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Abstract

The brain is a self-organizing system which displays self-similarities at different spatial and temporal scales. Thus, the
complexity of its dynamics, associated to efficient processing and functional advantages, is expected to be captured by a
measure of its scale-free (fractal) properties. Under the hypothesis that the fractal dimension (FD) of the
electroencephalographic signal (EEG) is optimally sensitive to the neuronal dysfunction secondary to a brain lesion, we
tested the FD’s ability in assessing two key processes in acute stroke: the clinical impairment and the recovery prognosis.
Resting EEG was collected in 36 patients 4–10 days after a unilateral ischemic stroke in the middle cerebral artery territory
and 19 healthy controls. National Health Institute Stroke Scale (NIHss) was collected at T0 and 6 months later. Highuchi FD,
its inter-hemispheric asymmetry (FDasy) and spectral band powers were calculated for EEG signals. FD was smaller in
patients than in controls (1.44760.092 vs 1.52560.105) and its reduction was paired to a worse acute clinical status. FD
decrease was associated to alpha increase and beta decrease of oscillatory activity power. Larger FDasy in acute phase was
paired to a worse clinical recovery at six months. FD in our patients captured the loss of complexity reflecting the global
system dysfunction resulting from the structural damage. This decrease seems to reveal the intimate nature of structure-
function unity, where the regional neural multi-scale self-similar activity is impaired by the anatomical lesion. This picture is
coherent with neuronal activity complexity decrease paired to a reduced repertoire of functional abilities. FDasy result
highlights the functional relevance of the balance between homologous brain structures’ activities in stroke recovery.
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Introduction

The traditional model of control assumes that healthy human

physiological systems preserve steadiness by self-regulating their

activity reducing fluctuations around a homeostatic equilibrium

point. Thus, active controls act to damper fluctuations due to

random noise that shift actual operating conditions from the preset

states [1]. Differently from this view, a wide bulk of data is now

providing evidence that complex fluctuations, observed in several

physiological time signals such as heartbeat [2,3], respiration [4],

gait rhythm [2,5,6], dynamics of neurotransmitter release [7],

electromyography [8], brain activity [9–11], are not purely

random. Rather they can reveal a temporal organization over

multiple time scales. In particular, fractal properties have been

described for these signals.

A structure exhibits fractal properties if similar details are

observed on different scales [12]. Also a time series can display

fractal properties, if statistical similarity emerges at different time

scales of its dynamics. A signal is fractal if the scaling properties fit

a scale-free behavior, i.e. the same features of small time scales

emerge in large ones. This relationship is quantified by the fractal

dimension [12].

The power spectrum of these signals, plotted as log- power over

log-frequency, follows a descendent straight line (power-law

distribution, [13]).

In the light of this evidence, the time-variability properties of the

signals, often interpreted as ‘‘noise’’, could instead have an

organized complex structure, reflecting non-linear characteristics

of the system that are deeply linked to the underlying organ

functioning. Indeed, fractal nature of a signal has often been used

to quantify the topological and functional complexity of processes

generating that signal [12].

Following this idea, processes underlying brain functions can be

characterized by evaluating their complexity using non-linear

measures [14–18]. Indeed, previous Functional Magnetic Reso-

nance Imaging (fMRI), MagnetoEncephaloGraphic (MEG), Elec-

troCorticoGraphic (ECoG), and Electroencephalographic (EEG)

studies have evidenced direct links between cognitive performance

and human brain signal variability (for a review see [19]). In both

rest and task conditions, the time variability of the signal has been

often interpreted as an index of the system complexity [19],
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reflecting a wider range of neuronal dynamics, the ability of the

system to efficiently adapt to upcoming demand [20,21], and an

efficient itinerancy across phase space of the system (for a review

see [19]). As a consequence, the direct measure of the signal

complexity can be directly linked to the efficiency of functional

abilities [11,22]. In this frame, the term ‘‘complexity’’ points

towards a rich temporal structure recovered in the brain signal,

where the system features an intermediate situation between two

non physiological limits: pure randomness (e.g. white noise) and

strictly periodicity (pure sinusoid) or absolute absence of variability

(constancy). Both limits are non-physiological states: the former is

related to system dysfunction and the latter is associated to the

inability of the system to facilitate state changes, and thus to

efficiently process varying and unexpected stimuli.

According to this view, a brain damage can result in a

dysfunction of the whole system, that could be reflected in a less

complex dynamics of its neuronal activity. As a result, a direct

measure of nonlinear dynamics can yield information which

improves the ability to distinguish between a physiological and a

pathological state. Indeed, the study of nonlinear dynamics of

EEG/MEG signals has disclosed new standpoints for the

comprehension of normal brain functions and their alterations in

several neurological dysfunctions (e.g. Alzheimer disease, schizo-

phrenia, epilepsy [9,23–30]).

After a stroke, the global impairment of the system could

originate a transition from a more complex behaviour to a reduced

repertoire of repetitive actions. The study of brain activity

complexity in the acute phase of stroke is still lacking. In the

present work, we aimed to test the sensitivity of fractal dimension

analysis of EEG in the acute phase of stroke to two key

phenomena: the clinical impairment and the recovery prognosis.

We hypothesized a direct link between decreased complexity and a

worse general clinical status. Furthermore, we aimed to test the

sensitivity of EEG fractal dimension in assessing in acute phase the

patient’s ability to recovery. While it is crucial to operate the best

of knowledge in limiting the lesion dimension by proper

intervention in the first hours after the stroke (http://www.

rcplondon.ac.uk/resources/stroke-guidelines), it is a common

experience that in the weeks and months following the stroke, a

largely inter-individual variable recovery ability occurs despite a

nearly identical early clinical picture and similar anatomical size

and location of the lesion [31]. In this scenario, individual features

with prognostic value in the first week after the stroke onset can

help to better understand the pathophysiology of post-stroke

recovery. In particular, prognostic measures about recovery ability

promise to offer a guide in the path to build personalized

rehabilitation treatments, allowing a better allocation of physical

therapy and economic efforts. Considering that previous studies

revealed a clear neuro-vascular uncoupling in stroke patients

[32,33], neuronal electric activity features per se hold a special

usefulness when searching for prognostic markers. Indeed, not

only electrophysiological impairments reflect the functional state of

neurons surviving cerebral ischemia after mono-hemispheric

stroke [34–36], but firsts reports of EEG/MEG ability in

providing recovery prognosis are also present in literature [37–

43]. Neuromodulation techniques, able to modify the excitability

of specific cortical areas, start to be employed enhancing recovery

from stroke [44–48]. The ability in changing the intra-cerebral

neuronal activity balances by proper non-invasive interventions

further strengthen the relevance of electrophysiological prognostic

markers, to better indicate the specific alteration to be compen-

sated in individual patients.

Different non-linear measures have been proposed to calculate

complexity of EEG signals [49]. However, most of these measures

are based on the time-delayed procedures embedding the

physiological time series in a multidimensional phase space. In

this work, we measured the complexity of EEG time series by their

fractal dimension using the method proposed by Higuchi [50]

which yields the fractal dimension directly in time domain without

necessity of embedding the data in a phase space. Therefore, the

algorithm is less time-consuming, overcomes the problems bound

to the choice of the embedding dimension, works even with

relatively short epochs and is highly noise-resistant. The use of

fractal dimension and its robustness in EEG data have been

previously demonstrated [51]. Since oscillatory activities in specific

frequency bands represent a large part of EEG signal power [52],

and EEG/MEG studies demonstrated that oscillatory rest cortical

activity changes are highly sensitive to the acute neurological

impairment in stroke patients [35–36,53–60], in this work the

relationship between the oscillatory activity alteration and the

fractal dimension of the EEG time series in stroke was also

investigated.

Materials and Methods

Stroke patients and healthy subjects
Thirty-six patients (mean age 73.068.6 years, 12 women) were

enrolled in the study after a first-ever mono-hemispheric and

mono-lesional ischemic stroke in the middle cerebral artery (MCA)

territory. The inclusion criteria were: clinical evidence of sensory-

motor deficit of the upper limb and neuroradiological diagnosis of

ischemic brain damage in MCA territory. The exclusion criteria

were: previous stroke on clinical history; neuroradiological

evidence of involvement of both hemispheres or brain haemor-

rhage; dementia or aphasia severe enough to impair patients’

compliance with the procedures.

Nineteen healthy volunteers, matched for age and gender with

patients, were also enrolled as control group (mean age 71.166.3

years, 7 females, independent t-test for age between patients and

controls: p = 0.512). All subjects were right-handed, as confirmed

by the Edinburgh Manuality test, were not receiving any

pharmacological treatment at the time of recordings, and resulted

normal at both neurological and brain magnetic resonance

examinations.

The experimental protocol was approved by the Ethical

Committee of ‘San Giovanni Calibita’ Hospital, Isola Tiberina,

Rome, and all patients and healthy subjects signed a written

informed consent.

Data collection
Clinical scores, EEG recordings and MRI evaluation were

collected in patients between 4 and 10 days (mean 5.461.2 days)

after the stroke onset (T0). Clinical scores were also collected in

post-acute stabilized phase after 6 months (T1). The NIH stroke

scale score (NIHss) was used for neurological assessment of stroke

severity. The effective recovery (ER) was calculated as ER = (-

NIHSS at T02NIHSS at T1)/(NIHSS at T02NIHSS in healthy).

The EEG activity was recorded by 19 electrodes positioned

according to the 10–20 International EEG system (F1, F7, T3, T5,

O1, F3, C3, P3, FZ, CZ, PZ, F2, F8, T4, T6, O2, F4, C4, P4) in

fronto-central reference, an additional electrode pair served for

recording electrooculogram to control for eye blinking. Electro-

cardiogram was monitored by one bipolar channel placed on the

chest. A five minute open-eyes electroencephalographic (EEG)

recording was acquired both in patients and healthy subjects at

rest, while subjects sat on a comfortable armchair fixating a cross

displayed on a screen. Data were sampled at 256 Hz (pre-
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sampling analogical filter 0.1–70 Hz), and collected for off line

processing.

The brain MRI was carried out at 1.5 T in patients and healthy

subjects (GyroscanIntera, Philips Medical Systems, Eindhoven,

The Netherlands). Spin-Echo, Turbo Spin-Echo, and Fluid

Attenuated Inversion Recovery sequences were used. All sequenc-

es provided contiguous 5-mm thick slices on sagittal, coronal and

axial planes. The identification of the lesion site was performed on

axial slices. Lesions were classified as ‘cortical’ (C), if the cortical

grey matter was involved and all subcortical structures were

spared; as ‘subcortical’ (S), when white matter, internal capsule,

thalamus or basal ganglia were affected; and, finally, as ‘cortico-

subcortical’ (CS), when both the cortical and subcortical structures

were involved. The lesion volume was estimated as follows: in each

of the three sets of T1-wheigted sagittal, coronal and axial images,

the slice where the maximum size of the lesion appeared was

selected, and the maximum diameter (mm) on that image was

measured; the total lesion volume was then calculated as the

product of these three semi-diameters multiplied by 4/3 p.

Data analysis
The Reference Electrode Standardization Technique [61,62]

was used to standardize the reference of scalp EEG recordings to a

point at infinity that, being far from all possible neural sources, acts

like a neutral virtual reference. A semiautomatic procedure based

on Independent Component Analysis [63] was then applied to

identify and eliminate artefacts (i.e. eye movements, cardiac

activity, scalp muscles contraction).

For each EEG channel, the Fractal Dimension (FD) was

calculated by means of the algorithm proposed by Higuchi [35].

Fractal dimension was calculated in time windows of 10 seconds

and averaged over time. The details of the Higuchi’s algorithm

implementation are provided in the Appendix S1. The average of

all values obtained for each channel was calculated to obtain a

global measure of FD. Fractal Dimension separate values for the

right and left hemisphere were also found.

Taking into account the importance of the balance of the

neuronal activity between the two hemispheres in recovery from

stroke [64–67], we estimated a measure of the unbalance between

the complexity of the two hemisphere by the inter-hemispheric

asymmetry index calculated as follows:

FD asymmetry~
FDlesioned hem{FDhealthy hem

FDlesioned hemzFDhealthy hem
:

The Power Spectral Density (PSD) was estimated for each EEG

channel via the Welch procedure using time windows of 8 s

duration (resulting in a frequency resolution of 0.125 Hz),

Hanning windowing, 60% overlap, and about 70 artifact free

trials. The global PSD was calculated as the mean of the PSDs

obtained for the 19 EEG channels. Band powers were obtained in

the physiological frequency bands: 0.5–1.5 Hz (sub-delta), 2–4 Hz

(delta), 4.5–7.5 Hz (theta), 8–12.5 Hz (alpha), 13–23 Hz (beta1),

23.5–33 Hz; (beta2), 33.5–45 Hz (gamma). The power spectrum

(PS) of brain activity roughly follows a straight line when plotted

using logarithmic coordinates (log-power vs log frequency):

log PSð Þ!{b: log fð Þ

The power low exponent b was estimated as the slope of the

fitting line for the PS between 0.5 and 45 Hz by a least-squares

linear best-fitting procedure (the mean 6 std dev across all subjects

of the r-values of the fit was 20.93160.071). Finally, relative

power spectrum (rPS) values were calculated by dividing PS values

by the total power between 0.5 and 45 Hz.

Spectral entropy (SE) was estimated according to [68]:

SE~{
Xfmax

f~fmin

rPS fð Þlog2rPS fð Þ

being fmin = 0.5 Hz and fmax = 45 Hz. Spectral Entropy gives a

measure of how much a rPS is fragmented in few frequency

components (minimal entropy) or flat (maximal entropy), inde-

pendently of the total power. For example, white noise power

spectrum is constant in the whole band, i.e., contains all the

frequencies with the same weight, and has maximal entropy; on

the contrary a sinusoid, characterized by only one spectral

component, has minimal entropy. In summary, spectral entropy

quantifies the richness of the spectrum.

Statistical Analysis
In order to find a topography for the differences of FD values

between stroke patients and healthy controls, a repeated measure

ANOVA design was performed on FD with Electrodes (Fp2, F4, F8,

C4, T4, P4, T6, O2, Fz, Cz, Pz, Fp1, F3, F7, C3, T3, P3, T5, O1)

as within-subject factor and Lesion Side (no lesion, left lesion, right

lesion) as between subject factor. Spearman’s correlation was also

carried out between FD values and asymmetry index and both

NIHss at T0 and NIHss at T1. To check for a possible relationship

between FD and clinical recovery, a Pearson correlation between

FD and effective recovery was also tested.

Fractal dimension values were then correlated with spectral

characteristics of EEG signals. Firstly, differences in global spectral

values were investigated in order to confirm the EEG spectral

alteration previously observed in stroke patients. To this aim, a

repeated measures ANOVA design was applied on mean band

power values with Band (sub-delta, delta, theta, alpha, beta1,

beta2, gamma) as within subject factor and Group (Stroke patients,

Healthy controls) as between subject factor. Secondly, Pearson’s

correlation between FD and band powers, power law exponent

and spectral entropy was tested. When needed, Bonferroni

correction for multiple comparisons was applied. Finally, a

regression analysis with FD values as dependent variable was

performed, including all band powers (sub-delta, delta, theta,

alpha, beta1, beta2 and gamma) as independent variables.

Results

NIHss score in patients ranged from 1 to 17 (median: 6.0; 5–95

percentile: 1–15). The ischemic lesion was localized in the left

hemisphere in 22 patients and in the right hemisphere in the

remaining 14 patients. Right-lesion and left-lesion patients did not

differ for NIHss score in acute phase (Mann-Whithney test,

p = 0.281), for lesion volume (Mann-Whithney test, p = 0.281) and

for age (Independent t-test, p = 0.350). According to the ischemic

injury localization, only 1 patient was classified as Cortical, 12 as

Subcortical and 23 as Cortical-Subcortical. All patients showed at

least some clinical recovery at T1, according to the difference

between NIHss at T0 and NIHss at T1 (range 1–12, median: 3.5)

and to the ER values (mean 0.67, standard deviation 0.26, range

0.2–1). Ten patients showed a complete recovery (ER = 1).

A strong correlation was found between NIHss at T0 and lesion

volume (Spearman’s correlation, rho = 0.610, p = 0.003), while

both NIHss at T0 and lesion volume were not correlated with age

EEG Complexity Reduction in Acute Stroke
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(Spearman’s rho = 0.223, p = 0.191 and rho = 0.075, p = 0.745,

respectively). As expected ER strongly negatively correlated with

NIHss in acute phase (Spearman rho =20.720, p,0.001), and no

relationships were found with age, gender and lesion volume.

The mean value of FD across all EEG electrodes was smaller in

patients than in healthy control (1.44760.092 vs 1.52560.105,

Independent t-test t(53) = 2.829; p = 0.007). Repeated measures

ANOVA with Electrodes (Fp2, F4, F8, C4, T4, P4, T6, O2, Fz, Cz,

Pz, Fp1, F3, F7, C3, T3, P3, T5, O1) as within-subject factor and

Lesion Side (no lesion, left lesion, right lesion) as between subject

factor confirmed this reduction (Lesion Side effect F(2,52) = 4.213,

p = 0.020) and indicated that the FD difference between patients

and healthy controls was not topographically specific (lack of

interaction Electrodes X Lesion Side; p = 0.482). The significance of

the factor Electrodes (F(18,936) = 6.379; p,0.001) indicated a

topography of FD values over the scalp. Indeed, both in patients

and in healthy controls FD values were higher in frontal than in

parieto-occipital regions (figure 1A).

In patients, a significant difference between the mean values of

fractal dimension between hemispheres was found (Paired samples

t-test t(35) =22.422, p = 0.021), with FD values lower in the

lesioned than in the non-lesioned hemisphere (mean 6 standard

deviation 1.44660.099 vs 1.45860.094, Figure 1B, left). Fractal

Dimension did not correlate with lesion volume (Spearman’s

rho =20.053, p = 0.820) and was not different between patients

with (CS) or without (S) cortical involvement (Mann Withney test,

p = 0.542).

A negative correlation was found between FD and NIHss at T0

(Spearman’s correlation, rho =20.426, p = 0.010), indicating a

decrease in FD paired to a worse clinical status (Figure 1B, center,

Table 1).

The FD asymmetry index measuring the unbalance between the

complexity of the two hemispheres was not related to the clinical

status at T0, but was related to a worse clinical recovery at T1

(lower values of asymmetry index, i.e. more negative values far

from zero, are related to a worse clinical recovery). Indeed, a

positive correlation was found between FD asymmetry and

effective recovery (Pearson’s r = 0.354, p = 0.034, Table 1,

Figure 1B, right).

Relationship between fractal dimension and spectral
characteristics

Differences between patients and healthy controls were found in

the mean values of band spectral power over the scalp. Repeated

measure ANOVA showed an interaction Band X Group

[F(2.9,151.9) = 5.132; p = 0.002]. Indeed only power in low

frequency bands was higher in patients than in controls

(Independent t-test: sub-delta: t(53) =22.728; p = 0.009; delta

t(53) =23.219; p = 0.002; theta t(53) =23.179; p = 0.002). The

increase of power in these bands correlated with a worse clinical

Figure 1. Topography of Fractal Dimension and relationship with clinical status and recovery. A. Topographies of mean values of fractal
dimension in the 3 groups: patients with lesion in left hemisphere (left), healthy age-matched controls (center), patients with lesion in right
hemisphere (right). EEG electrodes are signed by a full circle. Left: mean and standard deviation of fractal dimension, averaged over all sensors of left
(Fp1, F3, F7, T3, C3, T5, P3, O1) and right hemisphere (Fp2, F4, F8, T4, C4, T6, P4, O2), in the 3 groups (patients with the lesion in the left hemisphere,
patients with the lesion in the right hemisphere, healthy controls). Center: scatter-plot of fractal dimension values over NIHss at T0 and fitting line.
Right: scatter-plot of inter-hemispheric asymmetry index of fractal dimension values over effective recovery and fitting line. To be noted that
negative values of asymmetry index denote FD values lower in the lesioned hemisphere than in the non-lesioned one.
doi:10.1371/journal.pone.0100199.g001
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status (Spearman correlation between NIHss at T0 and band

power: sub-delta: rho = 0.419; p = 0.011; delta: rho = 0.494,

p = 0.002; theta, rho = 0.557, p,0.001).

A positive correlation was found between band power in lower

frequency bands and FD (Table 2). Indeed, the power-law

exponent positively correlated with fractal dimension (r = 0.856,

p,0.001). The power-law exponent was also different between

patients and healthy controls (21.4760.37 vs 21.2260.32;

Independent t-test between the power law of patients and healthy

controls:, t(53) = 2.554, p = 0.014) and correlated with a worse

clinical status (Spearman’s rho =20.361; p = 0.031).

Band power values dependence could bias the correlation of

spectral values with FD. For this reason, a regression analysis with

FD values as dependent variable was performed, including all

band powers as independent variables. The result of this analysis

showed that only values of power in the alpha, beta1, beta2 and

theta entered the model:

FD~azb:alphazc:beta1zd:beta2ze:theta

with a = 1.705, b = –0.081, c = 0.058, d = 0.064; e = –0.041. The

sign of the coefficients tell us that decrease of FD is associated to an

increase of alpha and theta power and to a decrease of power in

higher frequencies (beta1 and beta2). The 95% of FD variance was

explained by this model, with in particular 53% accounted for by

alpha (F(1,53) = 60.156, p,0.001), adjunctive 33% by beta1

(F(2,52) = 155.589, p,0.001), adjunctive 4% by beta2

(F(3,51) = 146.232, p,0.001), adjunctive 5% by theta

(F(4,50) = 232.881, p,0.001).

Discussion

In this work, the complexity of the time-course of EEG signals

in stroke patients has been evaluated by means of fractal

dimension. One important result of our work is the reduction of

fractal dimension in the acute phase of the stroke. This reduction,

although found globally over signals from all electrodes, was larger

in the compromised hemisphere with respect to the non lesioned

one. It has been demonstrated that a stroke lesion, although focal,

may disrupt functional communication between the compromised

areas and functionally connected remote regions. This communi-

cation disruption is linked to functional deficits and overall

functional communication has been shown to have a prognostic

significance. For example, a loss of interhemispheric functional

connectivity at rest in the acute stage correlates with spatial

attention and motor impairments and stronger ipsilesional

functional connectivity predicts motor improvement [67]. The

reduced values of EEG fractal dimension in stroke patients with

respect to healthy controls could be the sign that the global loss of

complexity, observed for the EEG dynamics of stroke patients and

caused by the focal lesion, may indeed reflect the global

dysfunction of the system. Nevertheless, the lower fractal

dimension of EEG signals from electrodes covering the lesioned

areas is a sign of the more severe dysfunction of the peri-lesioned

areas. Moreover, the fact that the loss of complexity is bound to a

Table 1. Correlation between FD values and clinical status and recovery.

NIHss at T0 NIHss at T1 Effective recovery

Global FD 20.426 (0.010) n.s. n.s.

FD lesioned hemisphere 20.471 (0.004) 20.367 (p = 0.028) n.s.

FD healthy hemisphere 20.381 (0.022) n.s. n.s.

FD asymmetry n.s. n.s. 0.354 (0.034)

Correlation between the global FD, FD values of lesioned and non lesioned hemisphere and FD inter-hemispheric asymmetry index with clinical status in acute and
stabilized phase and clinical recovery. Spearman’s rho (p value) and Pearson’s r (p value) are shown respectively for NIHss and effective recovery. Only values of
correlation with p,0.05 are displayed (n.s. = not significant).
doi:10.1371/journal.pone.0100199.t001

Table 2. Correlation between Fractal Dimension and Spectral Characteristics.

All subjects Healthy subjects Stroke patients

n= 55 n= 19 n= 36

Power-law exponent 0.856 (,0.001) 0.847 (,0.001) 0.896 (,0.001)

Spectral Entropy 0.701 (,0.001) 0.701 (,0.001) 0.704 (,0.001)

Sub-delta power 20.514 (,0.001) 20.667 (,0.001) 20.411 (0.013)

Delta power 20.565 (,0.001) 20.644 (,0.001) 20.510 (0.001)

Theta power 20.618 (,0.001) 20.584 (,0.001) 20.647 (,0.001)

Alpha power 20.729 (,0.001) 20.665 (,0.001) 20.801 (,0.001)

Beta1 power n.s. n.s. n.s.

Beta2 power n.s. n.s. n.s.

Gamma power n.s. n.s. n.s.

r-values (p-values) corresponding to the Pearson’s correlation between Fractal Dimension and Spectral Characteristics. Only significant results are displayed.
n.s. = not significant.
doi:10.1371/journal.pone.0100199.t002
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more severe clinical status, is coherent with the idea of a reduced

repertoire of functional abilities in patients.

In our patient cohort the unbalance between the complexity of

the two hemisphere is related to a worse clinical recovery at six

months. The concept of the functional interhemispheric balance in

preserving neurological function after acquired brain lesion is

supported by results of several studies [64–66]. Indeed, a

functional inter-hemispheric uncoupling can lead to adverse

prognostic consequences [43,67]. In animal models, a parallel

trend between interhemispheric connectivity and neurological

severity improvement from acute to chronic stages of cerebral

ischemia was recently demonstrated [69] and the prolonged

inhibition of contralesional hemisphere within hours following a

cortical lesion improves recovery [70].

Ad hoc studies on fractal dimension at the level of cerebral

source space are needed to accurately define the spatial specificity

of the reduction of the fractal dimension in stroke. Due to the low

number of patients, the validity of the clinical value of fractal

dimension in stroke is behind the scope of this work, and ad hoc

studies are needed to definitely address this point.

In our data, a relationship was also found between fractal

dimension and spectral characteristics. Higher spectral entropy

values are related to higher fractal dimension values. This suggests

that the dynamic of the signals with a spectral richness not

depleted by the lesion also shows high levels of complexity in time.

This relationship is due to the ability of fractal dimension to

capture EEG variation over time at multiple frequencies. To come

to the point, the evaluation of the fractal dimension of EEG signals

allows to provide a quantitative marker between two extreme

conditions: the power of the signal is concentrated in a few

frequencies of high amplitude (peaked power spectrum, i.e. low

spectral entropy) and the variability of the signal is low (low fractal

dimension); the signal power spreads across multiple frequencies

(more flat power spectrum, i.e. high spectral entropy), the time

course of the signal appears more sharp, and a high fractal

dimension is found. The question arises as to whether fractal

dimension provides additional information to spectral indexes,

particularly in patients where changes in spectral characteristics

have been fully described with respect to a healthy sample, and

related to clinical status and recovery. Indeed, a mono-lateral

ischemic attack induces in its acute phase an asymmetric

enlargement in the ipsi-lesional hemisphere of the power

oscillation in slow frequency bands (delta and theta [35,53–60]).

Increased slow-frequency power within the contra-lesional hemi-

sphere has been also observed in acute phase [38–40,43]. While

the slow activity in ipsi-lesional hemisphere is characteristic of

perilesional areas and is correlated with a worse clinical status

[35], the contra-lesional slow activity in acute phase of stroke is a

sign of worse clinical recovery [38,39,43]. Although the origin of

slow frequency activity in stroke is still debated, evidence supports

the hypothesis of a structural and/or functional disconnection at

the basis of an enlargement of delta activity both in the peri-

lesional areas [71] and in the contra-lesional unaffected hemi-

sphere [43,72]. On the basis of our result, we could speculate that

the alterations in spectral characteristics and in fractal dimension

values we found in patients with respect to healthy controls are

signs of different kinds of the system dysfunction following the

lesion. While slow frequency increase could be a sign of structural

and/or functional disconnection, thus responsible for a dysfunc-

tion at the system level and for a decreased functional connectivity,

the fractal dimension, bound to alpha decrease and beta increase,

is a sign of a damage of the regional neural processing at multiscale

level.

In our data the high correlation found between lower frequency

(delta, theta) and fractal dimension could suggest a direct link

between the low frequency increase and the decrease of the fractal

dimension. In our opinion, this relationship is only indirect and is

mediated by the power-law exponent. In fact, a lower power-law

exponent denotes a higher slope of the log-power vs log-frequency

plot, i.e. a larger amount of lower frequencies (delta, theta) with

respect to the higher (beta and gamma). However, the regression

analysis with fractal dimension values as dependent variable and

all band powers as independent variables showed that the most of

fractal dimension variance (86%) was explained by alpha power

increase (53%, negative relationship) and by beta power decrease

(33%, positive relationship). These relationships are suggestive of

the ability of fractal dimension to summarize the alterations of the

neuronal activity in the functional frequency range, in addition to

the alteration typical of the disconnection secondary to the brain

lesion. The relevance for alpha and beta activities of the fractal

dimension is reflected in the topographical distribution of FD

values, being lower for parieto-occipital regions, where alpha

frequency is most represented, with respect to frontal regions,

where beta activity is higher. This topographical distribution has

been already described in other EEG studies [51,73,74]. In fact,

the complexity of the recorded electric signals might be a global

marker of the degree of a synergic activity of cortical assemblies of

neurons, reflecting in a diffuse synchronization or desynchroniza-

tion [75].

The fractal dimension reduction was found to be bound to

alpha power increase and beta power decrease. Indeed, results of

EEG/MEG studies correlated increment of alpha power to

inhibition of cortical processing, and inhibition of alpha power

to enhanced information processing [76–79]. Signs of dysfunc-

tional local hyper-synchronization of neural activity [34,80,81]

and of a slowing of alpha frequency and enlargement of alpha

activity [35,82–85] have been described in stroke patients at the

acute phase. On the other hand, in healthy subjects beta power

modulation has been observed in sensori-motor processes [86,87],

as well as beta synchronization has been found in several cognitive

tasks [88].

Even though the present experiment in its form has not the

ambition to provide a new diagnostic tool for clinical stroke

diagnostic, our data speak in favor of the use of fractal dimension

in clinical practice. Indeed, the application of fractal geometry to

neuroimaging allowed to obtain information on scale free

properties and modularity, which improve our understanding on

brain mechanisms at the systems levels and the dysfunction in

neurological diseases [12,25]. In this light, fractal dimension seems

to potentially be a sensitive instrumental marker of stroke disease

and recovery capability, and promising to be clinically validated

via replication in more numerous and independent patient

cohorts.

In conclusion, our small-scale ‘‘proof of principle’’ study

documents that the fractal dimension is a good indicator of the

complexity of EEG signals, sensitive to clinical impairment in

acute phase of the stroke and providing recovery prognosis via its

inter-hemispheric asymmetry.
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