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Abstract: The interest in graphene-based electronics is due to graphene’s great carrier mobility, atomic
thickness, resistance to radiation, and tolerance to extreme temperatures. These characteristics enable
the development of extremely miniaturized high-performing electronic devices for next-generation
radiofrequency (RF) communication systems. The main building block of graphene-based electronics
is the graphene-field effect transistor (GFET). An important issue hindering the diffusion of GFET-
based circuits on a commercial level is the repeatability of the fabrication process, which affects the
uncertainty of both the device geometry and the graphene quality. Concerning the GFET geometrical
parameters, it is well known that the channel length is the main factor that determines the high-
frequency limitations of a field-effect transistor, and is therefore the parameter that should be better
controlled during the fabrication. Nevertheless, other parameters are affected by a fabrication-related
tolerance; to understand to which extent an increase of the accuracy of the GFET layout patterning
process steps can improve the performance uniformity, their impact on the GFET performance
variability should be considered and compared to that of the channel length. In this work, we assess
the impact of the fabrication-related tolerances of GFET-base amplifier geometrical parameters on
the RF performance, in terms of the amplifier transit frequency and maximum oscillation frequency,
by using a design-of-experiments approach.

Keywords: design of experiments; GFET; graphene; high-frequency; RF devices; tolerance analysis

1. Introduction

The research in high-frequency electronics has been historically driven by the devel-
opment of advanced radiofrequency (RF) wireless telecommunication systems.

Despite the advances in CMOS-based RF devices, unsolved issues related to losses and
noise have determined the rise of III-V compound semiconductors technology, which made
great achievements in high-frequency applications thanks to high electron mobility [1–4].
Meanwhile, graphene has already proven to have remarkable electron mobility and thermal
conductivity, and the issues related to its zero-bandgap (that prevents graphene-based
devices from turning off completely) are of secondary importance in analogue RF electron-
ics [5–9]. Hence, a great number of graphene field effect transistors (GFETs) [6,10] has been
proposed, pursuing a clear current saturation [11–13] and improved voltage gain [8,14]
targeting RF applications [15–21], and demonstrating the capabilities of graphene-based
RF electronics. As of now, cut-off frequencies in the range of f T = 100–300 GHz [16,22], and
above [23] have been experimentally demonstrated for GFETs, in line with the best silicon-
based FETs. The GFET maximum oscillation frequency, though, is strongly limited below
70 GHz [20,24] by the poor current saturation, the high graphene/metal contact resistance
at the Gate terminal [25–27], and the unclean graphene transfer process. Exceptionally,
values as high as f MAX = 200 GHz [28] were measured, which continue to be lower than
the values theoretically achievable with graphene-based devices.

Even though these results are not comparable to the best-performing III–V HEMTs,
graphene RF devices are still considered appealing due to the possibility of taking advan-
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tage of the GFET current ambipolarity, which enables a strong reduction in the transistor
count and favours additional miniaturization capabilities [29]. This feature is extremely
interesting, for example, for the aerospace field, particularly because it is accompanied by
graphene’s inherent tolerance to radiation [30–32]. For these reasons, several examples of
graphene-based RF devices have been proposed in recent years, including antennas [33,34],
transmitters and receivers [35–37], modulators and demodulators [38–43], shields [44],
power and signal amplifiers [45–48], mixers [49–51], and oscillators [52–54]. Important
milestones were recently reached towards the large-scale fabrication of graphene electronic
devices [55] and their integration into traditional semiconductor fabrication lines [56]. On
this basis, graphene can be considered very promising for the development of breakthrough
RF electronics.

In this scenario, one important challenge to address is the reliability of fabricated
devices. The uncontrollable variations related to the manufacturing process tolerances
determine an unavoidable non-uniformity across the devices, both fabricated on differ-
ent wafers and on the same wafer. This inter-wafer and intra-wafer variability of the
characteristics of the fabricated devices affects the uniformity of the performance of the
fabricated devices. The process-related variations of nanomaterial-based electronic devices
can be gathered in two categories of factors: factors related to the layout definition, and
factors related to the material properties, as stated in [57]. The first category includes the
geometrical parameters defined by the lithography (for the lateral dimensions) or by the
growth/deposition process (for the vertical dimensions). The second category includes
the parameters expressing the graphene quality (i.e., mobility, doping caused by traps
and impurities, defects), which are determined by the capability of the growth or transfer
process to not degrade the material electrical properties. These two categories of factors
are independent and can be treated separately. In this paper, we focus on the first category
of parameters.

Extracting a mathematical relationship between the GFET parameters variability and
the performance variability, e.g., in the form of a regression model, is useful to predict
the uncertainty resulting from the wafer processing. To optimize the number of runs
necessary to get accurate modelling of the performance variation, design of experiments
(DoE) techniques can be used [58–60].

In this work, we perform a tolerance analysis of a GFET common-source amplifier,
originally proposed in [45] as the first high-frequency voltage amplifier obtained by using
large-area CVD-grown graphene. The device performance is assessed by means of circuit
simulations, designed according to a full factorial design of experiments, and performed
using a large-signal charge-based compact model of a GFET described and validated
in [61]. The Advanced Design System® (Keysight Technologies, Inc., Santa Rosa, CA, USA)
simulation environment is used by varying channel width, W, the channel length, L, and
the top oxide thickness, tOX, in order to investigate the impact of geometry variations
caused by the fabrication of process-related tolerances. Following the study presented
in [62], where we discussed the impact of tolerances on the amplifier’s transconductance,
gm, and output conductance, gds, the influence of the same variations is reported here on
the high-frequency performance described in terms of f T and f MAX.

2. GFET Simulation Design
2.1. Input Parameter Space

The geometrical parameters determine the device input capacitance, output capaci-
tance, and trans-capacitance, which limit the high-frequency performance of a field-effect
transistor. In particular, the capacitances depend on the channel width, W, the channel
length, L, and the top gate oxide thickness, tOX. The unevenness of these parameters, thus,
impairs the uniformity of the fabricated devices’ high-frequency capabilities. In [57], it
was observed that FETs based on nanowires and nanotubes are more robust to process-
related geometry variations as compared to bulk silicon-based MOS devices and FinFETs,
from the point of view of the direct current and of the input capacitance; the impact of
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the same parameters on the drain-source current of a GFET was assessed in [63]. Con-
cerning graphene-based devices, the range of variation that should be considered for the
geometrical factors is very process-dependent. The channel area is affected by an uncer-
tainty generated either by the graphene sheet irregular shape (in the case of mechanical
exfoliation and transfer of graphene flakes) [64], or by the lithography and/or etching
steps (in the case of large-area CVD-grown graphene transfer) [65]. The accuracy of the
thickness of the top-gate oxide depends on the thickness control capabilities of the growth
or deposition technique and on the resulting roughness, and is also affected by inherent
process variations [66].

In this work, the factors chosen for the tolerance analysis are W, L, and tOX, and in the
absence of an initial estimate of the process tolerances, a variation ±∆ within the 10% of
the nominal value is considered for each factor, in analogy with the approach proposed
in [62,63,67–69].

The response variables of interest were computed in correspondence of all the com-
binations of the minimum value, centre value, and maximum value of each input factor,
following a 3-factors, 3-levels full-factorial design of simulations. Hence, 33 = 27 com-
binations of the input settings were considered. This approach allows accounting for
simultaneous variations of all the considered input factors, enabling the investigation
of possible interaction effects between the factors. In the proposed analysis, the factors
are represented in the form of coded variables xi,c, where the minimum, nominal, and
maximum values are represented by the values −1, 0, and 1, to provide an immediate
matching with the regression model coefficients [60]. Including the centre point allows
assessing the linearity of the response variable, with the scope of selecting the most suitable
order for the regression model.

Table 1 reports the minimum, nominal, and maximum values of the simulation input
parameters. The centre values for the three factors W, L, tOX refer to the nominal design of
the device described in [45] and investigated in [62,70].

Table 1. Input factors levels in the performed simulations.

Factor Minimum Nominal [45] Maximum

x1 W (µm) 27 30 33
x2 tOX (nm) 3.6 4 4.4
x3 L (µm) 0.45 0.5 0.55

Coded −1 0 −1

2.2. Output Regression Model

The chosen performance indicators, computed in correspondence of the nc combi-
nations of the input factors, are processed in accordance with the design of experiments
techniques to evaluate the regression model coefficients. Depending on the linearity of
the response variation with respect to the m = 3 factors xi,c, the regression model for the
performance y obtainable from the 3-by-3 full factorial plan of simulation can be [60]:

• A first-order model, including only the linear dependence on the factors (main effects
model):

y ≈ y0 + β1 x1 + β2 x2 + β3 x3 (1)

• A first-order model with interactions, including a small curvature in the response by
means of the mixed product terms:

y ≈ y0 + β1 x1 + β2 x2 + β3 x3 + β12 x1 x2 + β23 x2 x3 + β31 x3 x1 (2)

• A second order model, including quadratic terms (response surface model):

y ≈ y0 + β1 x1 + β2 x2 + β3 x3 + β11 x1
2 + β22 x2

2 + β33 x3
2 + β12 x1 x2 + β23 x2 x3 + β31 x3 x1 (3)
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2.3. Response Variables

To assess the high-frequency operation capabilities of RF devices, the most common fig-
ures of merit are the transition frequency, f T, and the maximum oscillation frequency, f MAX.

In particular, f T is defined as the frequency at which the current gain with the output
in the short circuit condition reaches unity. By representing the common-source amplifier
with a two-port network in which the input port is the gate-source terminal pair and the
output port is the drain-source pair, the short-circuit current gain is the h21 parameter,
which can be computed from the scattering parameters (S-parameters) matrix according
to [71]:

h21 = −2S21 [(1 − S11) (1 + S22) + S12 S21]−1 (4)

The computation of the S-parameters is preferred because their evaluation does not
require short-circuiting or open circuiting the input and output ports. These conditions are
never satisfied perfectly at very high frequencies.

Despite its common use, f T is not the most important figure of merit [72] in RF
electronics. Amplifiers are useful as long as they are able to deliver power to the load,
rather than current, and for this reason, it is important to also evaluate the transistor’s
f MAX. This parameter is the frequency at which the maximum available gain (MAG), the
frequency-dependent maximum power that can be transferred to the load in the impedance
matching condition, reaches unity. f MAX is, thus, the frequency over which the transistor is
not able to amplify the input power in any case. This frequency is also called the maximum
oscillation frequency because it is the frequency at which the transistor can trigger and
sustain stable oscillations in oscillator circuit design. f MAX is usually lower than f T, and
the most interesting frequency between the two depends on the application.

2.4. Simulation Environment Setup

To assess the impact of the fabrication-related tolerance affecting the geometrical
parameters on a GFET-based amplifier RF performance, a GFET small-signal model [73,74]
can be used to compute the quantities of interest according to [6,29,73]

fT =
gm

2π
{(

Cgs + Cgd

)
[1 + gds(RS + RD)] + Cgdgm(RS + RD)

} (5)

fMAX =
gm

4π
(

Cgs + Cgd

)[
gds(ri + RS + RG) + gmRG

Cgd
Cgs+Cgd

]1/2 (6)

where Cgs is the gate-source capacitances and Cgd is the drain-source capacitance, RS,
RD, RG, are the source, drain, and gate resistances, and ri = 1/(2 gm) is the intrinsic
resistance [75].

Nevertheless, compact models for the simulation of the GFET electrical behaviour
in large-signal operations have been developed and made compatible with most circuit
simulators [61,76–78]. In this work, we use the charge-based large-signal GFET compact
model presented in [61] and written in the hardware description language Verilog-A. This
model preserves charge conservation and considers non-reciprocal self-capacitances and
transcapacitances, contrarily to the Meyer’s and Meyer-like models commonly used [61].
The simulated device is the GFET common-source amplifier, made of high-quality single-
layer CVD-grown graphene transferred onto a silicon oxide substrate, with an ultrathin
high-k dielectric gate oxide [79] and a 6-finger embedded gate, presented in [45] as the
first high-frequency voltage amplifier obtained by using large-area graphene and already
simulated in [62,70]. The compact model used for the circuit simulations requires setting
the input parameters related to the geometry, to the oxide material properties, and to the
graphene characteristics. The nominal settings were obtained by Pasadas et al. in [70] by
fitting the experimental I–V curve reported in [45], and are listed here in Table 2.
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Table 2. Input parameters of the circuit model at the nominal design point.

Parameter Value [70] Description

L 0.5 µm Channel length
W 30 µm Channel width
tox 4 nm Top oxide thickness
εtop 12 Top oxide relative permittivity

VGS0 0.613 V Top gate voltage offset
∆ 0.095 eV Electrostatic potential inhomogeneity due to electron-hole puddles

h̄ω 0.12 eV Effective energy of substrate optical phonon emission
µ 4500 cm2/Vs Effective carrier mobility

Concerning the resistance at the transistor’s terminals, they are taken into account by
adding external lumped resistors. In [70], the values indicated for the drain and source
contact resistances RD and RS for the nominal design of the considered device are dependent
on the channel width and equal to RD = RS = 435 Ω µm, whereas the gate resistance RG is a
fixed resistance RG = 14 Ω. Nevertheless, the contact resistance is known to impact strongly
on the high-frequency limits of the GFET [80]. Therefore, in the performed simulations,
the drain and source resistances and the gate resistance are increased proportionally to the
channel width and to the channel length, respectively, in order to include the effect of the
geometry variation. On the contrary, the dependence of the contact resistance upon other
parameters related to the channel transport properties at different field intensities are not
addressed here, since these properties are not related to the geometrical parameters that
are the focus of this paper.

The circuit schematic can be seen in Figure 1.
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Figure 1. Schematic for the GFET amplifier large-signal S-parameters (LSSP) analysis.

Simulations are run in the Advanced Design System—ADS (®Keysight, Inc., Santa
Rosa, CA, USA) software environment, which performs a DC analysis to choose the
bias point and large-signal S-parameters (LSSP) analysis to take into account the device
nonlinearity in the computation of the S-parameters. Figure 2 shows the drain current ID
computed by varying the drain-source and gate-source bias voltage. As can be observed
by viewing the surface curvature, the saturation of the drain current can be obtained in
a certain bias region. Since the choice of the bias point is of great importance to achieve
optimum performance [81], it was carefully chosen to achieve the maximum intrinsic
voltage gain AV = gm gds

−1. Searching for the optimal bias point, the applied VDS was
intentionally limited to prevent the effects of the carrier velocity saturation and the possible
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self-heating that intervene in high-field conditions, as these phenomena are not addressed
by the model. On this basis, the bias point was set to VGS = −0.2 V, VDS = −1.2 V, as found
in [62]. The output conductance gds on top of the drain current ID output characteristic is
shown in Figure 3a, and the transconductance gm on top of the ID transfer curve is shown
in Figure 3b.

Figure 2. Surface plot of the drain current ID computed by varying the VGS and VDS.
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voltage at VDS = −1.2 V, with superimposed transconductance gm (in red).

2.5. Validation of the Simulated GFET Behaviour

In order to validate the simulation results, the f T and f MAX obtained by the circuit
simulator for the nominal design of the GFET were compared with the measured values
reported in [45]. For this purpose, the analysis was performed by biasing the transistor at
VGS = −0.1 V, VDS = −1.2 V, as reported in the paper. In addition, the values computed
by means of the small-signal relations reported in Equations (5) and (6) are also reported.
As can be observed, the results obtained by using Equations (5) and (6) agree neither with
the experiment nor with the simulation, probably due to the nonlinear behaviour of the
device and to the model being based on nonreciprocal capacitances. The simulation results
replicate the measurements quite well, especially concerning the f MAX, as can be seen in
Table 3. Differences between the simulation and the measurement can be caused by the
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imperfect value attributed to some of the graphene-related input parameters reported in
Table 2, and can be reduced by applying optimization techniques to find the parameters’
values that improve the fitting of the measured current curves.

Table 3. Simulated and measured f T, f MAX at VGS = −0.1 V, VDS = −1.2 V.

Simulated Measured [45] Computed

f T (GHz) 9.3 8.2 7.2
f MAX (GHz) 6.1 6.2 4.0

The simulated h21 and MAG at the optimal bias point VGS = −0.2 V, VDS = −1.2 V, in-
stead, return a nominal value for the f T and f MAX of f T,n = 29.40 GHz and f MAX,n = 14.84 GHz
and are shown in Figure 4.
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Figure 4. Short-circuit current gain h21 and maximum available gain MAG computed in correspon-
dence of the nominal set of input parameters, at the bias point VGS = −0.2 V, VDS = −1.2 V. The
nominal cut-off frequency is f T,n = 29.40 GHz, and the nominal maximum oscillation frequency is
f MAX,n = 14.84 GHz.

3. Tolerance Analysis Results
3.1. fT Sensitivity

To extract the f T from the simulation results, the short-circuit current gain h21 was
computed for the 27 combinations of the input factors, and the scattered data is plotted
against the factors in Figure 5a, showing the main effects plot, and against the factor-mixed
products in Figure 5b, showing the interaction effects plot. By looking at Figure 5 it can be
concluded that the transition frequency f T is by far more sensitive to the channel length L
rather than to the other parameters, as the L factor variation causes the highest location
shift of the mean performance, indicated by the blue dots for each level taken by the input
factors. This result confirms expectations, since the peak cut-off frequency is reported
to have a 1/L dependence in FETs with short gate lengths, and a 1/L2 dependence in
FETs with long gate lengths [16]. The two other factors have the same influence on the
f T, and both are much less effective than L. As can be observed from the f T main effects
and interaction effects values reported in Table 4, the main effect of the channel length
L, ME3 = −7.11, is by far the highest contribution to the f T variability. The interactions
between the channel length L and the other two factors (i.e., IE13 and IE23) are very similar,
and comparable to the main effects of tOX and W, ME1, and ME2. They are less than 10% of
the main effect of the L, meaning that W and tOX and their interactions with L impact the
response variability by less than 10% of the impact of L.
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Table 4. f T main effects and interaction effects.

x1 (W) x2 (tOX) x3 (L)

x1 (W) ME1 = 0.557 IE12 = −0.166 IE13 = −0.575
x2 (tOX) ME2 = 0.549 IE23 = −0.570
x3 (L) ME3 = −7.11

Concerning the linearity of the response, the f T variation induced by the variation of
the factors of 10% is approximately linear; in fact, the blue line connecting the average f T
computed at the different levels of the input factors is pretty straight, and closely passes
the nominal response f T,n.

To account for the slight nonlinearity of the response variable in the regression model,
the interaction effects shown in Figure 5b can be considered. The interaction effects are
computed by calculating the slope of the line connecting the average values of f T computed
when the product of the coded factors equals −1 and +1. The introduction of such effects
can model the small curvatures in the response.

On this basis, the f T variability can be modelled by:

f T = 29.4 + 0.557 W + 0.549 tOX − 7.11 L − 0.166 W tOX − 0.575 W L − 0.57 tOX L (7)

where W, tOX, and L are varying between −1 and +1, following the coding reported in
Table 1.

3.2. fMAX Sensitivity

The f MAX variation in response to the variation of the input factors is shown in
Figure 6a,b, which report the main effects plot and the interaction effect plot, respec-
tively. As in the previous case, the blue lines connect the f MAX average values computed
in correspondence of each level of the factors, and the red star indicates the nominal
response f MAX,n.
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By looking at Figure 6, it can be observed that the factor most influential on the f MAX
is, as for the f T, the channel length L. However, contrarily to what was observed for f T, the
increase of the channel width W causes a decrease of the f MAX. Another noticeable result
is that, in this case, the response dependence on the three factors is very linear. In fact,
the plots in Figure 6b show that there is no interaction between W and tOX, and that the
interaction between W and L is one order of magnitude smaller than the lowest main effect.
Moreover, while for the f T the factors W and tOX had a similar impact on the response,
for the f MAX it is observed that the tOX is the second most influential parameter, as its
main effect doubles the main effect of W, and is ≈20% the main effect of L. This is clearer
by observing the computed values of the main effects and interaction effects reported in
Table 5.

Table 5. f MAX main effects and interaction effects.

x1 (W) x2 (tOX) x3 (L)

x1(W) ME1 = 0.356 IE12 ≈ 0 IE13 = 0.042
x2(tOX) ME2 = 0.615 IE23 = −0.263

x3(L) ME3 = −3.14

These values allow extracting the linear regression model representing the variability
of the PF f MAX, which is:

f MAX = 14.84 - 0.356 W + 0.615 tOX − 3.14 L + 0.042 W L − 0.263 tOX L (8)

4. Conclusions

An analysis of the impact on the fabrication-related tolerances of the GFET geometrical
parameters was performed by means of designed circuit simulations.

The factor variation most influential on the transition frequency and the maximum
oscillation frequency uniformity for a GFET-based common-source amplifier is the channel
length L, coherently with the concept that the transistor high-frequency limit is inversely
proportional to the time the carriers need to cross the channel. Reducing the channel
length has great benefits on the transition frequency improvement and helps to improve
the maximum frequency, too. Hence, being able to control the channel length reliably
and applying all the possible measures to limit the occurrence of any uncontrollable phe-
nomenon interfering with the channel length accuracy is the best way to reduce unwanted
fluctuations of the fabricated transistors’ cut-off frequency, and therefore improve the intra-
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wafer and inter-wafer performance uniformity. The improvement provided by increasing
the accuracy of the other geometrical parameters, instead, is very limited. In fact, this
analysis has shown that the impact of the channel width W and the top oxide thickness
tOX on the fT is the same, and it is less than 10% of the impact of the channel length L.
The interaction between L and the other two factors has an impact comparable to the W
and tOX main effect, and must therefore be included in the regression model for the fT.
Concerning the f MAX, the tOX is the second most influential factor, with the main effect that
is about 20% of the L main effect. The W impacts on the f MAX by less than 10% the impact
of the L. A first-order regression model accounting for interaction between the factors is
provided for both the considered performance indicators, allowing both the prediction
of the expected variability when the tolerance of process parameters is known, and the
definition of a region of acceptability for the factors’ tolerances when the variability of the
observed performance is constrained.

In conclusion, the reduction of the variability of W and tOX would improve the uni-
formity of the fT and f MAX far less than a reduction of the variability of L by an equal
percentage amount. The quantitative evaluation of this improvement can be done by using
the provided mathematical relations between the quantities of interest. These considera-
tions can support the cost/benefit analysis for the planning of investments to improve the
ability of the manufacturing process to control the geometric parameters.

Further work includes the tolerance analysis of different GFET devices found in the
literature, in order to compare the robustness of different device layouts and different
processes to the fabrication-related tolerances. Moreover, the impact of graphene quality on
the RF performance could be assessed quantitatively, providing the model with different
inputs depending on the graphene quality indicators.
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