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G R A P H I C A L A B S T R A C T

A B S T R A C T

Zebrafish is a powerful animal model used to study vertebrate embryogenesis, organ development and diseases
(Gut et al., 2017) [1]. The usefulness of the model was established as a result of various large forward genetic
screens identifying mutants in almost every organ or cell type (Driever et al., 1996; Haffter et al., 1996) [2,3]. More
recently, the advent of genome editing methodologies, including TALENs (Sander et al., 2011) [4] and the CRISPR/
Cas9 technology (Hwang et al., 2013) [5], led to an increase in the production of zebrafish mutants. A number of
these mutations are homozygous lethal at the embryonic or larval stages preventing the generation of
homozygous mutant zebrafish lines. Here, we present a method allowing both genotyping and phenotype
analyses of mutant zebrafish larvae from heterozygous zebrafish incrosses. The procedure is based on the
genotyping of the larval tail after transection, whereas phenotypic studies are performed on the anterior part of
the zebrafish larvae.
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� The method includes (i) a protocol for genotyping, (ii) protocols for paraffin embedding and histological
analyses, (iii) protocols for protein and histone extraction and characterization by Western blot, (iv) protocols
for RNA extraction and characterization by RT-PCR, and (v) protocols to study caudal spinal cord regeneration.

� The technique is optimized in order to be applied on single zebrafish embryos and larvae.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
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Specifications Table
Subject area � Biochemistry, Genetics and Molecular Biology

More specific subject area Zebrafish developmental biology
Method name Single zebrafish larvae characterization
Name and reference of original method
Resource availability

Method details

Forwardand reverse genetics in zebrafish has established a huge variety of mutants [1–5]. Since
numerous mutations are homozygous lethal at early developmental stages, methods allowing both
genotyping and phenotype analyses of mutant zebrafish embryos and larvae are required.The method
is designed to investigate the phenotype of sibling zebrafish larvae from heterozygous zebrafish
incrosses. As so, single zebrafish larvae must be genotyped in order to eventually establish a correlation
between different phenotypes and distinct genotypes. After transection, the larval tail is used for
genotyping, whereas phenotypic studies are performed on the anterior part of the zebrafish larvae.

Larval tail transection

Equipment

� Sterile disposable scalpels (Paramount, # PDSS11)
� Stereomicroscope Leica M125 or equivalent
� Generic laboratory equipment

Materials

� Living zebrafish embryos or larvae at the desired stage [between 5 and 12 days post-fertilization
(dpf)]

Reagents

� MS-222 (Sigma, # A5040)
� Trizma base (Sigma, # T1503)
� MS-222 stock solution: A 0.4% stock solution is prepared by dissolving 400 mg MS-222 in 97.9 mL
H2O. The pH of the stock solution is adjusted to pH7–7.5 by adding 2.1 mL of Tris pH9, prepared by
dissolving 260 mg Trizma Base into 2.1 mL H2O. This stock solution is stored at �20 �C.
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� MS-222 anesthetic solution: 4.2 mL MS-222 stock solution are added to 100 mL tank water (final
MS-222 concentration is about 0.016%).

� MS-222 overdose solution for euthanasia: 7.5 mL MS-222 stock solution are added to 92.5 mL tank
water (final solution is about 300 mg/L)

Procedure

1. Anesthetize zebrafish embryos or larvae with the MS-222 anesthetic solution in 6-well plates.
2. Sedated embryos or larvae are transferred using a P20 micropipettor equipped with a cut-off tip

into a 10-cm Petri dish containing MS-222 anesthetic solution
3. Under a stereomicroscope, cut the tail with a sterile scalpel distal to the end of the intestine in order

to preserve most of the embryo for phenotypic analyses and to recover a tail biopsy allowing easy
handling and efficient DNA extraction (Fig. 1A).

4. Transfer the tail biopsy into a 0.2 mL sterile tube for DNA extraction whereas the anterior part of the
larvae is transferred into a 24-well dish containing the MS-222 overdose solution for euthanasia
and placed on ice

Note

After 5–10 min in a MS-222 anesthetic solution bath, zebrafish embryos and larvae are fully
sedated. Embryos and larvae may be kept in the anesthetic solution up to 2 h without effect on
viability.

DNA extraction from tail biopsies and genotyping

DNA extraction from zebrafish embryonic and larval tails is achieved using a protocol based on
the use of sodium hydroxide and Tris, modified from Meeker et al. [6]. This method allows fast
genomic DNA extraction used for genotyping by RFLP assay (Restriction Fragment Length
Polymorphism; [7]). The method detects a mutation that either creates or abolishes a site
recognized by a specific restriction enzyme. In the RFLP assay, a sequence of interest is first PCR-
amplified and the PCR product is subjected to restriction enzyme digestion to identify whether the
amplified alleles are wild-type or mutant.

Equipment

� Thermocycler MJ Research PTC-200 or equivalent
� DNA electrophoresis tank and Power supply
� UV table equipped with a digital camera
� Generic laboratory equipment

Reagents

� 50 mM NaOH
� 1 mM Tris-HCl, pH7.4
� Taq Polymerase (5U/mL), 10� Polymerase Buffer, 25 mM MgCl2 (Euromedex, # 01-01-02000)
� 10 mM dNTP Mix (Promega, # U1515)
� Forward and Reverse primers (10 mM), Eurogentec
� 10� Restriction Buffer
� Restriction Enzyme
� 50� TAE (Euromedex, # ET330)
� DNA loading buffer (New England Biolabs, # B70245)
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� Agarose (Euromedex, # LE-8200-B)
� Ethidium bromide (Euromedex, # EU0071-A)

DNA extraction procedure

1 Add 10 mL 50 mM NaOH to the tail biopsy
2 Heat the sample at 95 �C for 20 min before cooling it down at 4 �C for at least 15 min
3 Neutralize the solution by adding 1 mL 1 M Tris-HCl, pH7.4 (1/10 vol), vortex and centrifuge briefly.

Genotyping

1 Transfer 2.5 mL of the lysate into a 0.2 mL PCR tube
2 Add 2 mL of 10� Polymerase buffer, 2 mL 25 mM MgCl2, 0.4 mL of 10 mM dNTPs,1 mL of each forward
and reverse primers (10 mM), 0.2 mL of Taq DNA polymerase (5 U/mL) and complete to 20 mL final
volume with H2O.

3 Run the PCR as follows, 94 �C 2 min, [94 �C 20 s, 65 �C 45 s, 72 �C 30 s] 35 cycles, 72 �C 5 min
4 Digest 4 mL of the PCR product with 4 U of restriction enzyme and 1.5 mL 10� Restriction buffer in
15 mL final volume.

5 Incubate 3 h to overnight at the desired temperature.
6 Add 2 mL of DNA loading buffer to 15 mL digested sample and analyze on a 2% agarose
electrophoresis gel in TAE.

Fig. 1B exemplifies the genotyping of the progeny of an ezh2ul2 [8] heterozygous incross using
this protocol. The ezh2ul2 mutation removes a DdeI restriction site allowing genotyping by RFLP.
PCR amplification of the ezh2 wild-type gene using forward (50-GGTATGGTTGTTGCAGTTCACAGAC-30)
and reverse (50-AACACCAAACTCTACACAAGCAGCA-30) primers generates a 466 bp DNA molecule which
is cleaved by DdeI into 2 DNA fragments of approximately 356 bp and 110 bp. In contrast, PCR
amplification and DdeI digestion of the ezh2ul2 gene gives a 466 bp fragment resistant to DdeI cleavage.
Under these conditions, it is possible to distinguish wild-type and ezh2ul2 alleles by RFLP [8].

Notes

� This procedure may also be used on paraformaldehyde-fixed samples to genotype entire embryos
and larvae in 20 mL 50 mM NaOH after in situ hybridization, Alcian blue–Alizarin red staining or Oil
red-O staining [8,9].

� The setting of the PCR conditions may be modified according to the annealing temperature of the
Forward and Reverse primers.

� In step 5, a master mix (N + 1) of all reagents could be made and 17.5 mL of the mix subsequently
added to the DNA.

� In step 7, a master mix (N + 1) containing all restriction reagents may be used to ensure that all
samples are equally proceeded.

� Since the identification of mutant alleles relies on the absence of a restriction site, including a wild-
type control in the genotyping analysis may be a useful positive control.

� The protocol details a genotyping strategy based on RFLP, but alternate methods such as derived
Cleaved Amplification Polymorphic Sequence (dCAPS; [10]) or High Resolution Melting Analysis
(HRMA; [11]) genotyping assays could be used after the DNA extraction procedure.
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Histological analysis

For histological studies, sections of the anterior part of zebrafish embryos or larvae are performed
after paraffin embedding.

Equipment

� Glass pillboxes (Dutscher, # 211672)
� Hybridization oven
� Heating plate
� Stainless steel molds (Dutscher, # 040731)
� Paraffin fountain (Leica, # 1120)
� Microtome (Leica, # RM2245, or equivalent)
� Cover slips (WWR, # 631–1575)
� Glass slides, SuperFrost plus (Thermo, # 4951 PLUS4)

Fig. 1. Schematic representation of the strategy for the genotypic and phenotypic analysis on single zebrafish larvae. (A)
Larval tail transection. (B) DNA is extracted from the tail biopsies and genotyping is performed by RFLP assay. (C) Histological
study of the anterior part of the zebrafish larvae after paraffin embedding. The red asterisk shows the zebrafish larvae in the
paraffin block. (D) Protein analysis by Western blot after total protein or histone extractions from the anterior part of a single
zebrafish larvae. (E) Transcript analysis by RT-PCR after RNA extraction from the anterior part of a single zebrafish larvae.
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� Razor blades
� Generic laboratory equipment

Reagents

� 4% paraformaldehyde (PFA) in Phosphate Buffer Saline (PBS) (wt/vol)
� Ethanol
� Claral (CML, RAL Diagnostic, # 320640-5000)
� Paraffin Paraplast Plus (Leica, # 39602004)
� Phosphate Buffer Saline (PBS)

Procedure

1. Transfer the anterior part of the larvae into a 24-well dish after transection followed death in the
MS-222 overdose solution (300 mg/L)

2. Remove as much as possible of the MS-222 solution and fix the samples by adding 1.5 mL 4% PFA.
Embryos and larvae are fixed overnight at 4 �C

3. Wash the embryos or larvae once with PBS for 5 min
4. Transfer the embryos and larvae into glass pillboxes
5. Dehydrate the embryos and larvae with successive dilutions of ethanol in water: 10 min in 1.5 mL

30% (vol/vol) ethanol, 10 min in 1.5 mL 50% (vol/vol) ethanol, 10 min in 1.5 mL 70% (vol/vol)
ethanol, 15 min in 1.5 mL 100% ethanol

6. Put the embryos and larvae for 10 min in 1.5 mL 50% ethanol – 50% Claral (vol/vol) at room
temperature

7. Incubate embryos and larvae for 15 min in 1.5 mL 100% Claral at room temperature
8. After removal of the Claral, fill the glass pillboxes with pre-warmed paraffin in a paraffin fountain

overnight at 58 �C, and incubate 15 min in an oven at 58 �C
9. Change the paraffin and incubate again for 15 min at 58 �C

10. Put the embryos and larvae in new warm paraffin solution into stainless steel molds and orientate
the samples as required

11. Place the molds on the heating plate at 58 �C for 30 min. Then, on the heating plate at 37 �C for 1 h,
and finally at room temperature for 4 h to overnight

12. Place the molds for at least 4 h at 4 �C before demolding and keep the zebrafish-containing paraffin
blocks at 4 �C

13. Reduce the paraffin around the embryo with a razor blade
14. Stick the zebrafish-containing paraffin block to a bigger one (Fig. 1C) which is placed on the

microtome
15. Perform 5 mm sections with the microtome
16. 16. Deposit the paraffin sections in a water drop onto a glass slide placed on a heating plate at 37 �C

for 5 min and then remove the water
17. Place the glass slide on the heating plate at 37 �C for 30 min to 1 h maximum
18. Store the glass slides for at least 1 night at 37 �C in an incubator

Histological sections could then be analyzed by hematoxylin-eosin staining (Fig. 1C), TUNEL
labeling, in situ hybridization, or in situ immunohistochemistry [8].

Protein analysis by western blot

For protein studies (Fig. 1D), the anterior part of zebrafish embryos or larvae is transferred in a
1.5 mL Eppendorf tube, snap frozen in liquid nitrogen and kept at �80 �C for at least 1 night. Since
epigenetic regulations, including histone modifications, play a crucial role in vertebrate development,
the method describes both total protein and histone extraction procedures.
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Equipment

� Pestles for 1.5 mL tubes (Dutscher, # 045650)
� Cooling centrifuge for Eppendorf tubes (Eppendorf, # 5417R or equivalent)
� iBlot Dry Blotting System (Invitrogen, # IB1001W)
� Power supply
� Orbital shaker
� Hybridization oven
� Generic laboratory equipment

Materials

� NuPAGE, 4–12% Bis-Tris polyacrylamide gel (Invitrogen, # WG1401BOX)
� Nitrocellulose membrane (Invitrogen, # IB3010-01)
� Parafilm M (Dutscher, # 90998)

Reagents

� Triton X-100 (Sigma, # T9284)
� Tween 20 (Sigma, # P5927)
� NP40 (Sigma, # I3021)
� Phenyl-methylsulfonyl fluorid (PMSF) (Sigma, # P7626)
� NaN3 (Sigma, # S2002)
� Glycine (Sigma, # G7126)
� NaCl (Sigma, # S9888)
� 10� Phosphate Buffer Saline (PBS) (Euromedex, # ET330)
� 37% HCl (Sigma, # 320331)
� b-mercaptoethanol (Sigma, # M6250)
� DL-Dithiothreitol (DTT) (Sigma, # 43819)
� 20� MES SDS Running Buffer (Invitrogen, # NP0002)
� Milk powder (Regilait, skimmed milk)
� 2� Laemmli buffer (Sigma, # S3401)
� Triton Extraction Buffer (TEB): 0.5% Triton X-100, 2 mM PMSF, 0.02% NaN3 in PBS
� 4x Loading buffer (Invitrogen, NP0007)
� 1 M Tris-HCl pH6.8 (Genomic Solution, # 80-0161)
� 20� SDS (Biorad, # 161-0418)
� Primary and secondary antibodies
� PBST: 0.1% Tween 20 in PBS
� Blocking Buffer: 5% milk powder (wt/vol) in PBST
� Western Blotting detection System, Super Signal West Femto (Thermo, # 34096)
� 10� Reducing Agent is prepared by adding 1.6 mL b-mercaptoethanol and 3.78 g DTT in 10 mL H2O
final. The solution is stored at �20 �C

� Stripping Buffer for total proteins: Add 4.5 mL 1 M Glycine, 9 mL 5 M NaCl, 450 mL 20% NP40 and
234 mL 37% HCl to 75.816 mL H2O (final volume is 90 mL)

� Stripping Buffer for histone blots: Add 3.125 mL 1 M Tris-HCl pH6.8, 5 mL 20% SDS and 350 mL
b-mercaptoethanol to 41.525 mL H2O (final volume is 50 mL)

Protein extraction procedure

1. Add 7.5 mL of 1� Laemmli buffer to the frozen embryo or larvae
2. Mash the embryo with a pestle in a 1.5 mL Eppendorf tube, at least 20 times
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3. Add 1 vol (7.5 mL) of 1� Leammli buffer and mash the embryo again
4. Put the Eppendorf tube containing the mashed embryo 1 min in boiling water
5. Centrifugate the tube for 10 min at 20,800 g, 4 �C
6. Recover the supernatant and keep it at �80 �C for Western blotting

Note

To study proteins of low abundance, several embryos or larvae from the same genotype could be
pooled after freezing, in the same 1.5 mL Eppendorf tube. In this case, 15 mL of 1� Leammli buffer
should be used for 5–10 embryos.

Histone extraction procedure

1. Add 7.5 mL of Triton Extraction buffer (TEB) to the frozen embryo or larvae
2. Mash the embryo with a pestle in a 1.5 mL Eppendorf tube, at least 20 times
3. Keep on ice for 10 min
4. Centrifugate for 10 min at 20,800 g, 4 �C
5. Discard the supernatant and resuspend the pellet in 7.5 mL TEB with a P20 micropipettor
6. Centrifugate for 10 min at 20,800 g, 4 �C
7. Discard the supernatant and resuspend the pellet in 7.5 mL 0.2 N HCl with a P20 micropipettor
8. Extract the histones overnight at 4 �C on a rocking table
9. Centrifugate for 10 min at 20,800 g, 4 �C

10. Keep the supernatant containing the histone proteins at �20 �C
11. Add 3.75 mL 4� Loading buffer, 1.5 mL 10� Reducing Agent and adjust the volume to 15 mL with

0.2 N HCl

Notes

� All the steps of the histone extraction procedure should be performed at 4 �C and the samples kept
on ice.

� This method allows the recovery of approximately 3 mg histone proteins per 7 dpf embryo.
� If several embryos or larvae from the same genotype are processed together, mash 5–10 embryos in
15 mL TEB, resuspend in 7.5 mL TEB after the first centrifugation (step 5) and extract the histones
with 7.5 mL 0.2 N HCl (step 7).

� Protein concentration is measured using the Bradford reagent (Biorad, # 500 00 06) with 2 mL of
sample.

Western blot procedure

1. Boil the samples 10 min at 95 �C
2. Load the protein samples onto a SDS denaturating gel (NuPAGE, 4–12% Bis-Tris polyacrylamide gel,

Invitrogen) and run for about 90 min at constant 150 V
3. Transfer the proteins to a nitrocellulose membrane by iBlot Gel Transfer Stacks (Invitrogen) at 20 V

for 7 min (preset program P3)
4. Block the membrane by incubation in Blocking Buffer, 1 h on an orbital shaker. Alternatively,

membranes could be blocked overnight at 4 �C
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5. Incubate the membrane with the primary antibody in Blocking Buffer for 1 h at room temperature.
The incubation of the membrane with the antibody is performed by spreading the antibody
solution with a pipette on the membrane, placed onto a Parafilm M flattened on the bench

6. Wash the membrane 3 times 10 min in PBST
7. Incubate the membrane with the secondary antibody in Blocking Buffer for 1 h at room temperature
8. Wash the membrane 3 times 10 min in PBST
9. Visualize the protein using a chemiluminescence substrate (Super Signal West Femto, Thermo) and

a Luminescent Image Analyzer (LAS-4000, Fujifilm).

Note

The Western blot results strongly rely on the quality of the antibodies. The limited number of
zebrafish antibodies available often makes protein-based analyses more difficult.

Fig. 1D shows Western blots revealing the actin protein from total protein extracts and histone
H3 from histone extraction from the anterior part of a single wild-type zebrafish larvae at 9 dpf. The
primary antibodies used were rabbit anti-actin (1:10,000; A2066, Sigma) and rabbit anti-H3 (1:5000;
ab1791, Abcam). The secondary antibody was a peroxidase conjugated donkey anti-rabbit antibody
(1:10,000; 711-035-152, Jackson ImmunoResearch).

Membrane stripping for re-use

1. Incubate the membrane 2 times 10 min at room temperature in freshly prepared Stripping Buffer
for total proteins

2. Wash the membrane twice 5 min in PBST at room temperature
3. Block the membrane 1 h in Blocking Buffer at room temperature, before re-use with a Primary

Antibody

For histone blots the procedure is modified as follow:

1. Incubate the membrane 30 min in an hybridization oven at 50 �C with pre-warmed Stripping Buffer
for histone blots

2. Shake the membrane every 10 min
3. Wash the membrane 10 times 5 min in PBST at room temperature
4. Block the membrane 1 h in Blocking Buffer at room temperature before re-use with a Primary

Antibody

RNA analysis

For RNA studies (Fig. 1E), the anterior part of zebrafish embryos or larvae is transferred in a 1.5 mL
Eppendorf tube, 200 mL Trizol is added before snap freezing in liquid nitrogen and storage at �80 �C
for at least 1 night. The RNAs are extracted based on a modified version of the protocol from de Jong
et al. [12].

Equipment

� Pestles for 1.5 mL tubes (Dutscher, # 045650)
� Cooling centrifuge for Eppendorf tubes (Eppendorf, # 5417R or equivalent)
� Vortex
� Thermocycler MJ Research PTC-200 or equivalent
� DNA electrophoresis tank and Power supply
� UV table with digital camera
� Generic laboratory equipment
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Materials

� RNeasy Mini Kit (Qiagen, # 74104)
� SuperScriptIII Kit (Invitrogen, # 11752-050)

Reagents

� Trizol (Ambion, # 15–596-018)
� Chloroform (Sigma, # 650498)
� Taq Polymerase (5 U/mL), 10� Polymerase Buffer, 25 mM MgCl2 (Euromedex, # 01-01-02000)
� 10 mM dNTP Mix (Promega, # U1515)
� Forward and Reverse primers (10 mM each), Eurogentec
� 100 bp DNA Marker (New England Biolabs, # N3231S)
� 6� Gel Loading Dye Purple (New England Biolabs, # B7024S)
� Agarose (Euromedex, # LE-800-B)
� 50� TAE (Euromedex, # ET330)
� Ethidium bromide (Euromedex, # EU0071-A)

RNA extraction procedure

1. Put the zebrafish and Trizol-containg Eppendorf tubes on ice and mash the frozen samples with a
pestle

2. Rinse the pestle with 100 mL Trizol to recover all material stuck to the pestle
3. Vortex 15 s
4. Keep 5 min at room temperature
5. Centrifugate for 15 s at 20,800 g
6. Add 60 mL chloroform (corresponding to 1/5 Vol. Trizol)
7. Vortex the sample for 15 s and then keep the tube 3 min at room temperature
8. Centrifugate for 20 min at 14,000 rpm (20,817 g), 4 �C
9. Transfer the upper aqueous phase (about 100 mL) in a new Eppendorf tube

10. Purify RNAs according to the RNA cleanup protocol provided in the RNeasy Mini Kit (Quiagen)
following the manufacturer instructions and including the DNase digestion option

11. Recover the RNAs in 14 mL RNase free water

Reverse transcription procedure

1. Transfer 7 mL of RNAs into a 0.2 mL PCR tube
2. Add 10 mL of RT Reaction Mix, 2 mL of RT Enzyme Mix and 1 mL of DEPC-treated water (final volume

is 20 mL)
3. Mix gently and incubate for 10 min at 25 �C
4. Incubate for 30 min at 50 �C
5. Heat inactivate for 5 min at 85 �C and transfer the tube into ice
6. Add 1 mL RNase H
7. Incubate for 20 min at 37 �C
8. Store the cDNA samples at �20 �C
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Note

The Reverse transcription procedure follows the instruction provided with the SuperScriptIII Kit
(Invitrogen).

PCR procedure

1. Transfer 5 mL of cDNAs from the reverse transcription into a 0.2 mL PCR tube
2. Add 2.5 mL of 10� Polymerase Buffer, 0.5 mL 10 mM dNTPs Mix, 2.5 mL 25 mM MgCl2, 0.5 mL of each

forward and reverse primers (10 mM), 0.5 mL Taq DNA Polymerase (5 U/mL) and 13 mL distilled
water (final volume is 25 mL)

3. Run the PCR as follows, 95 �C 4 min, [95 �C 45 s, 55 �C 45 s, 72 �C 1 min] 35 cycles, 72 �C 10 min
4. Add 4 mL of Loading Buffer to the PCR product and analyze on a 1% agarose electrophoresis gel in

TAE

Notes

� The PCR conditions may be modified according to the annealing temperature of the Forward and
Reverse primers.

� In step 2, a master mix (N + 1) of all reagents could be made and 20 mL of the mix subsequently
added to the cDNA samples.

Fig. 1E shows the expression of actin revealed by RT-PCR from RNAs extracted from the anterior
part of a single wild-type zebrafish larvae at 9 dpf. PCR amplification of the actin cDNA was performed
using forward (50-CGTGACATCAAGGAGAAGCT-30) and reverse (50-ATCCACATCTGCTGGAAGGT-30)
generates a 442 bp DNA fragment.

Study of caudal spinal cord regeneration

The ability to regenerate tissues after amputation is part of the phenotypic studies that can be
performed on zebrafish mutants at the larval stage [8].

Equipment

� Sterile disposable scalpels (Paramount, # PDSS11)
� Stereomicroscope Leica M125 or equivalent
� Generic laboratory equipment

Materials

� Living zebrafish embryos at 3 dpf

Reagents

� MS-222 (Sigma, # A5040)
� Trizma base (Sigma, # T1503)
� MS-222 anesthetic solution:).
� 100� Penicillin-Streptomycin (Gibco, # 15140122)
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Procedure

1. Anesthetize zebrafish embryos at 3 dpf in MS-222 anesthetic solution in 6-well plates
2. Transfer the sedated embryos using a P20 micropipettor equipped with a cut-off tip, into a 10-cm

Petri dish containing the MS-222 anesthetic solution
3. Under a stereomicroscope, cut the spinal cord with a sterile scalpel after the blood vessel within the

pigment gap as described by Wilkinson et al. [13] and shown on Fig. 2A.
4. Transfer the tail biopsy for DNA extraction and genotyping as previously described
5. Transfer the embryos in a 24-well plate with tank water containing 1� Penicillin-Streptomycin

(Fig. 2B)

Fig. 2. Study of caudal spinal cord regeneration. (A) Caudal spinal cord transection on zebrafish embryo at 3 dpf. The dotted
line represents the site of transection and the red arrowhead highlights the limit of blood circulation. (B) Picture of the caudal
part of a transected zebrafish embryo at 3 dpf. (C) Embryonic caudal region of transected zebrafish embryos at 5 dpf, 2 days post-
amputation, showing complete (left) or impaired (right) spinal cord regeneration. Red dotted lines indicate the site of
transection. (D) Genotyping performed by RFLP on the caudal part of the embryos after transection at 3 dpf.
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6. Follow spinal cord regeneration 2 days after amputation (Fig. 2C)

Fig. 2D shows the genotyping of the progeny of an ezh2ul2 [8] heterozygous incross using tail biopsy
from 3 dpf embryos generated by this procedure.
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