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Realistic single-cell neuronal dynamics are typically obtained by solving models that

involve solving a set of differential equations similar to the Hodgkin-Huxley (HH) system.

However, realistic simulations of neuronal tissue dynamics—especially at the organ level,

the brain— can become intractable due to an explosion in the number of equations to

be solved simultaneously. Consequently, such efforts of modeling tissue- or organ-level

systems require a lot of computational time and the need for large computational

resources. Here, we propose to utilize a cellular automata (CA) model as an efficient

way of modeling a large number of neurons reducing both the computational time

and memory requirement. First, a first-order approximation of the response function

of each HH neuron is obtained and used as the response-curve automaton rule.

We then considered a system where an external input is in a few cells. We utilize a

Moore neighborhood (both totalistic and outer-totalistic rules) for the CA system used.

The resulting steady-state dynamics of a two-dimensional (2D) neuronal patch of size

1, 024 × 1, 024 cells can be classified into three classes: (1) Class 0–inactive, (2) Class

1–spiking, and (3) Class 2–oscillatory. We also present results for different quasi-3D

configurations starting from the 2D lattice and show that this classification is robust. The

numerical modeling approach can find applications in the analysis of neuronal dynamics

in mesoscopic scales in the brain (patch or regional). The method is applied to compare

the dynamical properties of the young and aged population of neurons. The resulting

dynamics of the aged population shows higher average steady-state activity 〈a(t → ∞)〉

than the younger population. The average steady-state activity 〈a(t → ∞)〉 is significantly

simplified when the aged population is subjected to external input. The result conforms to

the empirical data with aged neurons exhibiting higher firing rates as well as the presence

of firing activity for aged neurons stimulated with lower external current.

Keywords: neuronal dynamics, continuous cellular automata, brain, numerical model, activation function, aged

neurons

1. INTRODUCTION

Since the development of the first neuronal model by Louis Lapicque in 1907, most neuronal
models we have today use a set of ordinary differential equations (ODEs) to model the dynamics
of neurons (Lapicque, 1907; Brunel and Van Rossum, 2007). The Nobel-prize winning Hodgkin-
Huxley (HH) model describes the relationship between the membrane potential of the neuron and
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the flow of ions across the membrane normally via the ion
channels (Hodgkin and Huxley, 1952; Gerstner et al., 2014). The
HHmodel is successfully used to describe the dynamics of a squid
giant axon and even the Purkinje fibers in the heart (Noble, 1962).
Other models such as Dalton and FitzHugh (1960), Nagumo et al.
(1962) and Morris and Lecar (1981) models were improvisations
and simplifications on the HH model. While these models are
good representations of a neuronal response, it is a challenge for
us to construct a simple model useful in describing the behavior
of a large neuronal population. HH neurons can be arbitrarily
interconnected (Pang and Bantang, 2015) but simulations for
large numbers of neurons take long computational run time and
need high computing resources since they require solving many
coupled ODEs and saving numerous system variables.

One study involves cortical simulations of 109 neurons of a
cat using Blue Gene/P supercomputer (Ananthanarayanan et al.,
2009). The simulations were powered by 147, 456 CPUs and 144
TB of main memory (roughly ∼6 × 103 neurons/CPU, ∼144
KB/neuron). In this study, we propose simple cellular automata
models to simulate many interconnected neurons that will help
investigate integrated dynamics of up tomillions (106) of neurons
using lower CPU and GPU requirements. Our simulations
are powered with 1 CPU and 16 GB of memory (RAM)
(roughly ∼106 neuron/CPU, ∼16 KB/neuron). The Blue Brain
project primarily uses the NEURON simulation environment
to accomplish their feat. NEURON mainly solves ODE-based
models with data-driven parameters. However, solving ODEs
differs from the cellular automata (CA)-based models. CA
models can employ a look-up-table-based algorithm that is
usually faster than solving ODEs.

Cellular automaton modeling paradigm was first developed in
the late 1940’s by Stanislaw Ulam and John von Neumann (von
Neumann, 1966). It became popular after it was used to model
Conway’s Game of Life in the 1970’s. A CA system A consists of
the set C of agents or “cells” c (c ∈ C) arranged in a lattice L with
a specified neighborhood set N = Cn+1 where n is the number
of neighbors of any given cell. Certain boundary conditions are
also applied depending on the properties of the physical system
being modeled (Wolfram, 2002; Arciaga et al., 2009). These cells
have assigned state s, typically obtained from a finite state binary
set such S = {0, 1}, being the simplest. The “0” and “1” states
usually represent either “dead” or “alive,” or for our present case
of neuronal dynamics represent “resting” or “spiking” (active),
respectively. Each neighborhood has a unique state s ∈ Sn+1.

The various dynamics of a CA model also emerge from
the rules applied to the lattice. In this work, we investigate
a CA system with a first-order linear approximation to the
HH neuronal response as our rule for each cell. The activation
function is further discussed in section 2.1. We perform different
analyses (spatiotemporal, cobweb, bifurcation) on the CA system
to classify the observed dynamics. This lays the groundwork of
our proposed model that can be extended to future directions.
In section 7, we extended our model into a nonlinear activation
function, which is used to better fit the response of young and
aged neurons of a rhesus monkey (Coskren et al., 2015).

Aged neurons have distinctly less myelin and shorter
axon internodal distance leading to reduced conduction

velocity (Peters, 2007). Dysregulated signaling pathways in
oligodendroglia and the loss of reregenerative capacity of
oligodendrocyte progenitor cells are thought to be the major
cause for myelin loss (Rivera et al., 2021). At the synapse,
dendritic spines where majority of excitatory synaptic processes
occur are smaller and lesser (Pannese, 2011) but are functionally
intact to make synaptic connections. The connections may
be weaker but exhibit lesser capacity for short-term plasticity
(Mostany et al., 2013). Presumably, the shrinkage in the density
of the dendritic spine impacts excitatory synaptic activity
in neuronal circuits and accounts for the cognitive changes
observed in older adults even in the absence of pathology.
However, in the light of reports of increase in action potential
firing rates (excitability) in aged neurons, there is need for
studies to further understand the dynamics of cell-to-cell
communication and open avenues for potential interventions to
mitigate the effects of brain aging. In a study on rhesus monkey
prefrontal cortex (Coskren et al., 2015), it was found that aged
neurons typically have higher action potential (AP) firing rates
compared to younger neurons. The empirical data from the study
is used as an application of our CA model.

2. CONTINUOUS CELLULAR AUTOMATA
MODEL OF A NEURONAL PATCH

As a CA model, neurons are arranged in a two-dimensional
lattice L composed of 1, 024 × 1, 024 cells. This choice of lattice
size is one of the highest possible in a common computing
device (without the need of high-performance computing).
The resulting dynamics does not change with varying lattice
size (Ramos and Bantang, 2018, 2019c). However, the computing
performance is compared in section 9. The state of s each neuron
is represented by a real number a (stands for activity) which
ranges from 0 to 1, thus forming a continuous-state CA. The state
of each neuron is initialized by assigning a random value to the
CA state drawn from a uniform distribution such that ai,j ∈ [0, 1]
for all CA cells in the system (i, j ∈ [1, 1024]).

At each timestep, the average state of the neighborhood of
a given cell is taken as the cell’s input ain or stimulus. The
response of the current cell is obtained from the mapping of
ain into its corresponding output aout or response. A generalized
linear activation or response function is shown in Figure 1. The
various modes of neighborhood and boundary conditions are
discussed in section 2.2 and the activation function is discussed
in section 2.1 below. We found that a value of 100 timesteps
is enough to achieve steady-state for any initial state, and that
randomizing the initial location of active cells does not affect
the dynamical results of our model (Ramos and Bantang, 2018;
Ramos, 2019).

2.1. Activation Function
The activation function used in the CA model is mainly
derived from the response function of the HH model. Many
other neuronal models such as leaky integrate-and-fire (Tal and
Schwartz, 1997; Gerstner et al., 2014) andWilson-Cowan (Wilson
and Cowan, 1972) exhibit a similar trend of neuronal firing
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FIGURE 1 | A simplified neuronal response used for the CA model of neurons. The output aout is related to the probability of the neuron to fire given the input ain. The

plot shows such functions for threshold values a0 = 0.2, a1 = 0.6, a2 = 0.8. The dashed line corresponds to aout = ain useful in the cobweb analysis.

rate with increasing input current. Three main properties of the
activation function can be observed:

1. Two thresholds (a minimum and a maximum) in the input
are present indicating that neurons fire only when stimulated
by an input current between these two thresholds. We,
respectively, assign for these the thresholds a0 and a1, the
minimum and maximum.

2. The firing rate monotonically increases whenever the input
current is between a0 and a1; the firing rate is zero otherwise.

3. A maximum threshold in the output is present limiting the
firing rate values for the entire range of ain. We assign
this as a2.

The thresholds are incorporated into the activation function
and are simplified by taking the first-order approximation as
described in Figure 1. The parameter thresholds are varied from
0 to 1 with a step size of 0.1. The condition a0 = a1 results
in a trivial mapping aout = 0, for all ain-values. The resulting
equation for the neuronal activation function is given by:

aout =











0 ain < a0
a2(ain−a0)
a1−a0

ain ∈ [a0, a1]

0 ain > a1

(1)

We performed an exhaustive search by varying each parameter
in {a0, a1, a2} from 0 to 1 with increments of 0.1 (Ramos and
Bantang, 2018, 2019c). The resulting steady-state dynamics for
all possible combinations of {a0, a1, a2} in this scheme were
classified into one of the types discussed in section 3.

2.2. Neighborhood and Boundary
Conditions
Two often used neighborhood configurations in CA models are
the von Neumann and the Moore neighborhoods (Wolfram,
2002). Figure 2A, on one hand, shows a von Neumann setting.
In this case, the central cell of any 3 × 3 subset of the lattice
is connected to the adjacent cells in the primary directions (4

neighbors: left, right, top, and bottom) with respect to the cell.
Figure 2B, on the other hand, shows a Moore neighborhood
setting. This time, the central cell is connected to the adjacent
cells in the primary and secondary directions (including the
diagonal directions, total of 8 neighbors). Moore neighborhood is
used in the model since a biological neuron is typically connected
to all neighboring cells in the 2D space (Hawick and Scogings,
2011). Two types of Moore neighborhood configurations are
considered: totalistic and outer-totalistic. The only difference
between these configurations is that the outer-totalistic setting
has the central cell of the 3 × 3 subset included in the
neighborhood state (see Figure 2C).

The boundary conditions describe how the cells at the
edge of the lattice behave. Two types of boundary conditions
were considered: toroidal and spherical boundaries. With the
toroidal boundary condition, the cells on the leftmost column
are connected to the rightmost column, and the top row is
connected to the bottom row. This produces a wrap-around
effect on our automaton as shown in Figure 3A. For the
spherical setting (Ramos and Bantang, 2019c), the square lattice
is projected on the surface of a sphere (Mercator projection)
as shown in Figure 3B. Observe that the cells in the top (and
bottom) row are fully connected to each other becoming a pole,
while in the middle rows neighbors wrap around.

2.3. Two-Layered Lattice and the External
Input
To analyze a quasi three-dimensional (3D) neighborhood, we
extended our analysis to a two-layered automaton for both
toroidal and spherical boundary conditions (Ramos and Bantang,
2019a,b). The intra-layer connection has a Moore neighborhood
setting, while the inter-layer connection is a direct overlay
between the layers. The neighborhood conditions for this two-
layer lattice is visualized in Figure 3C. For systems with the
number of layers greater than two, the topmost and bottommost
layer are connected as if the bottommost layer is stacked above
the topmost layer.
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FIGURE 2 | Common neighborhood configurations used in CA theory. The shaded cells show the neighbors of cell X for each type of neighborhood. The von

Neumann neighborhood (A) of cell X consists of the four cells in the primary directions, while Moore (B) extends it to the secondary directions. In an outer-totalistic

setting (C), the cell X itself is included in the neighborhood. In this work, Moore neighborhood is used because a biological neuron is typically connected to all

neighboring cells in the 2D space.

FIGURE 3 | Top row: Boundary conditions used in this study. In a toroidal lattice (A), we wrap-around the top and bottom rows, and the leftmost and rightmost parts

of the grid. For the spherical lattice (B), a Mercator projection was used to draw the lattice on the sphere’s surface. Bottom row: Extended neighborhood and

boundary conditions explored in this work. For the two-layered lattice (C), the intra-layer connection is Moore, but the inter-layer connection is the overlay between

layers. For the analysis of external input (D), a fraction of neurons in the population are set to be always active aext = 1.

A CA system (Ramos and Bantang, 2019a) with a constant
external input ain = aext = 1 injected to one of the neurons cext,
shown in Figure 3D, is also analyzed. In this case, the neuron cext
is always in spiking state since a = 1 at all times.

3. NUMERICAL EXPERIMENTS

We first examined the dynamics of the neuronal CA using
Moore toroidal boundary condition. The average neuronal patch

activity 〈a〉 is obtained for each timestep and plotted as shown
in Figure 4. We observed two types of steady-state dynamics: a
quiescent or zero steady-state; and a spiking or nonzero steady-
state. These steady-state trends are also observed in the HH
model (as well as Morris-Lecar) as Type I and Type II neurons,
respectively (Hodgkin and Huxley, 1952; Morris and Lecar,
1981; Gerstner et al., 2014). The steady-state dynamics is the
same for totalistic and outer-totalistic neighborhoods. Samples
of spatiotemporal activity of the neuronal CA are shown in

Frontiers in Neuroinformatics | www.frontiersin.org 4 January 2022 | Volume 15 | Article 763560

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Ramos et al. Young and Aged Neuronal Tissue Dynamics

FIGURE 4 | (A–D) Representative steady-state dynamics for each neuronal CA class. The steady-state is taken as the average neuronal activity of the patch at that

timestep. The black solid line shows the average neuronal activity using totalistic rules while the red solid line corresponds to the outer-totalistic setting.

Figures 5, 7, respectively for toroidal and spherical shapes. We
observed that a certain subset of the spiking steady-state CA
produced exploding patterns before reaching a randomly spiking
steady-state. For any given parameter set a0, a1, a2, the dynamics
are observed to fall into any one of the following classes.

1. Class 0: Quiescent Steady-State: (a) Fast-decay;
(b) Slow-decay.

2. Class 1: Spiking Steady-State: (a)With random patterns; (b)
With exploding patterns.

The classification above becomes more obvious as we look
at the steady-state trajectory shown in Figure 6. Here, we
plotted the activity at+1 vs. at . With spherical boundary
conditions, this steady-state dynamics remains unchanged (see
Supplementary Figure 1). Hence, the boundary condition in the
systems investigated does not affect neuronal CA classification.
There is a slight variation on the spatiotemporal evolution of the
automaton with the spherical boundary condition as shown in
Figure 7. The effect of spherical lattice is clearly visible on Class
1b, where the activity signal bounces back from the location of
the polar-points (top and bottom rows).

In a previous work (Ramos and Bantang, 2019c), we explored
the different regimes in which these CA classes exist in the
phase space diagram. We found that a minimum of 20% of
the population of the neurons must be active or spiking at
t = 0 to observe a nonzero steady-state CA (Class 1). As the

FIGURE 5 | Snapshots of the neuronal CA with toroidal lattice configuration

for each class taken at different timesteps of the simulation. The snapshots are

taken with increasing timesteps (not necessarily consecutive) to highlight the

different dynamics observed. At t = 0, the initial state is the same for all

classes, but each class evolved into one of the CA classes, depending on the

set of parameter thresholds used in the activation function.

output threshold a2 is increased, the systems with parameters
that fall near the phase boundary, transitions from Class 0 to
Class 1 CA, and thus, increasing the region for which Class
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FIGURE 6 | (A–D) State-space trajectories of each of the classes. The • and ⋆

marks the automaton state at t = 0 and t = ∞, respectively. The arrows show

the direction of evolution of the average neuronal steady-state over time.

FIGURE 7 | Snapshots of the neuronal CA with spherical lattice configuration

for each class taken at different timesteps of the simulation. The snapshots are

taken with increasing timesteps (not necessarily consecutive) to highlight the

different dynamics observed. At t = 0, the initial state is the same for all

classes, but each class evolved into one of the CA classes, depending on the

set of the parameter threshold used in the activation function.

1 CA is observed. In this work, the chosen set of parameters
belong to the stable regions in which the dynamical classification
is observed.

4. EFFECT OF EXTERNAL INPUT AND
LAYERED LATTICE

Using the same initial state of the automaton, we assigned a
certain fraction (1% and 5%) of the neurons in random locations
to be cext, injected with constant ain = 1. It is notable in Figure 8

that for all steady-state classes, the overall system activity 〈a〉
becomes typically much greater than the input. Class0b neurons
with 5% cext were found to have similar steady-state dynamics
with Class 1a. Furthermore, Class 1b neurons resorted to an
oscillating steady-state with 5% cext.

We implemented the method described in section 2.3 for a
two-layered and four-layered CA system. The average steady-
state activity remains unchanged across each layer and remains
the same for the whole CA system (see Supplementary Figure 2).
Increasing the number of layers from two to four layers did not
change the CA steady-state classification. It is notable in Figure 9

that increasing the number of layers also increases the number of
neurons in the neighborhood state, and consequently delays the
transition to quiescent steady-state in Class 0b. The delay is also
due to the gradual decrease of the wave amplitude as it travels
at least once across the system. This follows the proportionality
between the system size and the time taken for the signal to
propagate across the system (Wolfram, 2002).

5. COBWEB DIAGRAM ANALYSIS

Cobweb diagrams visualize how a dynamical system behaves over
time (Stoop and Steeb, 2006). Consider a CA system response
function defined by aout = f (ain) (see Figure 1). We then
can draw a cobweb diagram on a plane (x, y) = (ain, aout)
as follows:

1. Given a chosen starting point (xstart, ystart) = (astart, 0), we
trace a vertical line from it to (astart, f (astart)).

2. We trace a horizontal line from (astart, f (astart)) until it crosses
the dashed line with the equation aout = ain. This value
becomes the new starting point, such that (xstart, ystart) =

(f (astart), f (astart)).
3. Repeat steps 1 and 2 until we reach a sufficient number of steps

(here, we use 100).

The resulting cobweb diagrams for the different dynamical
classes are shown in Figure 10 (Ramos and Bantang, 2020). The
activation function of Class 0a falls below the line aout = ain such
that any neuron transitions to quiescent state regardless of its
initial state (marked by the blue star ⋆). A collection of neurons
of this class approaches a quiescent state in a short amount of
timesteps. However, in Class 0b, the activation function crosses
the line aout = ain once. Any neuron state that starts from
the left or right of the intersection point results in a temporary
overall active state but the system eventually ends up to be in
the quiescent steady-state. If the neuron state starts exactly at the
intersection point, its state remains there as a trivial application
of the procedure above. Only a few of neurons coincide with
this trivial case since the initial state-values of the CA in our
numerical experiments is obtained from a uniform random
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FIGURE 8 | (A–D) Steady-state dynamics for each CA class in a toroidal lattice configuration with external input injected to a fraction of the neuronal population. The

black line shows the average steady-state when 1% of the population is injected with external constant input. The red line corresponds to 5% of the neuronal

population injected accordingly.

distribution in the range [0, 1]. Collectively, Class 0b neurons go
into the quiescent state but at a slower rate compared to Class 0a.
Inhibitory neurons (Type I) can therefore be modeled by Class 0
neuronal patch.

If the intersection point is located at the origin (i.e. a0 = 0),
the collection of neurons always approaches a spiking steady-
state. The greater is the difference a1 − a0, the higher the average
steady-state value 〈a〉 of the system. Neuronal CAs with lower
average steady-state value usually result from exploding patterns
(Class 1b). Random patterns (Class 1a) consequently produce
higher average steady-state values. Excitatory (Type II) neurons
belong to Class 1 in the classification scheme presented.

6. BIFURCATION DIAGRAM ANALYSIS

Bifurcation diagrams show the dynamical trend of the system as
we vary a parameter of interest Çelik Karaaslanl (2012). In this
work, we chose to investigate the trend for varying a2-values,
holding both a0 and a1 at various combinations of constant
values. Since 100 timesteps is enough for the simulation to reach
steady-state at any given parameter set Ramos and Bantang
(2018, 2019c), we obtained the average neuronal patch activity
〈a〉 only for the last (10) timesteps. The resulting bifurcation
diagrams are shown in Figure 11 (Ramos and Bantang, 2020).

At certain parameter sets, the neuronal CA exhibits period-
doubling. This only happens when the activation function is

negatively-sloped and strictly satisfies the conditions: a1 = 0 and
a0 > 0. Only with this specific constraint will the overall neuron
state oscillate as shown in the cobweb diagrams in Figure 12.
An oscillating overall neuronal state indicates that a significant
degree of synchronization happens in the majority fraction
of the neurons. Epileptic neurons can be modeled by these
negatively-sloped activation functions. This oscillatory behavior
is unchanged by any neighborhood and boundary conditions,
as shown in Figure 12. However, as we increase the fraction of
neurons cext with input, the oscillation becomes underdamped.

7. EXTENDING TO NONLINEAR
ACTIVATION FUNCTION

As discussed in section 1, one possible extension of the model
is to consider a nonlinear activation function that provides a
better approximation of the neuronal response (Hodgkin and
Huxley, 1952; Gerstner et al., 2014; Pang and Bantang, 2015). The
second-order approximation of the activation function is given
by the equation:

aout =







0 0 < ain < a0

a2

(

1−
(

1− ain−a0
1−a0

)b
)

ain ≥ a0
(2)
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FIGURE 9 | (A–D) Steady-state dynamics of each class in a two-layered (black line) and four-layered (red line) toroidal lattice configuration. The dynamical trend

remains the same for each class.

where a0, a2 represents the same thresholds as in Equation 1,
and b is the nonlinearity parameter. Here, a1 = 1. When b =

1, this function reverts to the first-order linear approximation.
Figure 13A shows how the activation function changes when
we increase b. An exhaustive testing of the nonlinear activation
function has been done with varying input and output thresholds
a0, a2 ∈ [0, 1], and nonlinearity parameter b ∈ [0, 40] (Ramos
and Bantang, 2021). The resulting dynamics are classified below.
Representative steady-state dynamics for each class are shown in
Figure 13B.

1. Class 0: Quiescent Steady-State: (a) Fast-decay; (b) Slow-decay
2. Class 1: Spiking Steady-State: (a) low activation probability;

(b) high activation probability.

The conditions for phase transition are presented in a previous
work (Ramos and Bantang, 2021). It is notable that the opposing
extreme cases (a2 = 0.0 and a0 = 1.0) always belong to
Class 0. Whenever 0 ≤ b < 1, the system also falls under
Class 0 independent of the other parameters. Once we increase
the nonlinearity such that b > 1, especially for cases when
the corresponding linear activation function lies completely in
the region below the aout = ain line, the dynamical evolution
transitions from Class 0 to Class 1. This transition is caused
by the crossing of the activation function to the region above
aout = ain line as shown in Figure 13A. Hence, using the cobweb
analysis above, there are individual neurons that will contribute
to an overall system spiking steady-state. We also found that, on
one hand, the average steady-state activity transitions abruptly

when the input threshold a0 is decreased. On the other hand,
the transition is gradual when the output threshold a2 is
increased, with the phase boundary approximated at b ∼ 1/a2.
Furthermore, increasing the nonlinearity parameter b transitions
the neuronal classification from Class 0 to Class 1.

It is notable that the opposing extreme cases (a2 = 0.0 and
a0 = 1.0) always belong to Class 0. Whenever 0 ≤ b < 1,
the system also falls under Class 0 independent of the other
parameters. Once we increase the nonlinearity such that b >

1, especially for cases when the corresponding linear activation
function lies completely in the region below the aout = ain line,
the dynamical evolution transitions from Class 0 to Class 1. This
transition is caused by the crossing of the activation function to
the region above aout = ain line as shown in Figure 13A. Hence,
using the cobweb analysis above, there are individual neurons
that will contribute to an overall system spiking steady-state.

8. YOUNG AND AGED NEURONAL
SYSTEMS

As an application of the proposed CA modeling paradigm,
we obtained an empirical dataset of the single-cell response
that shows the dynamical difference between young and aged
neurons in response to input signals (Coskren et al., 2015). Data
shows higher firing rates from the aged neurons. The dataset is
normalized over the range of the input current (30 − −330pA)
used in the study. When the first-order approximation activation
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FIGURE 10 | (A–D) Cobweb diagrams showing the behavior of individual neurons for each class. In each column, the individual plots show different cases that a

neuron is initialized (marked by •). Each case may not necessarily be the same across all the classes. The ⋆ marks the final state on the x-axis with the red line

showing the trajectory of the neuronal state through time.

function aout = f (ain) given by Equation 1 is used to fit
the dataset, both young and aged neuronal system resulted to
quiescent steady-state with young neuronal CA decaying faster
than the aged ones (see Supplementary Figure 3). If injected
aext = 1–5% of the neuronal population, the average steady-state
is the same for both young and aged neuronal systems. This result
contradicts the observations by Coskren et al. (2015).

A better fitting function to the dataset is the second-order
approximation given by Equation 2. Figure 14A shows the
resulting response curve. Using this response curve, we found
a significant difference in the dynamics between young and
aged neuronal systems (see Figure 14B). The aged neuronal
population shows a spiking steady-state with a higher average
neuronal response than the younger population. Injecting
constant external input (aext = 1) randomly to 5% of the
neuronal population amplifies the average steady-state for both

young and aged neuronal systems but with different steady-state
values. Hence, the aged neuronal system does not need a very
high external input for it to be amplified, unlike the younger
population. This result confirms the higher firing rate of aged
neurons as well as the presence of spiking states for aged at lower
input currents (Coskren et al., 2015). Figure 14C shows the actual
response of young and aged neuronal patches obtained using
the method described in Ramos and Bantang (2018) and Ramos
and Bantang (2021). A sample discrete response of a single
neuron from the young and aged neuronal patches is shown in
Figure 14D.

9. COMPUTATIONAL COMPLEXITY

The computational efficiency of using CA to model neuronal
patch dynamics is quantified using the time it takes to finish a
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FIGURE 11 | Representative bifurcation diagrams for the neuronal CA system. Each individual plot shows the steady-state values vs. increasing a2 with constant

a0, a1 values. From left to right column shows the different steady-state trends with increasing a1 while from top row to bottom shows increasing a0. The inset shows

the activation function for that parameter set given that a2 = 1.0, for reference.

given simulation. With increasing neuronal population N, the
time it takes to finish the simulation T is recorded as the average
of three (3) runs or trials for each solver. In general, we find that
the time T can be fitted with:

T = a(N − b)c (3)

where a, b and c are the fitting parameters. From these
parameters, c provides the relevant information for the
computational complexity whereby T ∼ O(Nc) for
large N-values.

Figure 15 shows the comparison of the simulation time
using different solvers to the HH ODEs and the CA modeling
method presented here. On one hand, solving the ODEs of
the HH neuronal network using the forward Euler method
yields quadratic time complexity (T ∼ O(N2)). Using more
accurate solver variants such as Runge-Kutta order-4 (RK4) and

Livermore Solver for Ordinary Differential Equations(LSODA)
increases the overall magnitude of T yet returns consistent
complexity c ≈ 2. On the other hand, our CA model presents
a linear time complexity (T ∼ O(N)) indicating a much
faster computational time than simulating interconnected HH
neurons, especially for much larger system size N.

Figure 15 also shows that the T-values for HH neuronal
population sizes beyond N = 4, 096 is absent. Running
simulations for larger sizes causes our current computational
machines to exceed their memory capacity. The use of
our CA model shows significant advantage in simulating
up to millions of neurons (more than 103 times the
other reported approach) before this memory problem
happens. The algorithm of the CA model can be more
straightforwardly parallelized and GPU-implemented to
amplify the neuronal population without increasing the
simulation time.
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FIGURE 12 | (A) Steady-state dynamics of Class 2 CA using the various neighborhood and boundary conditions aforementioned. (B) Snapshots showing

spatiotemporal evolution of Class 2 CA. (C) Cobweb diagrams for each possible initial condition (marked by •) in a Class 2 CA with threshold values a0 = 0.6,

a1 = 0.0, and a2 = 0.6. (D) Trajectory of the neuronal steady-state activity in state-space. The average state of the CA are marked at t = 0 (•) and at t = ∞ (⋆) with

the black arrows tracing the trajectory. It is notable that the neuronal CA cycles back and forth along the path of evolution.

FIGURE 13 | (A) Representative nonlinear activation function (b = 4) using the second-order approximation given by Equation 2 with thresholds

a0 = 0.2, a1 = 1.0, a2 = 0.8. The black dashed line shows the same thresholds with nonlinearity parameter b = 1, which is equivalent to the case of first-order

approximated activation function. (B) Representative steady-state dynamics for each class using nonlinear activation function (b > 1).
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FIGURE 14 | (A) Activation function of young (black) and aged (red) neuronal population derived from empirical data from rhesus monkey prefrontal cortex (Coskren

et al., 2015). The dots are the dataset from the study, while the solid lines are the activation function fitted using Equation 2. The parameter thresholds are

a0 = 0.45, a2 = 0.38, b = 1.5 for the young neuronal system, and a0 = 0.29, a2 = 1.0, b = 2.2 for the aged population. (B) Corresponding average steady-state

dynamics of young and aged neuronal population using the CA model. (C) Actual response of young and aged neuronal patch obtained using the method described

in Ramos and Bantang (2018) and Ramos and Bantang (2021). The color represents the discrete state the neuron is in: Q (Quiescent), F (Firing), R (Refractory). (D)

Representative temporal response of a single neuron from the young and aged neuronal patch according to the discrete states in (C).

10. CONCLUSIONS

In this work, we proposed a cellular automata (CA) model as
an efficient way of modeling large numbers of neurons that can
reduce both computational time and memory requirements in

simulation. We implemented neuronal dynamics on a neuronal
CA patch of lattice size 1, 024 × 1, 024 using a first-order
linear approximation of the resulting activation function of the
HH model. The system dynamics is characterized according
to the three parameters of the resulting activation function.
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FIGURE 15 | Time complexity of the neuronal model comparing different

algorithms for solving the HH dynamics. The forward Euler method (marked N)

shows quadratic order in time (∼O(N2)) while the CA model (marked •)

presents a linear complexity time (∼O(N)) indicating the efficiency of using the

CA model in simulation of neuronal patch dynamics.

The steady-state dynamics are investigated for different lattice
configuration (2D and quasi-3D), boundary conditions (toroidal
and spherical), layering (one- or two-layered), and Moore
neighborhood type (totalistic and outer-totalistic). Cases wherein
a fraction (1% and 5%) of neurons have constant activation
input (ain) are also explored. We observed the following
CA classification:

1. Class 0: Quiescent Steady-State: (a) Fast-decay;
(b) Slow-decay

2. Class 1: Spiking Steady-State: (a)With random patterns; (b)
With exploding patterns

3. Class 2: Oscillatory Steady-State.

Numerical experiments of CA neuronal systems are shown to
conform to this classification. While our analysis of the cobweb
diagrams show that individual neuron states will eventually
reduce to quiescent state, spiking steady-state can still emerge
for a collection of interconnected neurons. Collective oscillatory
behavior (Class 2) of the overall neuronal state is observed for the
system with significant synchronization among neurons.

The proposed CA model is applied to analyze the resulting
dynamical class of young and aged patches of neurons. The
response function of individual young and aged neuronal cells
are obtained from empirical data and are fitted to a second-
order approximation for better semblance. The CA model for
aged patch shows dynamics with higher average neuronal steady-
state and thereforemore robust spiking behavior compared to the
younger population. This result conforms to the higher action
potential firing rates of aged neurons from the empirical data.
On one hand, the average neuronal steady-state is amplified
for the aged population when injected with a small external
input. On the other hand, the younger population needs higher

external input to observe significant amplification of the average
neuronal steady-state. This result conforms to the presence of
spiking activity in aged neurons stimulated with lower external
current.Whether artificially generated spatiotemporal patterns of
neuronal patch activity in this work correspond to the activity of
actual neuronal systems remains to be determined.

The cellular automata model presented here can easily be
extended to model more realistic neuronal systems such as brain
patches or even the whole brain. Individual neuronal response
data can also be used to improve the choice of the CA activation
function aout = f (ain). The activation function can be modified
into similar input-output mapping in frequency domain or
voltage-current domain, and can be used as the rule for our CA
model. Our computational modeling framework can be utilized
for large scale simulation of different neuronal conditions such as
Parkinson’s disease (Bevan et al., 2002; Kang and Lowery, 2014),
Alzheimer’s disease, and chronic traumatic encephalopathy
(Gabrieli et al., 2020; Wickramaratne et al., 2020).

We presented here that an adult brain shows an increase of
neuronal response, even in the presence of constant external
input. However, it remains a challenge to understand in which
particular biological aspect these changes correspond to. In
future studies, we recommend investigating dynamical systems
of interconnected neurons, both young and aged, in the following
aspects: 1) input-outputmapping; 2) spatiotemporal distribution;
and 3) connectivity architecture. Learning about the dynamics
of these systems would help medical practitioners to detect early
signs of ailments or disorders stemming from the aging process
and help identify appropriate medicinal (chemical, radiation),
behavioral (lifestyle, dietary) and/or surgical intervention.
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