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Abstract: Chronic inflammation in diabetes mellitus (DM) is the leading cause of non-healing wounds.
Chemokine CC motif ligand 4 (CCL4) is enhanced in the circulation and in the wounds of DM patients.
This study aimed to investigate the effect of endogenous CCL4 inhibition on diabetic wound healing.
Endothelial progenitor cells (EPCs) and human dermal microvascular endothelial cells (HDMECs)
were used. Mice were injected with streptozotocin to generate hyperglycemia. An enhanced CCL4
level as well as decreased tube formation and migration abilities were observed in high-glucose-
treated HDMECs and in EPCs from type 2 DM patients. CCL4 inhibition by siRNA restored the
damaged cell function by upregulating the Akt/endothelial nitric oxide synthase/vascular endothe-
lial growth factor/stromal cell-derived factor-1α pathways. Wild-type diabetic mice had delayed
wound repair, whereas the CCL4-knockout diabetic mice showed an accelerated rate of wound
closure. In a Matrigel plug assay, CCL4-knockout diabetic mice showed higher blood vessel and
hemoglobin levels. Higher CD31 and Ki67 expression in the wound area and Matrigel plugs was
detected in the CCL4-knockout diabetic mice. CCL4-knockout mice had upregulated angiogenic
factors and downregulated inflammatory factors. This study might provide the theoretical basis for
CCL4 inhibition as a therapeutic option for clinical diabetic wound treatment.

Keywords: chemokine CC motif ligand 4; diabetes mellitus; endothelial progenitor cells; human
dermal microvascular endothelial cells; inflammation; wound healing

1. Introduction

Diabetes mellitus (DM) is a chronic metabolic syndrome, which is mainly charac-
terized by insufficient insulin secretion or functional impairment, resulting in long-term
hyperglycemia and chronic inflammation [1]. Chronic inflammation leads to diabetic
vasculopathy and diabetic foot ulcers in both type 1 DM and type 2 DM [2]. Delayed
wound healing in DM results from a complex pathophysiology involving blood vessels,
neuropathy, and immunity. The pathological wound repair is mainly involved in impaired
endothelial cell function [3]. Meanwhile, neutrophils and macrophages rapidly infiltrate
the diabetic wound and release cytokines and chemokines to generate an inflammatory
environment [4,5]. Then, macrophages and the inflammatory environment can promote
matrix metalloproteinase (MMP) production, cause extracellular matrix imbalance, damage
new granulation tissue, and impair vascular endothelial cell function [5,6]. Accordingly,
management of the inflammation and amelioration of the vascular endothelial cell function
might be the key to accelerating diabetic wound healing.

Chemokine CC motif ligand (CCL) 4 is a member of the CC chemokine family [7].
CCL4 plays a role in the chemotactic activity of immune cells [8–10]. CCL4 can induce
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the production of reactive oxygen species (ROS) in endothelial cells [11], and it is associ-
ated with atherosclerosis and cardiovascular disease [12,13]. The inhibition of CCL4 by
neutralizing antibodies improved ischemia-induced angiogenesis in both type 1 and type
2 diabetic as well as metabolic syndrome mice [14]. Given that CCL4 expression may be
increased in patients with type 1 and type 2 DM and in their wounds [5,15], it is interesting
to further explore whether an anti-CCL4 strategy might have beneficial effects on diabetic
wound healing. Accordingly, we sought to use both in vitro and in vivo experiments to
prove that anti-CCL4 could enhance diabetic wound healing by improving endothelial cell
function. The findings of this study clarify whether the deletion of CCL4 can accelerate
diabetic wound healing by improving endothelial function.

2. Materials and Methods
2.1. Cell Culture

A blood sample was collected from the peripheral veins of diabetic patients and
healthy volunteers. After the blood was collected, the total mononuclear cells were sepa-
rated by Histopaque-1077 (Sigma-Aldrich, 10771, Darmstadt, Germany) and centrifuged
at 500× g at room temperature for 30 min. The mononuclear cells were cultured in En-
dothelial Cell Growth Basal Medium-2 (Lonza, Catalog #00190860, Basel, Switzerland) with
supplements and 20% fetal bovine serum on fibronectin-coated 6-well plates. After a 4-day
culture, the medium was removed, leading to removed non-adherent cells and attached
early endothelial progenitor cells (EPCs) in the shape of an elongated spindle. Then, after
being cultured for 2–4 weeks, attached late EPCs emerged. Late EPCs were in the shape of
a cobblestone, and this kind of shape is the typical monolayer growth pattern of mature
endothelial cells. Late EPCs were cultured with Endothelial Cell Growth Basal Medium-2
containing 10% fetal bovine serum and 1% penicillin/streptomycin (Sigma-Aldrich, P4333,
Darmstadt, Germany), Human dermal microvascular endothelial cells (HDMECs, Scien-
Cell, Catalog #2000, Carlsbad, CA, USA) were cultured with Endothelium Cell Medium
containing 5% fetal bovine serum, VEGF, and 1% penicillin/streptomycin (Sigma-Aldrich,
P4333, Darmstadt, Germany), and the cultured dishes were coated with fibronectin before
being used. The human study was approved by the institute’s research committee and
conformed to the Declaration of Helsinki.

2.2. Transfection of CCL4 siRNA

Cells were transfected with CCL4 siRNA (Santa Cruz, sc-43932, Dallas, TX, USA)
using Oligofectamine (Invitrogen, 12252011, Carlsbad, CA, USA) in opti-MEM. The fi-
nal concentration of siRNA was 80 nM. After transfection, the cells were treated with
a high concentration of glucose (25 mM) for 2 days. Then, cells were collected for the
next experiments.

2.3. Migration Assay

The Transwell migration assay was used to analyze the migrating ability of late EPCs
or HDMECs after treatments. The cells (2 × 104 or 2 × 105 cells) were suspended in a
serum-free cultured medium. HDMECs were incubated with a medium containing 25 mM
glucose for 2 days after treatment. The cells were seeded on the upper chamber of a 24-well
Transwell plate with a polycarbonate membrane, and the cells migrated toward the lower
chamber containing 400 µL cultured medium with 10% fetal bovine serum at 37 ◦C and
5% CO2. After 18 h, the migrated cells were fixed in 4% paraformaldehyde and stained
with hematoxylin solution. Images were captured using a high-power (×100) microscope
(Nikon, Eclipse TS100, Tokyo, Japan).

2.4. Tube Formation Assay

Late EPCs or HDMECs were seeded into a 6-well plate in each well until a monolayer
was formed, and the combined treatment was then conducted. Cells were collected by
trypsinization, and 2 × 104 cells/well were seeded into ECMatrix gel (Invitrogen, Carlsbad,
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CA, USA) in 96-well plates, in 100 µL cultured medium with 10% FBS, for 16 h at 37 ◦C
and 5% CO2. Images were captured using a high-power (×40) microscope (Nikon, Eclipse
TS100, Tokyo, Japan). The numbers of formed tubes of cells were calculated using Image-
Pro Plus computer software (Media Cybernetics, Inc., Rockville, MD, USA).

2.5. Western Blot

Total proteins were extracted using lysis buffer (25 mM Tris, 150 mM sodium chloride,
1% NP-40, 1% sodium deoxycholate, 0.1% SDS, pH 7.6), and the proteins were separated
in 8–12% (v/v) SDS-PAGE gels. After electrophoresis (Bio-Rad Laboratories, Hercules,
CA, USA), the proteins were transferred onto nitrocellulose membranes (Millipore, Darm-
stadt, Germany), and the membrane was incubated with anti-vascular endothelial growth
factor (VEGF) antibody (Cell Signaling Technology, #2463, 1:1000, Danvers, MA, USA),
anti-stromal cell-derived factor (SDF)-1α (Cell Signaling Technology, #3530, 1:1000, Dan-
vers, MA, USA), anti-phospho-endothelial nitric oxide synthase (eNOS) (Cell Signaling,
#9571, 1:1000, Danvers, MA, USA/Genetex, GTX129058,1:1000, Irvine, CA, USA), eNOS
(Cell Signaling, #32027, 1:1000, Danvers, MA, USA/Genetex, GTX50505, 1:1000, Irvine, CA,
USA), phospho-AKT (BD Biosciences, 550747, 1:1000, Franklin Lakes, NJ, USA), AKT (BD
Biosciences, 610868, 1:1000, Franklin Lakes, NJ, USA), anti-CCL4 (Santa Cruz, sc-393441,
1:1000, Dallas, TX, USA), anti-tumor necrosis factor (TNF)-α (Cell Signaling Technology,
#3707,1:1000, Danvers, MA, USA), IL-6 (Cell Signaling Technology, #1215,1:1000, Dan-
vers, MA, USA), and anti-actin (Cell Signaling Technology, #3700, 1:10,000, Danvers, MA,
USA) at 4 ◦C overnight. After washing three times, the membranes were incubated with
HRP-conjugated secondary antibodies (1:1000) for 1 h at room temperature. Finally, the
membranes were visualized using an ECL kit. Each group was corrected with a control,
and the control value of each experiment was represented as one-fold in the Western blot
quantitative analysis.

2.6. Animal Preparation

Six-week-old male C57BL/6JNarl-Ccl4em1 knockout (CCL4KO) mice were designed
and purchased from the National Laboratory Animal Center (Taipei, Taiwan). CCL4KO
mice were generated in a C57BL/6JNarl genetic background by using the CRISPR/Cas9
system. All mice were genotyped using PCR with specific primers (forward, 5′-TCTCCC-
TCCTTTCTCTTCCGTG-3′; reverse, 5′-TCTACTCCCAATGATGGCTGACC-3′). C57BL/6J-
Narl mice were used as the wild-type (WT) control. Mice were raised under specific
pathogen-free conditions and were kept in microisolator cages with 12:12-h light/dark
cycles and free access to water and standard mouse chow.

To generate hyperglycemia, some mice were intraperitoneally injected with strepto-
zotocin (STZ) at 40 mg/kg for 5 days. Hyperglycemia was defined as blood sugar levels
higher than 250 mg/dL. The following experiments were conducted after two weeks of sta-
bilization after hyperglycemia. The timepoint to test vascular complications was used from
a previous study [14]. The experiments described here were approved by the Institutional
Animal Care and Use Committee (IACUC) of National Yang Ming Chiao Tung University
(Taipei, Taiwan).

2.7. Wound Healing Assay

Mice were anesthetized with 1% isoflurane. The back skin was shaved and cleaned
with 75% alcohol. Circular, full-thickness excisional wounds of 3 mm in diameter were gen-
erated by biopsy punch without muscle injury. The wounds were recorded using a digital
camera (Nikon, Tokyo, Japan) at 0, 1, 3, 5, and 7 days after the wounds were generated.

2.8. Matrigel Plug Assay

The mice were injected subcutaneously with a growth factor-reduced basement mem-
brane matrix (Corning® Matrigel, 356231, Glendale, AZ, USA) containing 30 ng/mL VEGF
and 50 U/mL heparin (Sigma-Aldrich, H3393, Darmstadt, Germany). The gel formed a
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solid plug as it touched the body temperature. After 14 days, the plugs were collected
and homogenized using 500 µL cell lysis buffer and centrifuged at 6000× g at 4 ◦C for 1 h.
A colorimetric assay (Sigma-Aldrich, MAK115, Darmstadt, Germany) was used to detect
hemoglobin using a microplate reader at 400 nm wavelength. The plug was harvested for
histological and immunohistochemistry analysis.

2.9. Mouse Blood Glucose Test

After fasting for 4 h, 1 µL of mouse blood was collected from the tail. An Abbott
FreeStyle glucometer (Abbot, OPTIUM XCEED, Chicago, IL, USA) was used following the
instructions provided by the original manufacturer.

2.10. Histological and Immunohistochemistry Analysis

The wound sample was fixed with 4% paraformaldehyde for 24 h; the sample was
dehydrated in graded alcohols and then embedded in paraffin wax. The tissues were
sectioned into samples of 5 µm thickness. The sections were dried overnight and stained
with hematoxylin and eosin (H&E) for histological analysis. The paraffin wax-embedded
tissues were sectioned to 5 µm thickness and rehydrated. Antigen retrieval was performed
by using 0.05 M sodium citrate buffer. The slides were then incubated at 4 ◦C overnight
with a primary antibody to detect CD31 (Abcam, 28364, 1:100 Waltham, MA, USA) and Ki67
(Novus, NB500-170, 1:100 Littleton, CO, USA). The sample was washed with PBS solution
and incubated with a secondary antibody (rabbit; 1:1000) for 2 h at room temperature.

2.11. Evaluation of VEGF and SDF-1α Concentrations

The serum concentrations of VEGF and SDF-1α were determined by ELISA (R&D,
MMV00 and MCX120, Minneapolis, MN, USA) according to the manufacturer’s instructions.

2.12. Statistics

The results are presented as the mean ± standard deviation. Statistical analysis was
performed using an unpaired Student’s t-test for analysis of variance and MANOVA for
validation. Then, Scheffe’s method, a post hoc test for multiple comparisons, was used.
SPSS software (version 14; SPSS, Chicago, IL, USA) was used to analyze the data. A
p-value < 0.05 was considered statistically significant.

3. Results
3.1. Knockdown of CCL4 Ameliorated Cell Function in HG-Stimulated HDMECs

HDMECs isolated from adult skins were used to explore the direct effects of CCL4 in
the wound healing process under the pathological condition in vitro. CCL4 was upregu-
lated in the HG-stimulated HDMECs and was knocked down by administration of CCL4
siRNA (Figure 1A). The protein expressions of p-Akt, p-eNOS, VEGF, and SDF-1α were
downregulated in the HG-stimulated HDMECs and were reversed in the CCL4 knock-
down group (Figure 1B). The HDMECs showed impaired tube formation and migration
abilities under the HG conditions, and these abilities were improved by the administra-
tion of CCL4 siRNA (Figure 1C,D). These results suggest that the knockdown of CCL4
could ameliorate HDMEC function by upregulating angiogenic protein expressions such as
AKT/eNOS/VEGF/SDF-1α under the HG condition.
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= 3), p-AKT, p-eNOS, VEGF, and SDF-1α. The angiogenic proteins were reversed after the admin-
istration of siCCL4 ((B); n = 3). Tube formation ability and quantitative analysis of HDMECs; the 
images were captured using a (×40) microscope. The tube formation ability was improved after the 
administration of siCCL4 ((C); n = 3). Migration ability and quantitative analysis of HDMECs; the 
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Figure 1. CCL4 inhibition by siRNA recovered functions of high-glucose-impaired HDMECs with
increased angiogenic protein expressions. Western blotting and statistical analyses of CCL4 ((A); n = 3),
p-AKT, p-eNOS, VEGF, and SDF-1α. The angiogenic proteins were reversed after the administration
of siCCL4 ((B); n = 3). Tube formation ability and quantitative analysis of HDMECs; the images were
captured using a (×40) microscope. The tube formation ability was improved after the administration
of siCCL4 ((C); n = 3). Migration ability and quantitative analysis of HDMECs; the images were
captured using a (×100) microscope. The migration ability was improved after the administration of
siCCL4 ((D); n = 3). HG represents high glucose. * p < 0.05, ** p < 0.01.
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3.2. Knockdown of CCL4 Improved the Cell Function of EPCs from Patients with Type 2 DM

CCL4 expression was higher in the EPCs from type 2 DM patients compared to those
from the control volunteers. The enhanced CCL4 expression was knocked down by the
administration of CCL4 siRNA in the EPCs from type 2 DM patients (Figure 2A). The
protein expressions of p-Akt, p-eNOS, VEGF, and SDF-1α were decreased in the EPCs
from type 2 DM patients and were enhanced in the CCL4 knockdown group (Figure 2B).
Both tube formation and migration abilities were impaired in the EPCs from type 2 DM
patients, and these abilities were improved in the CCL4 knockdown group (Figure 2C,D).
These results demonstrate that the knockdown of CCL4 could improve the functions of
EPCs from type 2 DM patients by upregulating angiogenic protein expressions such as
AKT/eNOS/VEGF/SDF-1α.

3.3. Deletion of CCL4 Accelerated Wound Repair in Diabetic Mice

The WT diabetic mice had significantly delayed wound repair on day 3 post-injury
compared to the WT group. The CCL4KO diabetic mice showed an accelerated rate of
wound closure on days 5 and 7 post-injury compared to the WT diabetic mice (Figure 3A,B).
The improved wound healing in the CCL4KO diabetic mice was also observed in the
wound sections analyzed by H&E staining (Figure 3C). Higher CD31 and Ki67 expressions
in the wound area were detected in the CCL4KO diabetic mice than in the WT diabetic mice
(Figure 3D,E). Moreover, the protein expressions of p-Akt, p-eNOS, VEGF, and SDF-1α
were decreased in the wound area of the WT diabetic mice compared to that of the WT
group. These proteins were all enhanced in the CCL4KO diabetic mice and not in the WT
diabetic mice (Figure 3F). On the other hand, the protein expressions of TNF-α and IL-6
were enhanced in the wound area of the WT diabetic mice and were reduced in the CCL4KO
diabetic mice (Figure 3G). These results suggest that CCL4 knockout could promote wound
closure in diabetic mice by enhancing angiogenesis and decreasing inflammation.

3.4. Deletion of CCL4 Promoted Neovascularization in Diabetic Mice

A Matrigel plug assay was performed to explore the effects of CCL4 knockout on
new blood vessel forming ability in diabetic mice. The blood vessel and hemoglobin
contents were reduced in the WT diabetic mice compared to the WT mice. The CCL4KO
diabetic mice showed higher blood vessel and hemoglobin levels compared to the WT
diabetic mice (Figure 4A,B). The increased ability to form new blood vessels in the CCL4KO
diabetic mice was also observed in the Matrigel plug sections analyzed by H&E staining
(Figure 4C). Higher CD31 and Ki67 expressions in the section were detected in the CCL4KO
diabetic mice than in the WT diabetic mice (Figure 4D,E). The serum levels of VEGF
and SDF-1α were reduced in the WT diabetic mice and were enhanced in the CCL4KO
diabetic mice (Figure 4F,G). These results reveal that CCL4 knockout could enhance the
neovascularization ability in diabetic mice.



Biomedicines 2022, 10, 1963 7 of 14Biomedicines 2022, 10, x FOR PEER REVIEW 7 of 16 
 

 
Figure 2. CCL4 inhibition by siRNA recovered functions of EPCs from type 2 DM patients with 
increased angiogenic protein expressions. Western blotting and statistical analyses of CCL4 ((A); n 
= 3), p-AKT, p-eNOS, VEGF, and SDF-1α. The angiogenic proteins were reversed after the admin-
istration of siCCL4 ((B); n = 3). Tube formation ability and quantitative analysis of EPCs from type 
2 DM patients and control subjects; the images were captured using a (×40) microscope. The tube 
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Figure 2. CCL4 inhibition by siRNA recovered functions of EPCs from type 2 DM patients with
increased angiogenic protein expressions. Western blotting and statistical analyses of CCL4 ((A); n = 3),
p-AKT, p-eNOS, VEGF, and SDF-1α. The angiogenic proteins were reversed after the administration
of siCCL4 ((B); n = 3). Tube formation ability and quantitative analysis of EPCs from type 2 DM
patients and control subjects; the images were captured using a (×40) microscope. The tube formation
ability was improved after the administration of siCCL4 ((C); n = 3). Migration ability and quantitative
analysis of EPCs from type 2 DM patients and control subjects; the images were captured using a
(×100) microscope. The migration ability was improved after the administration of siCCL4 ((D);
n = 3). * p < 0.05, ** p < 0.01.
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area. The angiogenic proteins were enhanced in tissues from the CCL4-knockout mice ((F); n = 3). 
Western blotting and statistical analyses of TNF-α and IL-6 in the wound area. The inflammatory 
proteins were decreased in tissues from the CCL4-knockout mice ((G); n = 3). WT, wild-type mice; 
CCL4KO, CCL4-knockout mice; WT-DM, wild-type diabetic mice; CCL4KO-DM, CCL4-knockout 
diabetic mice. * p < 0.05, ** p < 0.01 compared with WT, # p < 0.05 compared with WT-DM. 

Figure 3. CCL4 inhibition by knockout improved wound repair in diabetic mice. Representative
wound areas (A). The closure rates of 3-millimeter punch biopsies were measured ((B); n = 6).
Representative images with H&E staining (C). Representative images with immunostaining of CD31
and Ki67. Both CD31- and Ki67-positive areas were enhanced in the CCL4-knockout mice (D,E).
Western blotting and statistical analyses of CCL4, p-AKT, p-eNOS, VEGF, and SDF-1α in the wound
area. The angiogenic proteins were enhanced in tissues from the CCL4-knockout mice ((F); n = 3).
Western blotting and statistical analyses of TNF-α and IL-6 in the wound area. The inflammatory
proteins were decreased in tissues from the CCL4-knockout mice ((G); n = 3). WT, wild-type mice;
CCL4KO, CCL4-knockout mice; WT-DM, wild-type diabetic mice; CCL4KO-DM, CCL4-knockout
diabetic mice. * p < 0.05, ** p < 0.01 compared with WT, # p < 0.05 compared with WT-DM.
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Ki67-positive areas were enhanced in the CCL4-knockout mice (D,E). Serum concentrations of 
VEGF and SDF-1α were higher in the CCL4-knockout diabetic mice than in the wild-type diabetic 
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Figure 4. CCL4 inhibition by knockout enhanced neovascularization in diabetic mice. Representative
Matrigel plug (A) and analysis of hemoglobin content ((B); n = 6). Representative images with
H&E staining (C). Representative images with immunostaining of CD31 and Ki67. Both CD31- and
Ki67-positive areas were enhanced in the CCL4-knockout mice (D,E). Serum concentrations of VEGF
and SDF-1α were higher in the CCL4-knockout diabetic mice than in the wild-type diabetic mice
((F,G); n = 6). WT, wild-type mice; CCL4KO, CCL4-knockout mice; WT-DM, wild-type diabetic mice;
CCL4KO-DM, CCL4-knockout diabetic mice. * p < 0.05, ** p < 0.01.
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4. Discussion

The study has several fundamental findings. First, impaired cell function and higher
expression of CCL4 were observed in HG-stimulated HDMECs and EPCs from type 2 DM
patients. CCL4 knockdown could reverse cell dysfunction with upregulated Akt/eNOS/V-
EGF/SDF-1α pathways. Second, delayed wound healing was observed in diabetic animals
with enhanced CCL4 protein levels. CCL4-knockout diabetic animals showed accelerated
wound repair with higher levels of capillary density and cell proliferation. Third, CCL4-
knockout diabetic animals showed increased neovascularization with higher levels of
hemoglobin, capillary density, and cell proliferation. Consistent with the in vitro findings,
the improvement of wound repair as well as neovascularization was accompanied by
upregulated Akt/eNOS/VEGF/SDF-1α protein expression in vivo. Furthermore, inflam-
matory factors including TNF-α and IL-6 were downregulated with the accelerated wound
healing in CCL4-knockout diabetic animals.

Inflammatory factors can be significantly increased in the circulation and in the wound
areas of patients with diabetes, causing a long-term inflammatory response [16]. Chronic
inflammation attenuates the activation of the Akt/eNOS signaling pathways, increases
inducible nitric oxide synthase expression, and decreases nitric oxide release, resulting
in decreased EPC and endothelial cell numbers and damaged cell function [17–20]. Acar-
bose promoted wound healing and improved angiogenesis in diabetic mice through the
Akt/eNOS signaling pathway [21]. Although an increase in CCL4 has been observed in
the wounds of diabetic patients [5], there have been no experiments exploring the effects
of anti-CCL4 as a potential treatment option. We previously showed that EPCs from type
2 DM patients could secrete more CCL4 than those from healthy subjects. Exogenous
CCL4 inhibition by neutralizing antibodies could improve EPC function by sensitizing
CXCR4 expression and increasing angiogenic proteins such as VEGF and SDF-1α [14]. In
line with our previous findings, the present study further showed that endogenous CCL4
inhibition by siRNA could upregulate the Akt/eNOS/VEGF/SDF-1α pathways in both
HG-stimulated HDMECs and EPCs from type 2 DM patients. Additionally, compared to
wild-type mice, the CCL4-knockout mice showed rapid diabetic wound repair with en-
hanced angiogenesis. Taken together, one may speculate that endogenous CCL4 inhibition
might facilitate the angiogenesis of the wound area by improving endothelial cell function.

The diabetic wounds usually had a higher expression of inflammatory cytokines/che-
mokines and a lower expression of anti-inflammatory cytokines [5,22]. Modulation of
inflammation including cytokines and chemokines could affect the healing process of
diabetic wounds. Hypoxia adipose stem cell-derived exosomes could promote the healing
of a diabetic wound by inhibiting inflammation through the PI3K/AKT signaling path-
way [23]. IL-6 expression increased in the skin of diabetes patients [24]. Inhibition of
glycation product receptors reduced TNF-α and IL-6 and accelerated epithelialization and
angiogenesis to promote diabetic wound closure [25]. Inhibition of SDF-1α resulted in
a decrease in the rate of diabetic wound healing with increased pro-inflammatory gene
expression of IL-6 [26]. On the other hand, negative pressure wound therapy promoted
wound healing with decreased inflammatory factors such as TNF-α and IL-6 in clinical pa-
tients [27]. Furthermore, inhibition of TNF-α was shown to be one of the anti-inflammatory
strategies that could enhance diabetic wound angiogenesis and healing with increased
VEGF receptor 2 [28]. Anti-CCL17/22 also accelerated diabetic wound healing with fewer
regulatory T cells in the wound bed [29]. In contrast, topical application of CCL2 and CCL3
could promote diabetic wound closure [30,31]. It seems that anti-inflammation could be
an optimal strategy to accelerate wound healing. We previously showed that inhibition of
CCL4 by antibodies could decrease the circulating and pancreatic expression of TNF-α and
IL-6 in diabetic mice [32]. Here, we further demonstrated that the genetic knockout of CCL4
could also provide protective effects on diabetic wounds accompanied with downregulated
inflammatory factors.

There are some issues that should be further addressed. Firstly, we have recently
shown that the inhibition of CCL4 by the CCL4 antibody could protect pancreatic islets
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and stabilize glucose metabolism in diabetic mice [32]. In a diet-induced DM model,
CCL4-knockout mice had improved blood sugar levels in the oral glucose tolerance tests
as well as lower homeostasis in the model assessment of insulin resistance [33]. In the
current study, while diabetes was well established and hyperglycemia was confirmed in
the CCL4-knockout mice, there were no differences in the fasting blood glucose between
the CCL4-knockout diabetic mice and the wild-type diabetic mice. We cannot exclude the
potential benefits of glucose control in wound healing in vivo. However, the in vitro CCL4
knockdown could improve endothelial cell migration and tube formation, suggesting direct
beneficial effects of CCL4 inhibition on angiogenesis for wound healing. Secondly, wound
healing is a complex process. Mechanisms other than angiogenesis and inflammation, such
as MMP expression, etc., may also contribute to wound healing. While both angiogenesis
and inflammation were improved by either CCL4 knockdown in vitro, CCL4 knockout
in vivo, or both, further studies may be required to see if CCL4 inhibition could modulate
other mechanisms contributing to wound healing. In addition, the double staining of CD31
and Ki67 should be further explored in the future to identify the proliferating cells. Finally,
while CCL4 is a chemokine involving universal inflammation [10], investigations on other
more specific mechanisms may still be required to further promote wound healing.

In conclusion, higher CCL4 expression and impaired cell function were observed in
HG-treated HDMECs and in EPCs from type 2 DM patients. Endogenous CCL4 inhibition
could restore the damaged cell function by upregulating the Akt/eNOS/VEGF/SDF-1α
pathways. In diabetic mice, deletion of CCL4 accelerated wound healing and neovas-
cularization by upregulating angiogenic factors such as VEGF and SDF-1α as well as
downregulating inflammatory factors such as TNF-α and IL-6. Therefore, the inhibition of
CCL4 facilitated angiogenesis and attenuated the inflammatory response, promoting heal-
ing in the wound area in diabetic animals. This study might provide the theoretical basis
for CCL4 inhibition as a potential therapeutic option for clinical diabetic wound treatment.
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