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Abstract: Expression of TRAIL (tumor necrosis factor–related apoptosis–inducing ligand) by immune
cells can lead to the induction of apoptosis in tumor cells. However, it becomes increasingly clear
that the interaction of TRAIL and its death receptors (DRs) can also directly impact immune cells
and influence immune responses. Here, we review what is known about the role of TRAIL/DRs in
immune cells and immune responses in general and in the tumor microenvironment in particular.
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1. Introduction

The ‘Tumor Necrosis Factor-Related Apoptosis Inducing Ligand’ (TRAIL, CD253, TNFSF10) is a
member of the ‘Tumor Necrosis Factor Superfamily’ (TNFSF), along with other closely related ligands,
like TNF and CD178 (FasL, CD95L) [1–4]. Although, TRAIL is a type II transmembrane protein,
protease cleavage at the membrane can generate a soluble version. In humans, five receptors for TRAIL
are known. DR4 (CD261, TRAIL-R1, TNFRSF10A) and DR5 (CD262, TRAIL-R2, TNFRSF10B) contain
a functional intracellular death domain (DD) required for signaling. Depending on the particular
signaling pathway utilized, these signals can lead to three different outcomes [1,2,4]. On the one hand,
cell death can be induced either via caspase 8- and caspase 3- dependent apoptosis or by necroptosis
in a caspase-independent manner. On the other hand, DR4/DR5 signals can support survival,
cell migration, and proliferation. Details on the respective signaling pathways have been reviewed
previously [2,5–7]. The other three receptors described in humans lack a functional death domain
and are, therefore, considered decoy receptors. These include the membrane-bound DcR1 (CD263,
TRAIL-R3, TNFRSF10C) and DcR2 (CD264, TRAIL-R4, TNFRSF10D), and the soluble osteoprotegerin
(OPG, TRAIL-R5, TNFRSF11B), which also can bind RANKL (TNFSF11) [8]. In contrast to humans,
mice only express three receptors, DR5, DcR1 (Tnfrsf23), and DcR2 (Tnfrsf22) [1,4].

Early work indicated that particular tumor cells are highly susceptible towards TRAIL-induced
apoptosis, with little harm to healthy cells [1–4]. Due to its great potential as anti-tumor drug,
much work on TRAIL and its receptors has been and still is devoted on its development for anti-tumor
therapy [1,4,9,10]. In addition to the cancer cells and their surrounding stroma, the tumor
microenvironment contains innate and adaptive immune cells that can recognize and destroy tumors.
TRAIL expression by immune cells is one major mean by which immune cells can induce apoptosis
of tumor cells. However, it becomes increasingly clear that TRAIL/DRs interaction can also directly

Cancers 2019, 11, 1469; doi:10.3390/cancers11101469 www.mdpi.com/journal/cancers

http://www.mdpi.com/journal/cancers
http://www.mdpi.com
https://orcid.org/0000-0002-7115-298X
http://www.mdpi.com/2072-6694/11/10/1469?type=check_update&version=1
http://dx.doi.org/10.3390/cancers11101469
http://www.mdpi.com/journal/cancers


Cancers 2019, 11, 1469 2 of 34

impact the function of immune cells in many ways. In this review, we will first outline what role
TRAIL and its receptors can play in immune cells in general (Section 2) and will discuss some open
questions (Section 3). Then, we will outline how these and other findings are relevant for the anti-tumor
responses (Section 4).

2. Expression and Function of TRAIL/DRs in Immune Cells

2.1. Myeloid Cells

2.1.1. Neutrophils

Human blood-derived neutrophils constitutively express mRNA for TRAIL [11–13]. However,
how much of the TRAIL can be found on the cell surface, if any at all, seems to depend on the
donor [11–13]. It was suggested that TRAIL is rather pre-stored intracellular in granules [14–16] and
that some of this pre-stored TRAIL is in the cleaved soluble form which could facilitate secretion [14,16].
Indeed, upon activation, human neutrophils upregulate TRAIL and secrete functional soluble TRAIL.
This was observed most potently with IFNα and IFNβ [14,15,17,18], but also, to a lesser extent [13],
with IFNγ [11,13,15]. Several other pro-inflammatory stimuli, like fMLP, IL-8, Hsp96 [15]; IL-17 [19];
the CD184-ligand SDF1 [20]; and the TLR2-ligand Pam3C [14]; were shown to boost the TRAIL-release
by human neutrophils. In contrast, no impact on the TRAIL expression of human neutrophils was
reported for IL-1, G-CSF, GM-CSF, TGFβ, and the TLR3-ligand Poly I:C [11,13,14,17]. Conflicting
data were reported for TNF and the TLR4-ligand LPS, with some reports finding either a boost of
TRAIL on neutrophils [14,15,18], no effect [13,17], or even a down-regulation of TRAIL [11]. In mice,
TRAIL is not expressed by neutrophils [21,22], but can be upregulated following IFNβ stimulation [23].
Interestingly, stimulation of mouse neutrophils with IL-6 and G-CSF induced a tumor-promoting N2
phenotype, characterized by TRAIL down-regulation [24,25], but TRAIL expression could be rescued
by IFNγ or TNF [26].

Most studies reported expression of DR5 [11,12,17,20] and DcR1 [11,12,20,27–29] on human
neutrophils, and only two reports show DR4 and DcR2 expression [20,29]. Importantly, the expression
of DR4/DR5 on neutrophils tended to be lower than the expression of the decoy receptors
DcR1/DcR2 [11,12,17,28,29]. Activation of human neutrophils with TNF or SDF1 [11,20] or of mouse
neutrophils with IFNβ [23] increased the expression of DR4/DR5. In contrast, TNF stimulation [11] or
ER stress [30] down-regulated DcR1/DcR2 on human neutrophils. In mice, the expression of DR5 was
observed on neutrophils [28,31–33], but DcR1 and DcR2 were not detected in the one study that tested
their expression [34].

In line with the expression of death receptors, most [20,23,28,29] but not all [17] studies indicated
that freshly isolated neutrophils are not sensitive towards TRAIL-induced apoptosis. However,
the neutrophils became sensitive following activation [11,20,23,29] or after aging [12,20]. Interestingly,
upon such aging, senescent neutrophils upregulated CD184/CXCR4 [35] and became receptive to SDF1,
which increased TRAIL-sensitivity, via upregulation of DR4 and DR5 [20]. This aided the migration of
the senescent neutrophils to the bone marrow for apoptotic removal in the mouse model [20].

Functionally, most reports are in line with the interpretation that TRAIL/DR-activity is involved
in the apoptotic removal of activated, stressed, or aged neutrophils in vivo. As neutrophils are major
drivers of inflammation [36–38], their elimination usually limits the inflammation and the resulting
tissue damage and promotes the resolution of the inflammation. Therefore, TRAIL-deficient mice
displayed reduced neutrophil apoptosis, leading to increased neutrophil numbers and inflammation.
This was noted during TLR-ligands induced sepsis [39], in the bleomycin model of lung fibrosis [21],
and following Streptococcus pneumoniae infection of the CNS [31]. Consequently, the administration of
soluble TRAIL or agonistic αDR5-antibodies increased neutrophil apoptosis, leading to ameliorated
inflammation following Streptococcus pneumoniae infection [31] and during sepsis induced by
bacteria [32,34] or TLR-ligands [39]. It was also observed in other systems that blocking of neutrophil
apoptosis augments inflammation and tissue damage [40]. However, the TRAIL-sensitivity of activated
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neutrophils was not seen in all models, as, for examples, following S. pneumoniae infection of the lung
neutrophil-apoptosis was unaffected by the absence of TRAIL [41].

Additionally, the TRAIL produced by activated human neutrophils themselves could mediate
cytotoxicity of TRAIL-sensitive tumors [13,14,17,42,43]. However, blood-derived human neutrophils of
some tumor patients (squamous cell carcinoma [44]; B cell chronic lymphocytic leukemia [45]) expressed
less TRAIL than healthy donors and IFNα-therapy in vivo enhanced TRAIL expression on neutrophils
of chronic myeloid leukemia (CML) patients [18]. Besides tumor cytotoxicity, neutrophil-derived
TRAIL was also shown to be involved in the resolution of inflammations by targeting macrophages.
Neutrophil-derived TRAIL could induce apoptosis of alveolar and lung macrophages in S. pneumoniae
infected mice [41]. This apoptosis of S. pneumoniae-infected macrophages supported the bacterial
clearance in the airways and limited the inflammation and the ensuing tissue damage [41].

2.1.2. Monocytes and Macrophages

Freshly purified human blood monocytes have a basal level of intracellular TRAIL
expression [11,46]. Conflicting data were reported for the surface expression of TRAIL on human
blood monocytes; with two studies reporting no TRAIL-expression [46,47] and two studies showing
expression [11,48]. In vitro generated human monocyte-derived macrophages express high levels of
TRAIL intracellularly, but low levels on the surface [48]. TRAIL expression can be rapidly induced
in human monocytes via IFNα [47,49–52] and IFNβ [53]. Furthermore, secretion of soluble TRAIL
after IFNα stimulation has been reported for human monocytes [17]. In addition, installation of the
IFNα-inducer BCG into the bladder of bladder cancer patients led to an increase in TRAIL expression
on tumor macrophages [54]. For the treatment of human blood monocytes with LPS, increased TRAIL
surface expression was detected after 24 h incubation [48], but not after 12 h [47]. Apart from that, PEDF,
an anti-angiogenic and anti-inflammatory agent widely used in clinical trials for cancer treatment [55],
induces TRAIL production by human monocyte-derived macrophages [56]. In contrast, exposure of
human CD14+ monocytes to C-reactive protein (CRP) led to a down-regulation of TRAIL [57]. In mice,
approx. 25% of peritoneal macrophages express TRAIL [58]. TLR2 (lipoteichoic acid), TLR3 (poly
I:C) and TLR4 (LPS) ligands, but not a TLR9 ligand (CpG), induced TRAIL expression in murine
macrophages [59]. Moreover, murine bone-marrow derived macrophages (BMDMs) treated with PEDF
in vitro or tumor infiltrating macrophages from PEDF-treated mice upregulated TRAIL expression [56].
Chemically induced ER stress also led to upregulation of soluble TRAIL in a murine monocytic cell
line and in primary mouse peritoneal macrophages [60].

Human peripheral monocytes and monocyte-derived macrophages express functional DR4
and DR5, with DR5 being expressed usually higher than DR4 [28,47]. In contrast, tissue resident
macrophages have very low DR5 expression [28]. Although one study demonstrated surface
expression of DcR1 in human peripheral monocytes [47], other studies reported that decoy receptors
are barely expressed by monocytes [28,52]. Macrophages tend to express higher level of DcR1
compared to monocytes [28]. However, macrophages are heterogeneous with several subpopulations
displaying different functional activities. Macrophages can differentiate into two main types in the
presence of certain polarization factors when recruited into peripheral tissues [61]. Pro-inflammatory
signals, like LPS and IFNγ treatment, polarize macrophages towards M1 or classically activated
macrophages, that are cytotoxic, pro-inflammatory, and are potent in fighting tumors and pathogens.
In contrast, anti-inflammatory cytokines, like IL-4, IL-10, and IL-13, induce M2 or alternatively activated
macrophage, that play a role in immune suppression, tumor promotion, angiogenesis, and tissue
remodeling [61]. Death receptors are differentially expressed on M1 and M2 type macrophages. M2-like
tumor associated macrophages (TAMs) and M2 polarized THP-1 macrophages express more DR5 than
M1 macrophages [28,62,63]. Consistently, agents that support M2 polarization enhance DR4 and DR5
expression on human monocytes and monocyte-derived macrophages [28]. Furthermore, inflammatory
mediators such as IFNγ [47] and IFNα [52] can downregulate surface expression of DR5 on human
blood monocytes. In contrast, one study reported that LPS augments DR4 expression on human
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monocytes [64]. Furthermore, M1 macrophages in the synovium of rheumatoid arthritis patients
expressed higher levels of DR5 than M2 macrophages [65]. In mice, monocytes and macrophages
express DR5 constitutively [28,62,65–68] and its expression can be augmented by the DNA-binder
trabectedin [62].

Peripheral human monocytes are sensitive to TRAIL-induced apoptosis with 50% reduction
in their survival 72 h after TRAIL treatment in vitro [28]. Furthermore, pre-treatment with the
anti-inflammatory cytokines IL-4 or IL-10 seemed to sensitize monocytes towards TRAIL-mediated cell
death [28,69]. TRAIL also induced apoptosis in the human macrophage cell line U937 [70] and in murine
peritoneal macrophages [71]. M2 macrophages are more sensitive to TRAIL-induced apoptosis than M1
macrophages due to their higher DR5 surface expression [28] and due to the increased O-glycosylation
of DR5, which augments receptor oligomerization [63]. Sensitivity of monocytes and macrophages to
TRAIL-mediated apoptosis was also reported in disease models. In a mouse tumor model, TRAIL
treatment in vivo was shown to suppress tumor growth by the elimination of monocytes and M2-like
TAMs in the tumor [28,62]. In the atherosclerosis ApoE−/− mouse model, TRAIL treatment in vivo
selectively induced apoptosis in vascular infiltrating inflammatory macrophages [66,67]. This may
be due to the upregulation of DR5 on vascular macrophages by ER stress in advanced stages of
atherogenesis [72]. In general, activated macrophages are sensitive to TRAIL-induced apoptosis and
this is crucial for the regulation of homeostasis [58,71]. Besides inducing apoptosis, TRAIL-mediated
signals can make monocytes and macrophages also anti-tumorigenic [17,47,50,52,53,73].

Apart from apoptotic effects, TRAIL/DR interaction can also impact monocytes and macrophages
in other ways. For instance, TRAIL-treatment can enhance monocytic maturation of primary human
CD34+ hematopoietic stem cells without inducing any cytotoxicity [74]. Furthermore, TRAIL-mediated
DR4-triggering could induce migration of THP-1 monocytes and of LPS-activated primary human
monocytes [64]. Moreover, treatment with soluble TRAIL induced the expression of pro-inflammatory
cytokines in human monocyte-derived macrophages and in mouse peritoneal macrophages [75].
Similarly, in tumor-challenged nude mice injected with soluble TRAIL, TAMs were reported to exhibit
increased expression of pro-inflammatory cytokines [75]. In contrast to these pro-inflammatory effects
of TRAIL, one study reported an anti-inflammatory role. In a mice model of colitis-associated colorectal
cancer (CAC), early treatment of TRAIL in vivo protected the mice by reducing the inflammation,
probably by decreasing the levels of infiltrating macrophages and pro-inflammatory cytokines and
increasing the percentage of M2 macrophages [76]. Additionally, after stimulation with LPS and TRAIL
in vitro, the murine RAW264.7 macrophage cell line displayed a reduction in iNOS, IL-6, and TNF
expression compared to LPS alone [76].

2.1.3. Dendritic Cells

Human dendritic cells (DCs), either isolated from blood or monocyte-derived, expressed no
surface TRAIL in most [47,49,77–80] but not all [46,81] studies. However, TRAIL could be detected
intracellular [46,77–80] and in the culture supernatant [79]. Similar to neutrophils, the activation of
DCs by IFNα [49,77,82–88] or IFNβ [77,81,85] increases the levels of membrane-bound and soluble
TRAIL. Known inducers of IFNα/IFNβ, like TLR-ligands [77,84,88–90] and virus particles [85,88,91–93],
also induce TRAIL expression/secretion by human DCs. Conflicting results obtained with LPS could
be due to the timing, as TRAIL induction was not observed after 12 h [49,81] but after 1-2 days [82,90]
of incubation. Disagreement also exists about the impact of IFNγ on the TRAIL expression on human
DCs [49,85]. Interestingly, it was suggested that CD40-ligation [77] or the action of regulatory T cells
(Tregs) [94] could inhibit the upregulation of TRAIL on stimulated human DCs. Similar to humans,
in mice, TRAIL was found to be upregulated on mouse DCs by IFNα and IFNβ directly [86] or
indirectly [94–96]. Furthermore, IL-15 was suggested to be an inducer of TRAIL expression on mouse
DCs [97,98].

With the exception of one report showing a weak staining for surface DR5 [90], most studies
did not detect surface expression of DR4/DR5 [46,90,99,100] or DcR1/DcR2 [90,100] on human DCs.
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However, DR4 and DR5 could be detected by mRNA [82,99] and intracellular staining [46]. The surface
expression of DR4 and DR5 was upregulated after 2 days of stimulation with LPS in vitro [82]. However,
in another study the incubation with LPS for 20 h resulted in a different outcome, with DR4 being
unchanged and DR5 being down-regulated [90]. In the mouse system, DR5 surface expression was
reported for bone-marrow derived DCs [101].

Surprisingly, little is known about the sensitivity of DCs towards TRAIL-induced apoptosis.
Two studies, one on human monocyte-derived DCs [90] and one on mouse bone-marrow derived
DCs [101], suggest that stimulated DCs are less sensitive towards TRAIL-induced apoptosis than
immature DCs.

In contrast, many studies demonstrated that human DCs can exert TRAIL-dependent cytotoxic
activity against various tumors cells. This was reported for unstimulated DCs [46,102], for IFNα/β

stimulated monocyte-derived DCs [49,77,81–83,87,92,103,104], for pDCs [78,79], and for DCs stimulated
with TLR-ligands [77,84,88] or virus particles [85,88,91,93,105]. Similar observations were made in the
mouse system [86,95,96,98]. Interestingly, two studies suggest that TRAIL/DR interaction can also
have a direct impact on the TRAIL+ DCs in an apoptosis-independent manner, although, they conflict
in their implication. For human monocyte-derived DCs stimulated with LPS, TRAIL acted like a
co-stimulatory molecule, as blocking TRAIL reduced the upregulation of activation markers and the
production of cytokines by the DCs [90]. In contrast, in a mouse study, the engagement of DR5 on
mouse DCs impaired the antigen-presenting functions of the DCs, leading to reduced priming of CD4+

and CD8+ T cells [106].

2.1.4. Other Myeloid Cells

Basophils and Mast Cells

Primary human blood-derived basophils expressed DR4 and DR5 in most but not all
donors [107,108] and were resistant towards TRAIL-induced apoptosis [107]. In contrast, neoplastic
basophils from chronic myeloid leukemia (CML) patients were TRAIL sensitive, despite lower
expression of DR5 [107]. Human cord blood-derived mast cells (CBMCs) were reported to express
only DR5 on the cell surface, although mRNA for DR4, DcR1, and DcR2 was detected in most of
the donors [109]. These CBMCs were also sensitive towards TRAIL-induced apoptosis [109,110].
In contrast, primary human lung mast cells were reported to be negative for surface DR4 or DR5
expression [108].

Eosinophils

Human blood-derived eosinophils did not express surface TRAIL [111], but eosinophils
upregulated TRAIL during inflammatory responses [111–113]. Eosinophils can express all four death
receptors (DR4, DR5, DcR1, and DcR2), although the expression levels reported varied [29,113,114].
Interestingly, during inflammation, human eosinophils down-regulated the expression of the
pro-apoptotic receptors (DR4, DR5) and up-regulated the expression of the decoy receptors (DcR1, DcR2).
This was observed in asthmatic patients [113,114] and in patients with parasitic infections [114] or with
Churg-Strauss syndrome, a disease characterized by eosinophilia [115]. Importantly, treatment with
soluble TRAIL did not induce apoptosis in human eosinophils, but rather increased cell survival [29,113],
although variability between donors was noted [29]. TRAIL was also shown to promote lung
eosinophilia in an indirect fashion. Human and mouse bronchial epithelial cells incubated with soluble
TRAIL produced CCL20 [116,117]. CCL20 caused the influx of IL-5-producing CD4+ T cells into the
lung in mice [116] and IL-5 is an essential chemoattractant for eosinophils [118,119]. In line with
the role of TRAIL in promoting eosinophilia and acute inflammation are animal studies on allergic
asthma [116], rhinoviral infection [120], and eosinophilic esophagitis (EoE) [121]. However, one study
probing the role of TRAIL late during the allergic asthma inflammation, suggested a protective
role for TRAIL [122]. Furthermore, data on mouse models of chronic airway inflammation yielded
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conflicting results [123,124]. These findings could suggest that the sensitivity of eosinophils towards
TRAIL-induced apoptosis might differ during early and late stages of the inflammation.

Myeloid Derived Suppressor Cells

Inhibitory myeloid derived suppressor cells (MDSCs), either derived from monocytes or
granulocytes, are prevalent in the tumor microenvironment [125]. Their recruitment/induction
can be promoted in mice by chemokines that tumor cells produce following treatment with soluble
TRAIL [126]. Human and mouse MDSCs express DR5 [127] and, curiously, the tumor environment
could cause an upregulation of DR5 on mouse MDSCs in vivo [127]. It was suggested that the increase
of DR5 on MDSCs is a consequence of ER stress [62,127], which also led to a down-regulation of DcR1
and DcR2 on human MDSCs [127]. Consequently, human and mouse MDSCs are sensitive towards
TRAIL-induced apoptosis [127], which was utilized already therapeutically to remove MDSCs in vivo
in preclinical [62,127] and clinical settings [30]. However, another study found little DR5 expression
on tumor-associated mouse MDSCs [28], suggesting that the TRAIL-sensitivity of MDSCs could vary
depending on the tumor studied.

2.2. Lymphoid Cells

2.2.1. Conventional Natural Killer Cells and Innate Lymphoid Cells 1

Freshly purified Natural Killer (NK) cells (CD3neg CD56+) from human blood, either peripheral
blood or umbilical cord blood, did in most reports not express membrane TRAIL [128–130]. Although
one study suggested that TRAIL could be detected by intracellular staining [130], another one could
not even detect expression of TRAIL mRNA in blood-derived NK cells [131], possibly reflecting donor
differences. In those reports were a subset of blood-derived NK cells stained for surface TRAIL, it was
found exclusively on the CD56bright population [128,132] and large inter-individual variability was
noted [132]. In contrast to the blood, most [128,133,134] but not all [135] studies demonstrated surface
TRAIL expression on human liver CD56bright NK cells. A similar expression profile was seen in mice,
where only a subset of NK cells in the liver, but not in blood, spleen, or lung, constitutively expressed
TRAIL [136–138]. In recent years it became clear, however, that these TRAIL+ CD56bright cells are
most likely not conventional NK (cNK) cells, but rather ILC1s, a related subset of innate lymphoid
cells (ILCs) [139–141]. Indeed, TRAIL expression by ILC1s but not resting cNK cells seems to be a
generic feature of these cells in humans [133] and in mice [142–150]. Interestingly, the expression
of surface TRAIL on mouse cNK/ILC1s, but not on other cells, was dependent on CD335 (NKp46,
Ncr1) [151–155] as in cells lacking CD335, TRAIL remained intracellular [151,153]. The distinction
between cNK cells (CD11b+ CD49a− CD49b+ CD186− Eomes− TRAIL−) and ILC1s (CD11b− CD49a+

CD49b− CD186+ Eomes− TRAIL+) is further complicated by the recent finding that mouse cNK cells
can, under the influence of TGFβ, convert into ILC1-like cells (CD49a+ CD49b+ TRAIL+) [147,156,157].
This is, therefore, another example of the plasticity of innate lymphoid cells [141,158].

Nonetheless, both cNK cells and ILC1s can upregulate the expression of TRAIL following
stimulation. This was seen with IL-2 [128,129,135,146,151,159–161], IL-15 [151,159–162],
IFNα/β [50,51,131,163–166], and IFNγ [136,137,167–170]. Upregulation of TRAIL on cNK/ILC1 was
also seen in patients treated with IFNα in vivo within 4–6 h [131,164,165,171–173], which negatively
correlated with viral titers [131,172]. Given the prominent role of IFNs in anti-viral immune responses,
it is not surprising that TRAIL upregulation was also seen following viral infections or stimulation
with purified TLR3 or TLR9 ligands [51,148,166–169,174–177].

Little information is available on the expression of DRs on cNK/ILC1s. Whereas, resting human
blood-derived NK cells were reported to express low levels of surface DcR2 [27], after in vitro activation
only expression of DR5 and DcR2 was seen [160]. However, in vitro stimulated human NK cells were
not sensitive towards TRAIL-induced apoptosis [160].
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NK cells are prototypic cytotoxic cells, utilizing either soluble factors, like TNF, or granzymes
and perforin stored in cytotoxic granules, or the death receptors CD178 (FasL, CD95L) and TRAIL
to induce apoptosis in target cells [178,179]. The involvement of TRAIL+ cNK/ILC1s for anti-tumor
response has been reviewed previously [179,180]. Importantly, cNK/ILC1s can also regulate and
limit adaptive immune responses [158,181,182] and TRAIL-mediated cytotoxicity is one of several
mechanisms to achieve this. In particular, activated but not resting T cells upregulate death receptors
(see Section 2.2.2) and become sensitive towards apoptosis induced by TRAIL+ cNK/ILC1s. This was
observed for CD4+ [177,183] and CD8+ [176] T cells and appears particularly important in the case
of chronic virus infections, like MCMV in mice [177] and hepatitits B virus (HBV) [176]. By this
TRAIL/DR-dependent removal of activated, antigen-specific T cells during the chronic MCMV infection,
the cNK/ILC1s were able to restrain the T cell responses in mice and to limit tissue damage and the
risk for autoimmunity [177]. Another TRAIL/DR-dependent means to limit T cell responses by mouse
cNK/ILC1s was the induction of apoptosis in immature but not mature DC in vivo [101]. Interestingly,
engaging DR5 on mouse DCs by TRAIL+ cNK/ILC1s was also reported to impair antigen-presenting
functions of the DCs in an apoptosis-independent manner [106].

2.2.2. Conventional αβ T cells

Resting human and mouse T cells do not express TRAIL, but can upregulate it following
TCR-mediated activation [58,160,184–191], although, in some reports, TCR-stimulation alone was not
sufficient [59,192,193]. In general, this upregulation of TRAIL was stronger on CD4+ T cells than on
CD8+ T cells [50,185–187]. Furthermore, in humans, a high degree of variability of TRAIL-upregulation
on T cells between different donors was observed. In line with this, the degree of TRAIL-upregulation
on mouse T cells was influenced by the genetic background [191]. In most studies, IFNα/IFNβ cytokines
alone, similar to NK cells, could induce TRAIL expression on human T cells [50,51,185–187] and they
could boost TCR-induced TRAIL expression [186,187,192,194].

Expression of all four TRAIL death receptors on naïve human [27,92,183] or mouse [32] T cells
appears absent, with one study reporting DcR2 expression on human blood-derived CD8+ T cells but
not CD4+ T cells [27]. Where changes following TCR-triggering were reported, the reports suggest an
upregulation of all death receptors, however, at varying degrees [92,160,183,184,190,195]. Interestingly,
TCR-mediated stimulation of human T cell lines led to a down-regulation of DR4 and DR5, without
changes in DcR1 or DcR2 [184], suggesting that the regulation of the death receptors might differ
between primary and secondary responses.

In line with the expression of death receptors, naïve or freshly stimulated human T cells were not
sensitive towards TRAIL-induced apoptosis [160,184,196,197]. However, following repeated or chronic
stimulation, T cells can become sensitive towards TRAIL-induced apoptosis. One important example
for this is the elimination of antigen-specific T cells during viral infections by TRAIL+ cNK/ILC1s,
as outlined above (see Section 2.2.1), and by TRAIL+ pDCs [92]. In a similar fashion, mouse Tregs
upregulated membrane-bound TRAIL after TCR-mediated stimulation and induced apoptosis in effector
T cells in vitro and in vivo [190]. Another example is the TRAIL-sensitivity of CD8+ T cells that have
been primed without CD4+ T cell help [198,199], mediated by CD27/CD70 interaction [200], although,
common γ-chain cytokines, like IL-2, IL-7, or IL-15, could substitute for CD4+ T cell help [199,201–203].
‘Helpless’ CD8+ T cells expand normally during the primary response, but upon secondary stimulation
undergo TRAIL-mediated ‘activation-induced cell death’ (AICD) [198,204]. Such ‘helpless’ CD8+ T
cells could also release soluble TRAIL and induce fratricide [198] and their TRAIL-expression was
implicated in their capability to transfer tolerance (infectious tolerance) [205,206]. Such ‘helpless’ CD8+

T cells were also detected in HIV patients with low peripheral CD4+ T cell numbers [207]. Interestingly,
TRAIL-induced apoptosis also influenced, at least in mice, the balance of Th1- versus Th2-T cells.
After TCR-driven in vitro stimulation, mouse Th2 cells expressed TRAIL, but were resistant towards
TRAIL-driven apoptosis [191]. In contrast, Th1 cells did not express TRAIL, but were sensitive towards
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TRAIL-induced apoptosis [191]. Due to this differential sensitivity, TRAIL/DR-engagement could
impair Th1 and favor Th2 responses in vitro [191] and in vivo [59,195,208].

Importantly, TRAIL/DR expression on T cells serves also several non-apoptotic functions.
The proliferation of human [196,197,209,210] and mouse [195,209,211–215] conventional, naïve T
cells following TCR-mediated stimulation was impaired by concomitant TRAIL/DR-engagement.
This inhibition was particularly strong with suboptimal TCR-stimulation [197,209] and both DR4 and
DR5 were implicated [196,197,211,212]. Such DR-triggered signaling impaired proximal TCR-signals,
Ca2+ influx, cell cycle progression, and subsequent cytokine production [196,197,209,212,213].
In contrast to naïve T cells, the proliferation of activated mouse CD4+ CD25+ Tregs was enhanced by
TRAIL/DR-engagement in vitro and in vivo [195,216,217].

2.2.3. Innate-like T cells

Invariant Natural Killer T cells

Expression of functional TRAIL on human [218] and mouse [137,219,220] invariant Natural Killer T
(iNKT) cells could be induced by antigenic stimulation, although IFNγ was suggested to be involved as
well [137]. iNKT cells were discovered and studied extensively due to their anti-tumor activity [221,222].
Besides granzyme/perforin- [223,224] and CD178- [225,226] mediated cytotoxicity, TRAIL-dependent
anti-tumor responses have been described for human [218,225,227] and mouse [219,228,229] iNKT cells.

γδ T cells

Expression of membrane bound and soluble TRAIL by human γδ T cells could be induced
by TCR-triggering together with IL-2 [230–234] and/or by NKG2D-engagement [235,236]. TRAIL
expression on blood-derived IL-17-producing Vγ9Vδ2 T cells was also noted during bacterial
meningitis [237]. Furthermore, γδ T cell-agonists could augment serum levels of soluble TRAIL
in vivo and this correlated positively with the clinical response in prostate cancer [230] but not in
breast cancer [234] patients. Interestingly, the role of TRAIL in the cytotoxicity of the γδ T cells appears
to be influenced by the mean by which the target cell is recognized. When the target cells were
recognized via NKG2D-engagement, then the cytotoxicity of the γδ T cells was largely dependent on
TRAIL [232,235,236]. In contrast, when the target recognition was TCR-driven, then TRAIL played a
minor role and the cytotoxicity was largely dependent on perforin [231,233].

2.2.4. B cells

TRAIL expression on resting B cells was not observed in humans [53,238] but in mice on
about 1/5th of splenic B cells [189]. Upregulation of TRAIL on human B cells was seen with IFNα

and IFNα-inducers, like TLR9 ligands [51], but not following stimulation via the BCR, PHA/IL-2,
or IFNβ [51,53]. Furthermore, naïve B cells expressed DR4 [27,239,240] and DR5 [32,239–241] and their
expression levels increased upon stimulation [239,240,242]. Consequently, germinal center (GC) or
memory B cells expressed higher levels of DR4 and DR5 than naïve cells [239,240]. However, conflicting
data were reported for the expression of DcR1 and DcR2 on B cells [27,239,240].

Whereas naïve B cells are insensitive towards TRAIL-induced apoptosis, they develop sensitivity
following activation [239,243]. In line with this, human CD5+ B cells [240] and human or mouse
plasma cells [243] were reported to be particular sensitive towards TRAIL-induced apoptosis. The lack
of protective CD40 ligation on plasma cells was suggested to be the reason for this sensitivity [243].
However, the impact of CD40 appears also dependent on the stage of B cell development or the type of
stimulation. On the one hand, CD40 ligation concomitant to IFNα-mediated stimulation could boost
TRAIL upregulation on naïve human B cells [51]. On the other hand, it was suggested that CD40 ligation
could protect B cells from TRAIL-induced apoptosis early after BCR-mediated activation [240,244] but
not 3–5 days later [239]. The connection between CD40 and TRAIL is complicated by two additional
aspects. First, the hetero-oligomerization of CD40 and DR5 could dampen the activation of primary
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human B cells [242]. Second, CD40-ligation on B cells can induce expression of CD25 (IL-2Rα) [245]
and IL-2 signaling was reported to cause down-regulation of TRAIL on B cells [246].

Importantly, the TRAIL/DR-interaction could influence the isotype of the antibodies produced by
activated B cells. Data from in vivo experiments that either blocked TRAIL/DR-interaction [211,247] or
triggered DRs with soluble TRAIL [247] indicated that TRAIL/DR-interaction impairs the production
of IgG1 and, to a lesser extent, IgG2a antibodies.

3. Common Themes and Open Questions on the Role of TRAIL/DRs in Immune Cells

3.1. Regulation of TRAIL-Sensitivity

The sensitivity of immune cells towards TRAIL-induced apoptosis is regulated on several levels.

3.1.1. TRAIL Expression

As outlined above, the expression levels of TRAIL on immune cells can be influenced by intrinsic
signals, like ER stress or senescence, as well as many extrinsic signals, like cytokines.

3.1.2. Membrane-Bound vs. Soluble TRAIL

Functional TRAIL can either be membrane-bound or soluble, after cleavage from the surface [1,5].
However, the bioactivity of membrane-bound and soluble TRAIL differs significantly. First, the cytotoxic
potential of soluble TRAIL was suggested to be 100–1000-fold lower than that of membrane-bound
TRAIL [248]. Second, soluble TRAIL, in contrast to the membrane-bound version, was not able
to impair the activation of conventional T cells [197] or to promote the proliferation of Tregs [195].
Mechanistically, it was reported that soluble TRAIL could trigger only DR4, whereas membrane-bound
TRAIL could trigger both DR4 and DR5 [249]. Given these distinctions, it is particular important to
keep in mind that not all of the TRAIL-bioactivity found in cell culture supernatants or in body fluids
stems solely from soluble TRAIL (see Section 3.2).

3.1.3. Expression Levels of the Death Receptors

Similar to TRAIL and as outlined in detail above, the expression levels of the death receptors on
immune cells can be influenced by many intrinsic and extrinsic signals. The relative expression of these
death receptors is relevant for two reasons. First, it was suggested that the affinity of DR4/DR5 towards
TRAIL is higher than that of DcR1/DcR2 [250,251]. Second, it appears that the ratio of functional
(DR4, DR5) vs. decoy receptors (DcR1, DcR2) can dictate the sensitivity towards TRAIL. Immune
cells could become TRAIL-sensitive by upregulation of DR4/DR5 and/or by the down-regulation of
DcR1/DcR2 [11,28,30]. In contrast, an inverse ratio predicts TRAIL-resistance [28,47,90,127]. Although,
DR4 and DR5 appear on a first glance redundant, slight functional differences likely allow to fine-tune
the response towards TRAIL. Such differences include, for example, the higher affinity of DR5 than
DR4 for TRAIL [250,251], the inability of DR5 to bind soluble TRAIL [249], and the ability of DR5 to
form hetero-oligomers [242,250]. However, other differences likely remain to be discovered.

3.1.4. Receptor Interactions

Besides the absolute expression levels of death receptors, their activity could also be influenced
by the formation of hetero-oligomers. This has been suggested for DR5 and CD40, which reduced
CD40-signaling [242], and for DR5 and DcR2, which reduced DR5-signaling [250].

3.1.5. Signaling Pathways

Finally, the outcome of DR-triggering is regulated on the level of the intracellular signaling
pathways, which can lead to apoptosis, necroptosis, or increased survival and proliferation.
The regulation of these pro- and anti-apoptotic signaling pathways are still poorly understood
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and are discussed in detail elsewhere [2,5–7]. However, it is likely that these pathways contain several
potential new drug targets to regulate the resolution phase of immune responses.

3.2. TRAIL on Exosomes

Most studies that investigated the TRAIL-activity in cell culture supernatants assumed that the
activity is due to soluble TRAIL released from the cells in the culture. However, functional TRAIL
could also be detected in exosomes released from various cells, including human T cells [252–254],
human neutrophils [16], human placental explants [255], mouse bone-marrow-derived DC [256],
and from various tumors [257–260]. Furthermore, TRAIL+ exosomes have been detected in sera of
tumor patients [257] and in the synovial fluid of arthritis patients [261]. The TRAIL in these exosomes
was the full-length, membrane-bound version and not the shorter version of soluble TRAIL [253,257].
Given that the bioactivity of soluble and membrane bound TRAIL are very different (see Section 3.1), it is
important to know if the TRAIL-activity in the culture supernatant is due to soluble or exosome-bound
TRAIL. However, few studies measured the molecular weight of the TRAIL recovered from the cell
culture supernatants. Even transwell-studies could be misleading, as exosomes seem to move freely
across pore sizes of 1 µm and can transmit 15–33% of the biological activity across 0.4 µm pores [262,263].
As most cells release exosome [264,265], a reasonable working hypothesis appears to be that all TRAIL+

immune cells are able to release TRAIL+ exosomes. How this, compared to soluble TRAIL, influences
immune responses needs to be addressed in future studies.

3.3. TRAIL’s Role in the Resolution of Immune Responses

Looking at the findings outlined so far in a broad sense, it appears that one of the main roles of
TRAIL/DRs in the immune system is during the resolution phase of immune responses. By removing
senescent, chronically activated, or stressed immune cells at sites of inflammation, TRAIL/DRs regulate
innate and adaptive immune responses by terminating the response and by limiting thereby tissue
damage and the risk of autoimmunity.

3.3.1. Removing Effector Cells

Activated or senescent neutrophils become sensitive towards TRAIL-induced
apoptosis [11,12,20,23,29]. As neutrophils are major drivers of inflammation [36–38],
their TRAIL-dependent removal supported the resolution of the inflammation [21,23,31,32,34,39,41].
Furthermore, activated T cells are sensitive towards TRAIL-induced apoptosis [176,177,183,190].
Other immune effector cells known to be sensitive towards TRAIL-induced apoptosis are sub-optimal
activated, ‘helpless’ CD8+ T cells upon secondary stimulation [198,204,207]; terminally differentiated
cells, like T cell blasts [210,266]; plasma cells [243]; MDSCs [30,62,127]; and hematopoietic cancers
(e.g., [100,188,238]). Activated immune cells greatly increase the synthesis of proteins, which can stress
the endoplasmic reticulum (ER), leading to an ‘unfolded protein response’ (UPR) [267–269]. Similar,
pathogens and chronic cell activation can cause ER stress [267,269,270]. Indeed, it was shown that
ER stress increases the TRAIL-sensitivity of macrophages [271] and MDSCs [30,127]. Furthermore,
Streptococcus pneumoniae infected alveolar macrophages were susceptible towards TRAIL-induced
apoptosis [41]. However, beyond these two examples, the link between ER stress and TRAIL-sensitivity
is not yet established. The two exceptions in the pattern of TRAIL-induced removal of effector
cells, seem to be immature DCs and eosinophils. First, mouse cNK/ILC1s could induce apoptosis in
immature but not mature DC in vivo in a TRAIL/DR-dependent manner [101]. Second, the survival
and functions of eosinophils were reported to be augmented by TRAIL/DRs [116,120,121]. However,
two studies that investigate the role of TRAIL either late during an allergic asthma inflammation [122]
or during a chronic airway inflammation [123], suggested that TRAIL now induces apoptosis of
eosinophils. These reports might indicate that the impact of TRAIL on eosinophil differs during early
and late stages of the inflammation.
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3.3.2. Impairing Effector Cells

Besides their direct apoptotic removal of effector cells, TRAIL/DR-activity can also impair the
expansion/function of effector cells. Either directly, by impairing the activation and proliferation of
pathogenic T cells, or indirectly, by augmenting the proliferation of inhibitory Tregs (see Section 2.2.2).

3.3.3. Limiting Tissue Damage

In line with the idea that the activity of TRAIL/DRs limits ongoing immune response and supports
the transition into the resolution phase, is the fact that TRAIL-deficiency or TRAIL/DR-blockage
exacerbates, whereas the injection of functional TRAIL ameliorates pathogen burden. This has been
noted for Streptococcus pneumoniae infection of the CNS [31] or the lung [41], for systemic Listeria
monocytogenes [33] or MCMV [177] infection, and for influenza vaccination [272] or infection [273].
At first, it might appear counterintuitive to curtail anti-pathogenic immune responses. However,
this inhibition is likely aimed at limiting tissue damage. Without an efficient resolution in the absence
of TRAIL/DRs, immune responses continue and could become damaging to the host tissue, which
eventually could lead to autoimmunity. Indeed, augmented tissue damage and signs of autoimmunity
in the absence of TRAIL were observed, for example, following influenza [22], MCMV [177],
rhinovirus [120], Listeria monocytogenes [33], and Streptococcus pneumoniae [31] infections and during
sepsis induced by bacteria [32,34] or TLR-ligands [39]. This probably also contributes to the increased
susceptibility of TRAIL-deficient mice towards experimental autoimmune diseases, as reported
for collagen-induced arthritis (CIA) [274], diabetes [67,274,275], and experimental autoimmune
encephalomyelitis (EAE) [195,215].

3.3.4. Avoiding Autoimmunity

The idea that TRAIL/DR-activity limits tissue damage induced by unrestrained immune
responses is also supported by the observation that TRAIL/DR-blockage exacerbates, whereas the
injection of biologically active TRAIL ameliorates autoimmune diseases. This has been observed
for colitis [214], collagen-induced arthritis (CIA) [211,276,277], diabetes [275,278], experimental
autoimmune encephalomyelitis (EAE) [215,217,279–281], experimental autoimmune thyroiditis
(EAT) [208,216], and systemic lupus erythematosus (SLE) [247].

4. TRAIL/DRs in the Tumor Microenvironment

4.1. Anti-Tumor Cytotoxicity of TRAIL+ Immune Cells

Many immune cells express TRAIL constitutively or following activation and thereby can
be cytotoxic to TRAIL-sensitive tumor cells in vitro and in vivo. This has been reported for
neutrophils [13,14,17,42,43], monocytes/macrophages [17,47,52,73], DCs [46,49,77–79,81–83,86,87,91,98,
102–104], pDCs [84,85,88,91,93,95,96,105], cNK/ILC1s [134,136,137,163,228,282], iNKT cells [218,219,
225,227,229], γδ T cells [231,235], and conventional T cells [186,194,283–286].

4.2. TRAIL Susceptibility of Tumors and Immune-Surveillance

Malignant transformation of cells often leads to sensitivity towards TRAIL-induced apoptosis in
a cell-autonomous manner [1,2]. As many activated immune cells express TRAIL, the selective
pressure of the anti-tumor immune response forces the evolution of the tumor. This is best
illustrated by TRAIL-deficient mice, which are more susceptible towards endogenous tumors
developing either spontaneously [287] or induced by the chemical carcinogen methylcholanthrene
(MCA) [228]. Furthermore, tumors in TRAIL−/− mice developed metastases more frequently [137,288].
Interestingly, this TRAIL-dependence of metastases was more prominent for some organs, like liver,
than others, like lung [137,288], indicating organ differences of immune-surveillance mechanisms.
The greater sensitivity towards MCA-induced tumors could also be mimicked by repeated injection
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of a blocking anti-TRAIL-antibody [289]. Additionally, tumors developing in TRAIL−/− mice
retained TRAIL-sensitivity, whereas tumors developing in TRAIL-proficient animals acquired
TRAIL-resistance [289]. These reports demonstrate that TRAIL is an important mechanism, besides
CD178 (FasL, CD95L) and perforin, in the tumor immune-surveillance. cNK/ILC1s [136,137,228,282,289]
and iNKT cells [290–292] have been suggested to be major players in this tumor immune-surveillance.
The presence of TRAIL+ ILC1s in the liver [139–141] might also explain some of the organ specificity of
TRAIL-mediated immune-surveillance [137,288].

4.3. Tumor Mechanisms to Evade TRAIL-Mediated Cytotoxicity

The observation that tumors developing in TRAIL−/− but not in wild-type mice retained
TRAIL-sensitivity [289] indicates that tumor cells can develop mechanisms to avoid TRAIL-mediated
killing [1,2]. The tumor can achieve this by means that are not unique to TRAIL/DRs,
like the upregulation of anti-apoptotic molecules [293] or an interference with general aspects
of the death-receptor signaling, e.g., by mutating the death domain (DD) [294], by inactivating
caspase-8 [295,296], or by overexpressing c-FLIP [297,298]. Several other tumor cell-intrinsic strategies
were reported that limit the apoptotic-signals induced by DR4 or DR5 themselves. First, changes
in glycosylation can alter the sensitivity of DR4/DR5 [299–302]. Second, the surface expression of
DR4/DR5 can be reduced either by epigenetic changes in the respective genes [303,304], by autophagic
removal [305], or by relocation to the nucleus [306]. Third, the tumor can upregulate the decoy
receptor DcR1 and DcR2 [1,2,62], which reduces the TRAIL-binding to DR4 and DR5. Consequently,
expression of DcR1/DcR2 correlated with poor prognosis for patients with breast cancer [307], prostate
carcinoma [308], or acute myeloid leukemia (AML) [309,310]. In contrast, conflicting data have
been reported for the correlation between DR4/DR5 expression and patient survival for renal cell
carcinoma [311] and hepatocellular carcinoma (HCC) [304]. Furthermore, some single-nucleotide
polymorphisms (SNPs) in TRAIL of HCC patients are correlated with overall patient survival [312].
In summary, these reports indicate that TRAIL/DRs are an important player in the anti-tumor response.

4.4. TRAIL/DR-Related Immune-Tumor Cross-Talk in the Tumor Microenvironment

The TRAIL-DR interaction does not only impact the tumor directly, but can also be utilized by
the tumor to shape the tumor microenvironment. Treatment of TRAIL-resistant tumor cells with
soluble TRAIL or agonistic αDR5-antibodies could promote tumor survival/proliferation [306,313],
invasion and metastases [314–317], and cytokine production [126,316,318–321]. Such cytokines could
induce chemotaxis and recruitment of various myeloid cells [126,318–320]. Many mechanisms have
been described inside the tumor microenvironment that benefit the tumor [2,322–324]. In regard
to TRAIL/DRs, several points can be mentioned. It was noted that neutrophils [18,44,45] and
DCs [98,102] from the tumor itself or from blood of tumor patients express less TRAIL than cells
from control tissue/donors. This reduction might be due to the proteolytic cleavage of TRAIL
from the surface, as it was shown for CD178 [325–327]. Or the reduction could be a consequence
of stimulation, as it was reported, for example, that mouse neutrophils stimulated with IL-6 and
G-CSF loose TRAIL expression and their anti-tumor properties [24,25]. Furthermore, DR5-triggering
of mouse DCs by TRAIL+ cNK/ILC1s reduced their cross-presentation and -priming capacity for
tumor-antigens, leading to reduced anti-tumor T cell responses [106]. Finally, expression of DcR1/DcR2
by human stromal cells in the tumor microenvironment could reduce the ligation of DR4/DR5 on
tumor cells [328]. All of these mechanisms would reduce the anti-tumor activity of the immune system
directly, benefiting the tumor. Moreover, some other TRAIL/DR-dependent mechanisms promote
tumor growth indirectly. TRAIL promoted the recruitment and polarization of immune-suppressive
M2-like cells [126] and the proliferation of Tregs [190,195,216,217]. Furthermore, it is known that
the tumor microenvironment triggers persistent ER stress in infiltrating immune cells and promotes
immunosuppressive responses [329]. In regard to TRAIL/DRs, ER stress of myeloid cells has been linked
to pro-inflammatory [271] but also anti-tumorigenic activities [30,127]. This latter point illustrates that
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not all impacts of TRAIL/DRs would benefit TRAIL-resistant tumors. In line with the role of TRAIL/DRs
in the elimination of stressed or senescent immune cells, some TRAIL/DR-actions could also suppress
tumor growth. For example, the tumor environment induced upregulation of DR5 on mouse MDSCs
in vivo for some [127] but not all [28] tumors. Furthermore, mouse and human MDSCs [127] and
mouse TAMs [28,63] were shown to be sensitive to TRAIL-induced apoptosis. Consequently, treatment
of head and neck cancer patients with agonistic αDR5-antibodies [30] or of tumor-bearing mice with
soluble TRAIL [28,62] was able to limit tumor growth to some extent. Additionally, the endothelial
cells of tumor-associated blood vessels of some [330] but not all [28] tumor-bearing mice upregulated
DR5 and were TRAIL-sensitive, which led to blood vessels collapse and inhibited tumor growth [330].
An overview of the anti- and pro-tumorigenic activities of TRAIL/DRs in the tumor microenvironment
is given in Figure 1.Cancers 2019, 11, x 13 of 33 
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Figure 1. Anti- and pro-tumorigenic activities of TRAIL/DRs in the tumor micro-environment:
(A) Anti-tumorigenic activities: (1) Several immune cells have been reported to be cytotoxic against
tumor cells in an at least partially TRAIL-dependent manner. (2) Besides TRAIL killing the tumor
directly, TRAIL-induced cytokines, like TNF, can be cytotoxic for the tumor as well. (3) Endothelial
cells (ECs) in the tumor can become TRAIL-sensitive, potentially leading to blood vessels collapse,
causing a disruption of the blood supply for the tumor. Similar, pro-tumorigenic M2 macrophages and
MDSCs are known to be sensitive towards TRAIL-induced apoptosis. (4) Although, ER stress inside of
the tumor is usually associated with pro-tumorigenic effects [329] it can also have an anti-tumorigenic
impact. This is mainly due to the increased TRAIL-sensitivity of anti-inflammatory M2 macrophages
and MDSCs. (B) Pro-tumorigenic activities: (5) TRAIL/DR-induced cytokines produced by the tumor
can promote the recruitment and polarization of M2 macrophages and MDSCs, and can promote the
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recruitment of Tregs. (6) For Tregs it was shown that TRAIL-induced triggering of DR4/DR5 on
Tregs can promote their proliferation. (7) TRAIL-induced cytokines, either produced by the tumor or
immune cells, can promote tumor survival and proliferation directly or indirectly, e.g., by supporting
neo-vascularization. (8) Triggering of DR4/DR5 on DCs by TRAIL+ cNK/ILC1s could suppress the
cross-priming of tumor-specific T cells by the DCs. (9) Expression of DcR1 and DcR2 on tumor
stroma cells can act as sink for TRAIL, reducing its availability to induce tumor cytotoxicity. (10–12)
For several other mechanisms, an impact of TRAIL/DRs has not been demonstrated for the tumor
microenvironment yet, but their role could be hypothesized based on published data in other contexts.
(10) The tumor might promote the proteolytic cleavage of membrane TRAIL from immune cells.
(11) TRAIL, either derived from immune cells or from the tumor itself, might promote cytotoxicity
of TRAIL-sensitive immune effector cells. (12) TRAIL-mediated triggering of DR4/DR5 on recently
activated T cells might inhibit their proliferation. (C) To support survival, the tumor can evolve several
cell-intrinsic mechanisms to reduce its sensitivity towards TRAIL-induced cytotoxicity. These include
the upregulation of anti-apoptotic molecules, the inactivation of signaling molecules, the upregulation
of DcR1/DcR2, and changes in DR4/DR5 localization and glycosylation. Alternatively, the tumor can
re-purpose the DR4/DR5-signals, for example, to support tumor survival and proliferation, to induce
cytokine production by the tumor, and to promote tumor invasion and metastases.

5. Conclusions

The original observation that TRAIL preferentially induces apoptosis in tumor cells, while
sparing healthy cells, initiated intense research on the development of TRAIL/DR-based anti-cancer
therapies. Besides the tumor, innate and adaptive immune cells are a major constituent of the tumor
microenvironment, where they can use TRAIL to fight the tumor by inducing apoptosis of tumor
cells. However, it becomes increasingly clear that TRAIL/DRs interaction can also directly impact the
function of immune cells in many ways. As outlined in this review, many relevant aspects are yet
unclear. Therefore, a better understanding of how TRAIL/DRs influence both tumor and immune cells
and their interaction within the tumor microenvironment will be essential for the development of
successful TRAIL/DR-based anti-cancer therapies.
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Abbreviations

APC antigen presenting cell
AICD activation-induced cell death
AML acute myeloid leukemia
BCR B cell receptor
BM-DCs bone marrow-derived dendritic cells
BMDMs bone-marrow derived macrophages
CAC colitis-associated colorectal cancer
CBMCs cord blood-derived mast cells
CCL C-C motif chemokine ligand
CD cluster of differentiation
CIA collagen-induced arthritis
CML chronic myeloid leukemia
cNK conventional NK
CNS central nervous system
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CRP C-reactive protein
CXCR C-X-C chemokine receptor
DC dendritic cell
DcR decoy receptor
DD death domain
DR death receptor
DTx diphtheria toxin
EAE experimental autoimmune encephalomyelitis
EAT experimental autoimmune thyroiditis
EoE eosinophilic esophagitis
Eomes eomesodermin
ER endoplasmic reticulum
fMLP N-Formylmethionyl-leucyl-phenylalanine
GC germinal center
G-CSF granulocyte-colony stimulating factor
GM-CSF granulocyte-macrophage colony-stimulating factor
HBV hepatitis B virus
HCC hepatocellular carcinoma
Hsp heat shock protein
IFN interferon
Ig immunoglobulin
IL interleukin
ILC innate lymphoid cell
LPS lipopolysaccharide
MCA methylcholanthrene
MCMV murine cytomegalovirus
MDSCs myeloid derived suppressor cells
mRNA messenger RNA
MSC mesenchymal stem cell
iNKT invariant Natural Killer T
NK Natural Killer
OPG osteoprotegerin
Pam3C tri-palmitoyl-S-glyceryl cysteine
pDC plasmacytoid dendritic cell
PEDF pigment epithelium derived factor
PHA phytohemagglutinin
Poly I:C polyinosinic:polycytidylic acid
RANKL Receptor activator of nuclear factor kappa-B ligand
RNA ribonucleic acid
SDF1 stromal cell-derived factor 1
SLE systemic lupus erythematosus
TAMs tumor associated macrophages
TCR T cell receptor
TGF transforming growth factor
Th T helper type
TLR toll like receptor
TNF tumor necrosis factor
TNFRSF TNF receptor superfamily
TRAIL tumor necrosis factor–related apoptosis–inducing ligand
Treg regulatory T cell
UPR unfolded protein response.
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