heterogeneity of HCC may be the main cause of treatment
failure [3], and biological and clinical diversities of HCC
present great challenges in individualized clinical treatment
[4–6]. Genomic heterogeneity in tumor cells has been widely
investigated to identify different prognoses and therapeutic

responses in subgroups of patients with HCC and to find
new molecular targets [7–9]. Moreover, accumulating evi-
dence indicates that nontumor cells in tumor microenvi-
ronment (TME) significantly influence the gene expression
of tumor cells, which subsequently affects clinical outcomes
[9–12]. TME is the microenvironment where the tumor cells
are located; other than tumor cells, TME also consists of
immune cells, fibroblasts, endothelial cells, extracellular
matrix, cytokines, chemokines, and receptors [13]. Stromal
and immune cells are two main types of nontumor com-
ponents in the TME, and the investigation of their in-
teraction has been valuable for developing innovative HCC-
directed immunotherapies [14]. However, most previous
studies about the HCC TME focused on immune micro-
environment and the landscape of stromal cells in the TME
lacks in-depth research. Recently, an algorithm that uses
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gene expression signatures to infer the fraction of stromal
and immune cells and predict tumor purity in tumor
samples has been developed. 1e algorithm is described as
“Estimation of STromal and Immune cells in MAlignant
Tumors using Expression data” (ESTIMATE) [15], which
can help to understand the landscape of stromal and im-
mune cells in the TME. Some reports have applied the
ESTIMATE to colon cancers [16] and glioblastoma [17],
revealing the effectiveness of such big-data-based algo-
rithms. However, the effectiveness of stromal and immune
scores in HCC has not been elaborated. In this study, we first
calculated the stromal and immune scores of HCC cohorts
from 1e Cancer Genome Atlas (TCGA) database by ap-
plying the ESTIMATE algorithm and extracted a list of
TME-related genes that predict poor outcomes in patients
with HCC.

2. Materials and Methods

2.1. Data Source. Publicly available dataset of HCC cohort,
including Level 3 data of gene expression profile and relevant
clinical information, was downloaded from TCGA data portal
(https://portal.gdc.cancer.gov/, accessed May 21, 2019). 1e
clinical information includes age, gender, liver fibrosis/cirrhosis
status, pathologic stage, histologic grade, values of serum alpha
fetoprotein (AFP), Child-Pugh score, microvascular invasion
(MVI), radical resection, and survival time. 1e stromal and
immune scores were calculated by applying the ESTIMATE
algorithm to the downloaded RNA expression data, and HCC
cases were categorized in accordance with the median of
immune/stromal scores into high- and low-score groups. All
data involved in this study were downloaded from TCGA, and
data acquirement and application were performed in accor-
dance with TCGA publication guidelines and data access
policies. 1us, additional approval by the local Ethics Com-
mittee was not needed.

2.2. Calculation of Stromal and Immune Scores. 1e stromal
and immune scores were calculated by applying the ESTI-
MATE algorithm to the downloaded RNA expression data,
and HCC cases were categorized in accordance with the
median of immune/stromal scores into high- and low-score
groups. ESTIMATE outputs stromal and immune scores by
performing single-sample gene set-enrichment analysis
[15, 18]. For tumor samples of HCC cohort, first, gene
expression values were rank-normalized and rank-ordered.
1en, the empirical cumulative distribution functions were
calculated for genes in the signature and the remaining
genes. Finally, a statistic was calculated by an integration of
the difference between the empirical cumulative distribution
function.

2.3. Construction of Prognostic Signature Based on Stromal
and Immune Scores. To explore the relevant contribution of
stromal and immune scores to HCC survival prediction, they
were fitted into a multivariate Cox regression analysis with
survival time as the dependent variable. A prognostic risk score
model was performed by the linear combination of the stromal

and immune scores with the multivariate Cox regression co-
efficient (β) as theweight.1e risk score formula was as follows:
risk score� stromal score× β1+ immune score× β2 [19]. 1is
prognostic model could divide the HCC cohort into high- and
low-risk groups using the median risk score that was based on
stromal and immune scores. 1e time-dependent receiver
operating characteristic (ROC) curve was conducted using the
“survivalROC” package (version 1.0.3) on the R platform to
evaluate the predictive accuracy of this prognostic risk score
model [20].

2.4. DEG Screening. Data analysis was performed by using
the “limma” package (version 3.40.2) [21] on the R (version
3.6.0). Genes with a mean value >0 were included in the
screening of DEGs. False discovery rate (FDR) <0.05 and |
log2 fold change (log2FC)|≥ 1.5 were set as the cut-offs to
screen for DEGs.

2.5. Functional and Pathway Enrichment Analyses. 1e
DEGs were analyzed by using the “clusterProfiler” R package
(version 3.12.0) [22] for Gene Ontology (GO) terms and
Kyoto Encyclopedia of Genes and Genomes (KEGG) da-
tabase pathways. 1e GO analysis reveals the DEG function
in biology process, cell component, and molecular function,
and the KEGG analysis shows the pathway enrichment of
DEGs. 1e adjusted P value< 0.05 was considered statisti-
cally significant.

2.6. Construction of Protein-Protein Interaction (PPI)
Network. 1e PPI network of DEGs was retrieved through
the Search Tool for the Retrieval of Interacting Genes
(STRING, https://string-db.org/) [23] and reconstructed via
Cytoscape software (version 3.7.1) [24], which is an open-
source software platform for visualizing complex networks
and integrating these with any type of attribute data. 1e
Molecular Complex Detection plugin of Cytoscape was then
used to find the most significant module based on topology
to locate densely connected regions. 1e settings of selection
were as follows: degree cut-off� 2, node score cut-off� 0.2,
k-core� 2, and maximum depth� 100.

2.7. Statistical Analysis. Kaplan–Meier survival analysis by
log-rank test was used to identify the TME-related DEGs
regarding HCC poor prognosis. Univariate analyses between
clinical characteristics and stromal/immune scores were
compared using the log-rank test. A value of P< 0.05 was
considered statistically significant. Venn diagrams, heat
maps, and survival curves were plotted by R platform.
Statistical analysis was performed using SPSS 22.0 (Chicago,
IL, USA).

3. Results

3.1. Study Population and�eir Stromal and Immune Scores.
A total of 374 cases were available from the TCGA database
for further analysis. 1eir RNA expression data of tumor
tissues were used to calculate the stromal and immune
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scores. Based on the ESTIMATE algorithm, the range of
stromal score was from − 1,625.38 to 1,171.12, and the range
of immune score was from − 866.31 to 3,146.06. 1e relevant
clinical data were also downloaded to investigate correlation
with stromal and immune scores (Table 1). Univariate analysis
identified the following clinical features as significantly asso-
ciated with stromal scores: histologic grade (log-rank
P � 0.014), serum AFP (log-rank P � 0.013), and MVI (log-
rank P � 0.018), and liver fibrosis/cirrhosis status was also
significantly associated with immune scores (log-rank
P � 0.013). To explore the potential correlation of overall
survival (OS) with stromal and immune scores, 374 HCC cases
were divided into high- and low-score groups in accordance
with the stromal/immune scores. Survival analysis shows that
themedian survival time (MST) of cases in the low-score group
of stromal scores is longer than that in the high-score group
(MST: 453 vs. 631 days; log-rank P � 0.256). Cases with lower
immune scores also showed longer MST compared with cases
with higher immune scores (MST: 500 vs. 602 days; log-rank
P � 0.377), but both were not statistically significant at the
P< 0.05 level and relevant figures are not shown. A multi-
variate Cox regression analysis was applied to further assess the
relative contribution of the stromal and immune scores in
survival prediction. 1e risk score formula was as follows: risk
score� stromal score× (− 0.1074)+ immune score× (− 0.4074).
Survival analysis shows that patients with a high-risk score have
a shorter MST than those with a low-risk score in 1-year OS
(MST: 299 vs. 311 days; log-rankP � 0.332; Figure 1(a)), 3-year
OS (MST: 545 vs. 633 days; log-rank P � 0.037; Figure 1(b)),
and 5-year OS (MST: 666 vs. 763 days; log-rank P � 0.180;
Figure 1(c)). 1e area under the curve (AUC) of ROC curve
was 0.577, 0.625, and 0.625 for 1-, 3-, and 5-year survival based
on the time-dependent ROC analysis (Figures 1(d)–1(f)).

3.2. DEG Screening. Unique gene expression profiles of 374
cases were shown in heat maps by categorizing the HCC
cohort into high- and low-scores groups of stromal/immune
cells (Figures 2(a) and 2(b)). For comparing high and low
groups based on the stromal scores, 584 upregulated genes
and 32 downregulated genes were identified. For the im-
mune score groups, 583 upregulated genes and 31 down-
regulated genes were identified. In addition, Venn diagrams
showed that 281 identical genes were upregulated and 8
identical genes were downregulated between the stromal and
immune score groups (Figures 2(c) and 2(d)). 1erefore, a
total of 289 genes were screened as DEGs after taking the
intersection by drawing Venn diagrams, which meets the
criteria of FDR <0.05 and |log2FC|≥ 1.5.

3.3. Functional Assessment. Functional enrichment analysis
was performed for DEGs by applying the clusterProfiler R
package, which shows that these DEGs were highly corre-
lated with immune response. GO term enrichment analysis
(adjusted P value< 0.05; Figure 3(a)) indicated that DEGs
were significantly enriched in the biological processes of
immune cell differentiation and activation, cell component
of extracellular matrix andmembrane, molecular function of
surface receptor activity, and protein binding. Moreover, the

KEGG analysis (adjusted P value< 0.05; Figure 3(b)) sug-
gested that most of DEG-related pathways were significantly
linked to immune response.

3.4.ModuleAnalysis from the PPINetwork. 1e PPI network
of DEGs was acquired by applying the online STRING tool.
1is network consists of nine modules, which include 74
nodes and 255 edges. 1e top three significant modules were
selected for further analysis (Figure 4). We named these
modules asModules 1, 2, and 3, respectively. InModule 1, 15
nodes with 105 edges were formed in the network, including
ADRA2A, CCL19, CCL21, CCR4, CCR5, CCR7, CXCL9,
CXCR1, CXCR2, CXCR6, FPR1, FPR3, GPR183, P2RY12,
and P2RY13 (Figures 4(a) and 4(b)). Module 2 contained 54
edges involving 13 nodes: BTLA, CD163, CD2, CD22,
CD40LG, CD5, CD69, CD80, CR2, ITGA4, PTPRC, SPN, and
TNFRSF8 (Figures 4(c) and 4(d)). Module 3 included 42
edges involving 14 nodes: CD1B, CD3E, CD48, CD52,
HAVCR2, IKZF1, IL10, IL2RA, IL7R, ITK, LCK, SELL, TLR7,
and TLR8 (Figures 4(e) and 4(f)). 1e KEGG enrichment
analysis showed that the genes in Modules 1 to 3 are mainly
correlated with chemokine signaling pathway, cell adhesion
molecules, and hematopoietic cell lineage.

3.5. Survival Analysis. To explore the underlying prognostic
value of individual DEGs, the survival analysis was per-
formed between 289 DEGs and the OS in patients with HCC
from TCGA database (Table S1). Among the 289 DEGs, a
total of 12 DEGs were shown to significantly associate with
poor OS (log-rank P< 0.05), which contain CD80, FABP3,
GALNT5, GPR84, IL11, ITGB6, MMP7, MMP12, MYEOV,
PLEKHS1, PTGIS, and STRA6 (Figure 5). All the 12 genes
were upregulated DEGs.

4. Discussion

1e data mining of TCGA database has been widely applied
to cancer prognosis prediction, and recent studies reveal that
TME plays a crucial role in HCC growth and progression
[9, 25]. 1erefore, we intend to identify TME-related genes
that significantly affect HCC prognosis from TCGA database
in this study. Particularly, these genes associate with stromal
and immune components in the TME.

First, we acquired the stromal and immune scores to
determine whether they were associated with the clinical
characteristics and OS of HCC patients. 1e results show
that they were indeed related to the indicators of clinical
progress and prognosis, such as liver fibrosis/cirrhosis status,
MVI, histological grade, and serum AFP. 1e multivariate
Cox regression model based on stromal and immune scores
showed that the risk score was significantly associated with
3-year OS, and time-dependent ROC analysis demonstrated
that this prognostic risk score model performed well in 3-
year OS prediction. Next, 289 DEGs were screened by
comparing the high- and low-score groups of stromal and
immune cells. Subsequent GO term analysis found that most
of them were involved in TME, and the KEGG pathways
analysis also shows that most of the DEGs were
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significantly associated with immune response, which is
consistent with previous reports stating that the functions
of stromal and immune components are interrelated in
constituting TME in HCC [12, 14, 26]. 1en, we con-
structed the PPI network to better understand the in-
teractions of DEGs, and the top three modules show that
they were all significantly related to the pathway of im-
munologic and inflammatory response. CCR7, PTPRC
(CD45), and IL10 were the most connected nodes in these
modules, in which CCR7 was a crucial molecule in the
mechanism of HCC’s progression and metastasis [27–29],
PTPRC involved in the regulation of cytokine-induced
signaling in malignancies [30–32], and IL10 has been re-
ported to increase the susceptible risk of HCC [33], de-
crease immunologic activity [34], and promote immune

tolerance in the tumor milieu [35, 36]. Finally, survival
analysis was performed to explore the potential prognostic
value of 289 DEGs, and we identified 12 TME-related genes
that showed significant correlation between gene expres-
sion and poor outcomes in HCC cases. Of the 12 genes, five
genes (CD80, IL11,MMP7,MMP12, and PTGIS) have been
reported to be associated with HCC’s progression or sig-
nificant in HCC survival prediction [37–42], indicating that
our big data analysis based on ESTIMATE algorithm has
prognostic values in the HCC cohort of TCGA database.
1e other seven genes have never been reported to correlate
with HCC development and prognosis before and can be
perceived as potential biomarkers for HCC.

Among the seven potential biomarkers FABP3,
GALNT5, GPR84, ITGB6, MYEOV, PLEKHS1, and STRA6,

Table 1: Distribution of HCC patients’ characteristics and their clinical correlation with stromal and immune scores.

Variables Count (total n� 374)
Stromal scores Immune scores

Median P value Median P value
Age (years) 0.488 0.868
≤60 177 (47.3%) − 661.51 416.99
>60 193 (51.6%) − 707.93 437.03
NA 4 (1.1%) — —
Gender 0.940 0.326
Female 121 (32.4%) − 667.77 386.47
Male 250 (66.8%) − 690.11 441.65
NA 3 (0.8%) — —
Liver fibrosis/cirrhosis 0.565 0.013a

No 74 (19.8%) − 713.70 243.15
Yes 138 (36.9%) − 657.35 522.19
NA 162 (43.3%) — —
Pathologic stage 0.180 0.084
Stage I 171 (45.7%) − 656.40 454.29
Stage II 86 (23.0%) − 748.34 503.16
Stages III and IV 90 (24.1%) − 752.87 306.66
NA 27 (7.2%) — —
Histologic grade 0.014a 0.938
G1 55 (14.7%) − 385.71 307.42
G2 177 (47.3%) − 658.31 459.21
G3 122 (32.6%) − 771.93 424.43
G4 12 (3.2%) − 1041.72 540.85
NA 8 (2.2%) — —
Serum AFP 0.013a 0.533
≤400 ng/mL 213 (56.9%) − 647.06 458.80
>400 ng/mL 65 (17.4%) − 824.84 447.73
NA 96 (25.7%) — —
Child-Pugh score 0.350 0.207
A 217 (58.0%) − 697.06 416.70
B and C 22 (5.9%) − 790.82 158.16
NA 135 (36.1%) — —
MVI 0.018a 0.644
No 206 (55.1%) − 590.14 424.57
Yes 109 (29.1%) − 755.81 416.70
NA 59 (15.8%) — —
Radical resection 0.478 0.552
R0 324 (86.6%) − 703.78 412.96
R1 & R2 18 (4.8%) − 527.29 467.77
NA 32 (8.6%) — —
a1e value of P< 0.05 indicates statistical significance; NA: not available.
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we are particularly interested in GPR84 and STRA6 because
they link to liver fibrosis that is a major risk factor in HCC
and an independent risk factor of recurrence after hepa-
tectomy [43, 44]. GPR84, a protein-coding gene of the
metabolic G protein-coupled receptor family, plays a po-
tential role in the lipid metabolism and regulation of in-
flammation. 1e latest study demonstrates that GPR84 is
involved in fibrotic pathway and Gpr84 knockout model in
mice can reduce the degree of fibrosis [45]. Moreover,
targeted GPR84 treatment has been shown to be effective in
liver fibrosis [46]. 1erefore, GPR84 enables the promotion
of liver fibrosis and is deleterious in chronic liver disease,
which may be the cause of pathogenesis and progression in
HCC. Likewise, STRA6, as a coding gene of membrane
protein involved in the metabolism of retinol, is also re-
ported to be involved in relevant signaling of fibrosis [47]
and has been shown to inhibit the effectiveness of anti-
fibrotic treatment [48]. Interestingly, fibrosis is characterized
by the excessive accumulation of extracellular matrix in
damaged or inflamed tissues [49], which indicates from
another aspect that GPR84 and STRA6 are related to TME
component. 1e other five candidate genes are FABP3,
GALNT5, ITGB6, MYEOV, and PLEKHS1. FABP3 belongs
to the intracellular fatty acid-binding protein family, which
is thought to participate in the uptake, intracellular meta-
bolism, and transport of long-chain fatty acids, and may be
responsible for the modulation of cell growth and

proliferation [50]. Recent study has suggested that FABP3 is
upregulated in hepatic steatosis in zebrafish model, and
hepatic steatosis can be ameliorated by suppressing FABP3
expression in the liver [51]. Hepatic steatosis, like the
nonalcoholic fatty liver disease, is also a major risk factor for
HCC. 1us, further investigation is necessary to identify the
potential biological relevance between FABP3 and HCC.
GALNT5 encodes a membrane-bound transferase in the
Golgi and is reported to facilitate the proliferation and
migration of colorectal and gastric cancer cells [52, 53].
ITGB6 encodes a protein that is a member of the integrin
superfamily. Members of this family are adhesion receptors
that function in signaling from the extracellular matrix to the
cell. A study demonstrates that ITGB6 is expressed in ma-
lignant colonic epithelia and is associated with the pro-
gression, metastasis, and chemotherapeutic resistance of
colon cancer [54].MYEOV gene is localized at chromosome
11q13 that is a frequent site for chromosomal rearrange-
ments in various carcinomas and B-cell neoplasms [55].
Previous reports suggest that the expression of MYEOV is
enhanced in non-small-cell lung cancer and colorectal
cancer and promotes cancer cell proliferation and invasion
[56, 57]. For PLEKHS1, the proteins encoded by PLEKHS1
participate in intracellular signaling. Meanwhile, PLEKHS1
is able to cause noncoding mutations by regulating recurrent
mutations of upstream and promoter elements, which can
lead to tumorigenesis [58]. Currently, although the
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Figure 1: 1e Kaplan–Meier and ROC curves of prognostic risk score model based on stromal and immune scores in HCC. Kaplan–Meier
curves of high- and low-risk groups for 1-year OS (a), 3-year OS (b), and 5-year OS (c); ROC curves of risk score model for 1-year OS (d), 3-
year OS (e), and 5-year OS (f).
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functional verification experiments of the seven genes in
HCC have not been reported, they are more or less asso-
ciated with the occurrence and development of malignancies
and still need further investigation.

1e studies reported in the past decade have been able
to delineate the landscape of genomic alterations and gene
signatures occurring in HCC growth and progression
[59]. 1is delineation has certainly changed our percep-
tion of the disease. Meanwhile, great development has
been made on the correlation of prognostic prediction
with the gene expression in HCC. Many of these studies
were performed through the construction of animal
models, experiments of cell in vitro, and small-scale co-
horts of clinical tumor samples. However, the complex
interplay of HCC and the microenvironment where it is
located demands a highly comprehensive analysis of
large-scale cohorts. Fortunately, due to the significant
progress of whole-genome sequencing technology, some
high-throughput tumor databases, such as TCGA, have
been developed and are publicly available for open aca-
demic communication. 1ese platforms can provide

resources for big data analysis with large-scale cohorts of
HCC or other malignancies.

Compared with previous reports that focused on how
the activation of tumor intrinsic gene exerts an influence
on the TME, our study attaches high importance to gene
signatures in TME, which in turn act on HCC’s devel-
opment, hence affecting patients’ prognosis. Our study
may provide additional data and new ideas to analyze the
complex interactions between HCC and the TME where it
is located. However, some limitations exist in this study
which still needs to be elaborated. First the clinical in-
formation from the TCGA database is incomplete, such
that detailed data about the treatment after surgery are
unavailable. As a result, we were not able to perform a
comprehensive survival analysis that considered other
potential prognostic factors in HCC. Second, HCC cases
in this study are exclusively obtained from a single cohort,
which may have caused biases to our results. 1ird, our
findings still need further validation, which may be
performed through confirmatory experiments with real-
time PCR and Western blot for screened genes.
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5. Conclusions

In conclusion, we calculated the stromal and immune scores
based on the ESTIMATE algorithm to identify 12 TME-
related genes with poor prognosis from the HCC cohort of
TCGA database. Seven of the 12 genes, namely, FABP3,
GALNT5, GPR84, ITGB6, MYEOV, PLEKHS1, and STRA6,
can be perceived as candidate genes for the prognostic
prediction of HCC, which have not been previously reported
for their prognostic value in HCC patients. Further study
on these genes can contribute to an in-depth and com-
prehensive understanding of the potential correlation be-
tween TME and HCC prognosis. In addition, we anticipate
that our strategy of mining TME-related genes can be widely
applied to big data analysis and discover more biomarkers
with prognosis value for HCC or other malignancies.
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