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The proposition that cell architecture is complex needs no
justification. Moreover, intracellular organization changes
with time in some cells yet persists in others. These properties
are determined in part by microtubule cytoskeleton, which can
provide both the consistency, e.g. by maintaining cell shape,
and variability in response to changing intracellular tasks and
environment. Microtubule behavior in vitro is described by
four kinetic parameters (rates for growth and shrinkage and
frequencies for the stochastic transitions between these
states), and is also affected by the boundaries of a confined
environment. In cells, there are multiple layers of additional
regulation. Microtubule dynamics are affected globally by a
large number of associated proteins, and locally through
spatially distributed biochemical cues. Deciphering the inter-
play between microtubules, cell boundaries and their numer-
ous regulators and components is therefore a daunting task.
Two complementary articles published recently in Molecular
Systems Biology provide a refreshing and inspiring example of
how systematic, quantitative approaches that combine ob-
servations and mathematical modeling can help to break
such complex problem into a set of logically appealing and
manageable parts.

Tischer et al (2009) and Foethke et al (2009) have analyzed
the spatial regulation of microtubule dynamics and its role in
intracellular organization, using the unicellular eukaryote
Schizosaccharomyces pombe. Its cytoskeleton has been studied
intensely, facilitated by this cell’s simple shape (Hayles and
Nurse, 2001). Several overlapping microtubule bundles attach
to a centrally positioned nucleus and run in opposite directions
(Figure 1A). The distal microtubule tips, however, rarely curl
around the cortex (Hagan, 1998; Drummond and Cross, 2000),
prompting a question about the mechanisms that terminate
microtubule growth at cell ends. Thus, the cell’s shape affects
the cytoskeleton, but the reverse is also true: normal
microtubule organization is required to maintain the cylind-
rical shape and to center the nucleus (Mata and Nurse, 1997;

Tran et al, 2001). According to Tischer, Foethke and colleagues,
this conundrum can be explained by the spatial regulation of
microtubule dynamics. Two key mechanisms appear to be at
play: microtubule growth is terminated at the cell cortex, due
to arising compressive forces, and there is also a long-range
cytoplasmic modulation that enhances microtubule cata-
strophe (switch to depolymerization) in longer microtubules.

The compression-dependent regulation of microtubule
growth is beautifully demonstrated by experiments of
Tischer et al. This group has previously described quantitative
interactions between polymerizing microtubules and a barrier
in vitro (Dogterom and Yurke, 1997; Dogterom et al, 2005).
Compressive forces generated by a growing tip reduce the rate
of tubulin assembly, increasing the probability of catastrophe.
It was natural for this group to suggest that similar mechanism
restricts microtubule growth at rigid cell boundary, but it is one
thing to speculate what might contribute—and another to
actually test this hypothesis with hundreds of spatially resolved
measurements using custom-written automated software.
This analysis not only confirmed previous findings of frequent
catastrophes at the cell ends (Figure 1B), but the authors also
examined how these rates depend both on contact angles
between microtubules and cell wall, and on connected
microtubule bundles that touch the opposite cell pole. Both
approaches provide convincing support for a mechanical
component in cortex-dependent regulation, although bio-
chemical cues localized at cell poles may also contribute.

There is also a smaller but statistically convincing contribu-
tion from a cortex-independent spatial regulation, whereby
longer microtubules undergo more catastrophes than shorter
ones, so the authors go on to investigate whether kinesin-8
might be responsible. This choice was driven in part by the
in vitro observation that budding yeast kinesin-8, Kip3
depolymerizes longer microtubules faster than shorter (Varga
et al, 2006). Intriguingly, fission yeast kinesin-8s, Klp5 and 6,
are enriched at the ends of longer interphase microtubules
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(Tischer et al, 2009). If these motors accelerate depolymeriza-
tion, the longer polymers with more tip-associated Klp5/6
might be more destabilized, explaining the observed spatial
regulation. Indeed, deletion of Klp5/6 stabilizes microtubules,
they elongate and curl around the cell ends (West et al, 2001),
and the long-range regulation is abolished (Figure 1C).
Surprisingly, the cortex-dependent regulation is also greatly
diminished, revealing once again a complex cross-talk
between motors, microtubules and the cell cortex. None-
theless, these findings are nicely consistent with a hypothesis
that kinesin-8 is a length-dependent microtubule regulator.
Unlike Kip3, however, heterodimeric Klp5/6 is a plus-end
directed motor that does not depolymerize stabilized micro-
tubules in vitro (Grissom et al, 2008), but rather induces
catastrophes (Unsworth et al, 2008; Tischer et al, 2009). Is
kinesin-8 the only basis for the long-range spatial regulation of
microtubule dynamics? Answering this difficult question must
await future studies, and currently one cannot rule out
possible contributions from other spatial cues or factors that
affect density of microtubule bundling, which normally
diminishes toward the cell tips.

These experimental findings set up the stage for Foethke et al
to use mathematical approaches and ask whether two levels of
spatial regulation could explain quantitatively the self-organiza-
tion of interphase microtubules and attached nucleus. They
condense the large and complex set of relevant experimental

observations into 10 quantitative ‘traits’ and analyze them using
a detailed model of the microtubule cytoskeleton. The compres-
sion-dependent regulation can explain eight traits but fails with
two, which describe re-establishment of intracellular organiza-
tion in cells the architecture of which was disrupted by
centrifugation. However, an additional assumption of length-
dependent regulation is sufficient to match all 10 traits. This
analysis suggests that two major components of the complex
interplay that defines microtubule architecture and shape in
fission yeast cells are now probably grasped. There are
undoubtedly other regulatory layers that underlie these interac-
tions, and their relative contributions will have to be determined.
At this point, however, we seem to be out of new non-
overlapping traits, so it is tricky to rule out or confirm
unambiguously any new regulatory link. But one thing is
certain: in the future, more complete understanding will be
gained through a quantitative experiment going hand-by-hand
with a predictive modeling.
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Figure 1 3D organization and spatial regulation of microtubule cytoskeleton in
fission yeast. (A) Intracellular architecture of S. pombe cell, as viewed with 3D
simulation (reproduced from Foethke et al, 2009). (B, C) Spatially resolved
measurements of catastrophe frequency in wild type and klp5Dklp6D cells as a
function of distance to the cell center (x) in cells with different half lengths L
(reproduced from Tischer et al, 2009). Darker red colors correspond to more
frequent catastrophes. In wild-type cells with various lengths, microtubules
inevitably undergo catastrophe after contacting the cell end (the diagonal darker
area on (B)), but in elongated cells longer microtubules are destabilized even
when their tips are X1 mm away from cell end (red-colored area at the right lower
corner of the graph). Deletion of Klp5/6 motors (C) leads to a loss of this long-
range regulation and also reduces the strength of a cortex-dependent effects.
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