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Abstract

Lack of insight (unawareness of illness) is a common and clinically relevant feature of schizophrenia. Reduced levels of self-
referential processing have been proposed as a mechanism underlying poor insight. The default mode network (DMN) has
been implicated as a key node in the circuit for self-referential processing. We hypothesized that during resting state the
DMN network would show decreased connectivity in schizophrenia patients with poor insight compared to patients with
good insight. Patients with schizophrenia were recruited from mental health care centers in the north of the Netherlands
and categorized in groups having good insight (n = 25) or poor insight (n = 19). All subjects underwent a resting state fMRI
scan. A healthy control group (n = 30) was used as a reference. Functional connectivity of the anterior and posterior part of
the DMN, identified using Independent Component Analysis, was compared between groups. Patients with poor insight
showed lower connectivity of the ACC within the anterior DMN component and precuneus within the posterior DMN
component compared to patients with good insight. Connectivity between the anterior and posterior part of the DMN was
lower in patients than controls, and qualitatively different between the good and poor insight patient groups. As predicted,
subjects with poor insight in psychosis showed decreased connectivity in DMN regions implicated in self-referential
processing, although this concerned only part of the network. This finding is compatible with theories implying a role of
reduced self-referential processing as a mechanism contributing to poor insight.
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Introduction

Patients with schizophrenia often have difficulties with social

and emotional cognitive processing [1,2], including self-reflective

processes [3]. Such impairments may have important conse-

quences for successful functioning in a social community [1,4].

Self-referential processing deficits, which may already be present

before the onset of the disorder, have been proposed to underlie

these social and emotional deficits as well as first rank

schizophrenic symptoms, e.g. [5–10]. Such self-related processing

deficits may include the formation and maintenance of an accurate

representation of one’s traits, abilities and attitudes, or self-

reflection [11,12]. This self-reflective processing is essential in the

evaluation of one’s personal behavior as well as in interpersonal

communication [2]. More specifically, it has been proposed that

self-reflective processing may underlie poor illness insight in

patients with schizophrenia [12–14].

Impaired insight has been considered to be a core feature of

schizophrenia [15]. Poor insight in schizophrenia has been

associated with poorer global functioning [16–18], greater severity

of psychopathology [19], increased relapses and hospitalizations,

poorer long term prognosis [20] and reduced treatment compli-

ance [21,22]. Interestingly, lack of insight in schizophrenia appears

to be self-specific, as most patients recognize symptoms in other

patients, but fail to do so in themselves [23,24]. This implies that

lack of insight may be caused by disturbed abilities of self-

referential processing [12]. Thus, studying the neural link between

insight and self-referential processing may reveal important clues

with regard to the underlying deficit in patients lacking insight. If

patients with schizophrenia have attenuated capacities to reflect on

their situation and on other self-relevant information, this could be

a barrier for obtaining insight that one suffers from a severe

psychiatric disorder.
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In terms of brain regions that underlie self-referential proces-

sing, research points towards a set of medial brain areas

comprising the posterior cingulate cortex (PCC), anterior cingulate

cortex (ACC) and the dorsomedial and ventromedial prefrontal

cortex (d & vMPFC) [25,26], together referred to as the cortical

midline structures (CMS) [11,12,27]. In patients with traumatic

brain injury in the CMS [28], patients with mild cognitive

impairment [23] and schizophrenia patients [29–32], an associ-

ation between impaired insight and decreased activation of medial

frontal and other CMS regions has been demonstrated.

The CMS show a large overlap with the so-called default mode

network (DMN). This is a network of brain areas that is active

during rest [33,34] and involved in processing information related

to the self [33,35]. The brain areas in the network show

synchronized slow fluctuations (,0.1 Hz) in the BOLD signal

[36,37]. Areas in this network include the ventral and dorsal

medial prefrontal cortex (vMPFC and dMPFC), anterior cingulate

(ACC), the posterior cingulate (PCC)/retrosplenial cortex (RspC)

and adjacent precuneus, inferior parietal lobule (IPL), medial

temporal cortex (MTG) and hippocampal formation [34,36]. The

default mode network appears to encompass subnetworks with

distinct functions [34], consisting of an anterior part (ACC/

MPFC), a posterior part (PCC, precuneus and IPL), and possibly

a ventral part with temporal and ventral prefrontal regions

[11,34]. Studies in schizophrenia patients have found disturbances

in DMN structures, with mainly lower medial PFC connectivity

compared to healthy controls [38–41] but also altered connectivity

within posterior DMN areas, disturbed prefrontal-parietal com-

munication [32,41–48], or reduced connectivity between other

DMN regions [42–45,48–50]. Of note, some studies showed

increased frontal connectivity [51–53].

Structural MRI studies have related poor insight in schizophre-

nia patients to decreased volume of prefrontal and other DMN

regions [54,55], which may be related to poor self-monitoring [56–

59]. Patients or people at risk for psychosis indeed show altered

brain activation during self-reflection and theory of mind

[29,30,32,60]. Moreover, review studies have shown that schizo-

phrenia patients have a decreased prefrontal and posterior DMN

activation in resting state studies [31,61]. Finally, decreased white

matter integrity between DMN areas was also related to poor

insight [62]. No studies have as yet investigated resting state

connectivity in relationship to poor insight in psychosis.

Connectivity analysis may further the understanding of neural

systems beyond the task-activation fMRI designs [63,64]. Resting

state BOLD fluctuations may reflect spontaneous neural activity as

most resting state patterns overlap with known brain networks

[64,65], and they may even predict an individual’s task

performance or behavior [63]. Moreover, their functional

connectivity follows the anatomical outline of white matter

bundles [64]. Whereas task-based activation can provide in-

formation about the function of separate brain areas, functional

connectivity may thus provide information about interaction of

brain areas [64]. Resting state research of the DMN is especially

interesting with regard to the issue of insight, because we expect

a relation between the key function of the DMN, namely self-

referential processing, and insight.

Studying resting state fluctuations may have some advantages

over task-based fMRI. Experimental control of differences in

task performance between groups is not necessary and relatively

ill patients groups with limited capacities can be investigated

[65,66]. Only intrinsic differences of the brain, and not

differences in cognitive abilities, will explain differences in

connectivity. Moreover, resting state functional connectivity may

be a more natural, ecologically relevant, measure of brain

activation than task-based fMRI [33] as it reflects intrinsic brain

interactions [67].

Independent component analysis (ICA) [68] can separate the

fMRI signal into spatially independent networks that show shared

temporal fluctuations [67,68]. Independent components (i.e.

networks) contain brain areas that show similar fluctuations and

are assumed to be functionally linked. The size and strength of the

identified networks (components) may differ between individuals

and groups sharing a specific trait [67,68], as may cooperation

between different networks [69]. In this study, we will focus on the

DMN because this has been related to self-related processing [35].

We expect to identify an anterior and posterior DMN subnetwork

as described earlier, as these have been identified previously using

ICA [69,70].

We hypothesize that schizophrenia patients with poor insight

may show impaired connectivity of the DMN during rest, which

may reflect attenuated self-related processing associated with

decreased awareness of symptoms [27]. We therefore compared

connectivity of brain areas within anterior and posterior DMN

components to the other parts of that component between patients

with good and with poor insight. A healthy control group was used

as a reference. Moreover, we conducted a group comparison of

connectivity strength between the anterior and posterior DMN

components, as we hypothesize that impaired connectivity

between the anterior and posterior DMN may also contribute to

impaired insight.

Methods

Ethics Statement
The study was approved by the local medical ethical committee

(Medische Ethische Toetsingscommissie van het Universitair

Medisch Centrum Groningen) according to the declaration of

Helsinki. All subjects gave oral and written informed consent after

the study procedure had been fully explained. All subjects ware

capable of signing the informed consent as they were able to live

independent, no permanent inpatients, had no care givers taking

over responsibilities from them, and all allowed to sign informed

consent themselves. All subject data was handled anonymously.

Study Population
The study sample included 44 patients with schizophrenia.

Patients were recruited from mental health care centers in the

north of the Netherlands, three or four patients came from western

parts of the Netherlands. Patients were participants in an fMRI

study on neural correlates of auditory hallucinations or a study on

cognitive emotional processing; in both studies a resting state scan

was part of the research protocol. Diagnosis of schizophrenia

according to DSM-IV criteria was confirmed with the SCAN 2.1

diagnostic interview [71]. A healthy control group matched to the

patients on age, gender, handedness, and education level was

included. This group was included to deduce whether patients

showed similar DMN properties as healthy subjects. Healthy

controls were excluded in case of psychiatric history, which was

confirmed with the screenings questions of the SCAN 2.1

interview. For subject characteristics, see Table 1. Patients were

asked to give an overview of the medication they were taking at the

moment. The patients reported to use the following medication;

antipsychotics: aripiprazole (9x), chlorprotixene (1x), clozapine

(15x), haloperidol (4x), olanzapine (9x), paliperidone (1x), pen-

fluridole (1x), perphenazine (1x), pimozide (1x), pipamperone (1x),

quetiapine (7x), risperidone (10x), sulpiride (1x), and zuclopentix-

ole (2x); antidepressants: amytriptyline (1x), bupropione (1x),

citalopram (3x), clomipramine (1x), fluoxetine (2x), fluvoxamine
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(1x), mirtazapine (1x), paroxetine (2x), nortriptylin (1x), trazodone

(1x), and venlafaxine (2x); benzodiazepines: diazepam (3x),

flurazepam (1x), lorazepam (3x), oxazepam (7x), temazepam

(5x); other: atenolol (1x), biperiden (6x), carbamazepine (1x),

lithiumcarbonate (6x), pantaprazol (2x), promethazine (1x),

valproic acid (1x).

Measures
The most important measure of the study was connectivity of

brain areas within the anterior and posterior DMN component to

the rest of that component. Differences in connectivity within

a component were compared between groups by doing a voxel-

wise group comparison of the spatial maps of individual subjects.

Connectivity between components was also determined by

correlating the time courses of the anterior and posterior DMN

component. These were converted to Z-scores and compared

between groups.

Design
The primary goal was to compare connectivity measures

between patients with good and poor insight. A matched healthy

control group was used as a reference. If possible, differences were

statistically compared, but as described below, in some cases only

qualitative comparison was possible.

All schizophrenia patients were interviewed with the Positive

and Negative Syndrome Scale (PANSS) [72]. The PANSS

interview measures three domains of symptoms, namely positive

and negative symptoms and general pathology. Each item can be

rated from 1 (not present) –7 (extreme). The interviews were

performed by experienced and trained raters. Based on the rating

of the interview item that measures illness insight (G12), patients

were categorized into two groups with good insight (score 1–2,

which are in the normal range) or poor insight (.2). Even though

this is only one single item, strong correlations with more thorough

measures of insight such as the Scale to Assess Insight (SAI;

r = 0.88), Scale to Assess Insight – Expanded (SAI-E; r = 0.90), or

the Insight and Treatment Attitudes Questionnaire (ITAQ;

r = 0.90) have been demonstrated [73,74], confirming that the

PANSS G12 item reliably rating insight.

Education level was rated according to a six point scale defined

by Verhage [75], which ranges from primary school (1) to

university level (6). Handedness was confirmed by the Edinburgh

handedness inventory [76]. Age and education level were

compared between controls and the two patients groups with

a Kruskal-Wallis H test (a,0.05). Between patient group

differences in PANSS subscales were tested with a Mann-Whitney

U test. For the PANSS General pathology subscale the Insight

item G12 was subtracted from the total score, because this item

was a selection criterion for both groups. A Chi-square test for

independence (a,0.05) was used to test for differences in gender

and handedness. All statistical tests were performed with Statistical

Package for Social Sciences (SPSS) 16. Exclusion criteria for the

study consisted of MRI incompatible implants, possible pregnan-

cy, claustrophobia and non-native Dutch speakers.

MRI Procedure
All subjects underwent a resting state fMRI scan. They were

instructed to close their eyes, relax, and to stay awake. Subjects

were reminded of this just before the scan started. A 3 T Philips

Intera MRI scanner (Best, The Netherlands) equipped with a 8-

channel SENSE head coil was used to acquire 200 whole brain

echo-planar functional images (EPÌs), TR 2.3 s and TE 28 ms.

The volumes contained 39 (old sequence) or 43 (after scanner

upgrade) interleaved slices (3.863.863 mm) with a 0 mm slice gap

and a 85u flip-angle (FOV=22061176220 mm). The duration of

the scan was 460 seconds. A high-resolution, transverse T1

anatomical was also acquired for overlay of statistic images (160

slices; voxel size 16161 mm; FOV 25662206256 mm).

Analysis
The raw images were converted to ANALYZE format and

analyzed using Statistical Parametric Mapping (SPM8; FIL

Wellcome Department of Imaging Neuroscience, London, UK)

running on Matlab 7.1. Images were first corrected for slice-time

differences and realigned to the first functional image. The mean

Table 1. Demographical data.

Good insight (n=25) Poor insight (n=19) Controls (n =30)
Statistical test score
(Z or X2) p-value

Mean age (SD) 33.4 (11.2) 35.9 (11.9) 33.4 (10.5) .69 .71

Mean education (SD) 3.52 (1.3) 3.53 (1.2) 4.1 (1.1) 1.1 0.59

Gender (M/F) 9/16 7/12 15/15 .0 0.51

Handedness (L/R) 3/22 2/17 6/24 .0 1.0

PANSS G12 (SD) 1.3 .5 3.7 .8 5.9 ,.005

PANSS Positive (SD) 14.3 (4.8) 17.1 (4.8) 1.96 .050

PANSS Negative (SD) 14.3 (4.3) 14.4 (4.8) .21 .83

PANSS General -12 (SD) 25.8 (8.3) 28.1 (7.4) 1.34 .18

Illness duration years (SD) 10.5 9.6 8.9 8.2 .46 .67

No antipsychotic (%) 0 21.1 6.1 .11

Typical (%) 8.0 10.5

Atypical (%) 68.0 47.4

Typical + atypical (%) 2.0 10.5

Overview of demographical data of the good insight and poor insight groups and the control group; The PANSS general item is shown without item G12. The fifth
column shows the Z (Mann-Whitney) or Chi-square (Kruskal-Wallis and Chi-square test for independence) values of the statistical comparisons and the fifth the p-values.
doi:10.1371/journal.pone.0042707.t001
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image created during realignment was co-registered to the

anatomy, together with the functional images, and the anatomy

and functional images were normalized (voxel size 36363 mm) to

the T1 template of SPM. Finally, images were smoothed with

a 10 mm FWHM isotropic Gaussian kernel. Additional filtering

was not necessary, because artifacts will generally represented by

separate components in ICA [67,68].

After the preprocessing, images were processed in Group ICA

FMRI Toolbox (GIFT; http://icatb.sourceforge.net/gift/

gift_startup.php) [68]. For referential purposes, a separate ICA

was conducted on the group of healthy control subjects. Healthy

subjects were not included in the ICA of patients but treated

separately, because subtle differences in spatial maps of patients,

only distinguished based on insight score, may disappear due to

inclusion of a group with different network properties, such as

healthy controls [68].

The mean number of independent components (IC̀s) was

estimated using Maximum Description Length (MDL) and

Akaike’s criteria [77], to prevent splitting or merging of

components [65]. Images were intensity normalized before ICA

estimation, which implied scaling the time courses to a mean of

100. The intensity normalized images (patients and controls

separately) were decomposed into a set of spatially independent

components (for every subject) by the Infomax algorithm. A

component consists of a time course showing the temporal

fluctuations of that component, and a spatial map that shows

the contribution of every voxel to that component. Stability of the

components, i.e. whether a component has the tendency to split or

merge with another component, was validated by running the

ICASSO toolbox implemented in GIFT using twenty iterations

with both random iterations and bootstrapping [78].

Selection of the components of interest for both healthy controls

and patients, namely the anterior DMN (including the ACC/

MPFC) and posterior DMN (PCC/precuneus/IPL), was done by

selecting components showing a large spatial overlap with a priori

defined anatomical masks. Thus, the spatial component could also

involve other brain areas, but involvement of the areas defined by

the masks was crucial. These anatomical masks of the ACC/

MPFC (to select the anterior DMN component) and of the PCC/

precuneus (for posterior DMN component selection) were created

with WFU–pickatlas (http://www.nitrc.org/projects/

wfu_pickatlas). Masks provided by WFU pickatlas are based on

brain regions defined by Talairach and Tournoux (1998) that were

implemented in this toolbox after conversion to MNI space

[79,80].

Spatial maps of selected anterior and posterior DMN

components were visually compared between patients and controls

to establish whether similar networks were present in both groups.

Statistical comparison of image maps of two different ICÀs is

unjustified, because the outline of image maps may differ between

groups due to the separate ICA unmixing procedure of the image

time courses in both groups.

After that, for the patients the reconstructed individual spatial

maps of the anterior and posterior DMN component were

entered in a two sample t-test random-effects analysis compar-

ing the good versus poor insight group. This analysis shows

brain areas that are differently connected to the rest of the

anterior or posterior DMN component. A statistical threshold

was applied of p,0.001, as has been done previously [83]. The

analysis was restricted to areas that significantly contributed to

the ICA component, as previously described by [70]. This was

done because ICA components maps have values close to zero

in areas where the time course of that component is not

represented. Voxel intensities in these areas are mainly de-

termined by noise properties and may in group comparison lead

to false-positive clusters. Since we formulated a specific hypoth-

esis comprising specific brain areas and used a mask to restrict

the search volume, and because a comparison between two

groups of patients was performed, cluster correction was not

applied to avoid type II errors [81]. In an additional analysis,

a voxel-wise linear regression was performed with the time

courses of each voxel in the component maps of the DMN

against the PANSS G12 Insight scores.

In another analysis, a correlation was calculated between the

anterior and posterior DMN component time courses of all

subjects. The correlations were converted to Z-scores by a Fischer̀s

Z transformation with Z=K*ln((1+r)/(12r)),where r represents

the correlation. These data were loaded in SPSS. The Z-scores

between the time courses of the anterior and posterior DMN of all

patients were compared to those of controls and the Z-scores of

patients with poor insight to those of patients with good insight

using Mann-Whitney U tests (a=0.05).

Two additional analyses were performed. First, because there

was a significant difference in the PANSS positive subscale

between groups, this subscale was added as a covariate to the

group comparison. Second, as DMN regions have been shown

to deactivate during task-performance, we also investigated

whether the regions that we identified in the ICA group

comparison overlapped with regions that showed task-related

deactivation. For this, we analyzed a language task involving

valence evaluation (positive, negative) of visually presented

words that was performed by subjects during scanning. De-

activation of the DMN during task performance was shown by

contrasting the fixation cross of the task with task blocks. The

clusters showing a difference in DMN connectivity between the

good and poor group were then overlayed on the task-related

deactivation (Figure S1).

Results

Twenty five patients were classified as having good insight, and

nineteen patients were classified as having poor insight. The

demographical characteristics of these two groups were compared,

also with respect to the controls when applicable (see Table 1). The

PANSS Positive subscale was significantly different between

groups, but there was a significant correlation between PANSS

G12 and the Positive symptom subscale (r= .36; p= .015),

implying that patients with more positive symptoms had poorer

insight. Therefore, the Positive symptom subscale was added as

a covariate in the group comparisons, but this did not change the

results. There was no significant difference in age, gender,

handedness, education level and most PANSS scores, though the

PANSS Positive subscale was significant.

The component estimation resulted in an estimate of 32

components for the patients, and 30 for the healthy controls. The

identified anterior default mode component encompassing the

ACC/MPFC showed a spatial overlap correlation with the

anatomical mask created by WFU Pickatlas of 21% for healthy

controls (left side Figure 1) and of 56% for patients (left side

Figure 2). Overlap of other components was ,10%, indicating

that the components of interest (anterior and posterior DMN)

could be identified with high specificity. Visual inspection showed

that the component map of the healthy controls had a more

extended and stronger network contribution than the patients.

The posterior component showed an overlap of 31% for healthy

controls (right side Figure 1), and of 57% for patients (right side

Figure 2).

Reduced Connectivity in Patients with Poor Insight
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The anterior and posterior components were compared with

a two-sample t-test. Patients with good insight showed stronger

connectivity of the ACC to the rest of the anterior DMN

component compared to patients with poor insight: t=4.37,

Z=3.94, cluster size = 18, p,0.001, xyz =212 39 3 (Figure 3, left

side). Subsequently, a voxel-wise regression between the image

maps and the insight score was calculated. This revealed a cluster

in the same location. In the two sample t-test of the posterior

DMN component, a significant cluster was identified in the

precuneus (t=3.94, Z=3.62, cluster size = 20, p,0.001, xyz = 24

272 24, see Figure 3, right side). The linear regression with insight

score resulted in the same cluster. There was no significant cluster

in the poor vs. good insight t-test comparison for both

components.

A correlation between the time courses of the anterior and

posterior DMN component was calculated and converted to Z-

scores. These Z-scores were compared between healthy controls

and all patients, and between patients with good and poor insight.

Z-scores are plotted per group in Figure 4. Whereas the Z-scores

for the healthy controls were all above zero (with the exception for

one subject), part of the patients showed a negative Z-scores with

an overall mean around zero and a larger variation (SDcon-

trols = 0.20, SDpatients = 0.66). This difference was significant

(U=388, z=23.0, p=0.003). Patients with poor insight showed

the largest variation in Z-scores (SDgood insight = 0.56, SDpoor

insight = 0.79), but did not differ significantly from the patients with

good insight (U=214, z=20.56, p=0.58).

Finally, adding the PANSS positive symptoms subscale as

a covariate to the group comparison between good and poor

insight did not change the results. In addition, during the valence

evaluation task deactivation of DMN regions was observed. The

clusters that differed significantly between good and poor insight

groups overlapped with the DMN regions showing significant

deactivation during the task (Figure S1).

Figure 1. DMN in healthy controls. Components map of the DMN of healthy controls showing the anterior DMN on the left and the posterior part
on the right (p,.001; k .10).
doi:10.1371/journal.pone.0042707.g001

Figure 2. DMN in schizophrenia patients. Components map of the DMN of patients controls showing the anterior DMN on the left and the
posterior part on the right (p,.001; k .10).
doi:10.1371/journal.pone.0042707.g002
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Discussion

In this study, the relationship between insight (awareness of

illness) in schizophrenia and functional connectivity of regions in

the default mode network (DMN) was investigated in patients with

schizophrenia. The DMN connectivity pattern of patients clearly

overlapped with the network in healthy control subjects, though

the network was less extended (in accordance with e.g. [31,46,48–

50,61]. Importantly, patients with poor insight showed a lower

connectivity within the anterior cingulate and precuneus com-

pared to patients with good insight. Group differences were found

in DMN regions that indeed deactivated during task performance,

supporting our interpretation. Moreover, although the poor

insight group showed significantly more positive symptoms, these

did not explain the group differences Connectivity between

anterior and posterior DMN was lower in all patients compared

to controls, but there was no significant difference between

patients with good and poor insight.

The result of reduced connectivity in the precuneus and ACC of

the DMN in poor insight patients was in accordance with our

expectations that poor insight would be related to decreased DMN

connectivity [12,28,31,35], although it may only concern part of

Figure 3. Differences in DMN connectivity between patients with good an poor insight. Group comparison of good vs. poor insight
patients with the anterior component on the left showing the ACC, and the posterior component on the right showing the precuneus (p,0.001;
k.10; masked with component image map).
doi:10.1371/journal.pone.0042707.g003

Figure 4. Connectivity between the anterior and posterior DMN in patients and controls. Z-scores of connectivity between the anterior
and posterior DMN for healthy controls and schizophrenia patients with good and poor insight.
doi:10.1371/journal.pone.0042707.g004
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the network. Studies assessing the overlap between self-referential

processing and DMN activation, demonstrated that the ACC was

consistently activated [82,83] and thus seems to be particularly

important for self-referential thought. Lesion studies demonstrated

that lesions in/around this area can result in a diminished self-

referential processing [84] and in a dysfunction of emotional self-

control [85]. This suggests that reduced connectivity in this region

may indeed result in abnormal self-referential processing. Whereas

the ACC may be specifically involved in self-related processing,

research has shown that precuneus activation is less self-specific

and also activates during thinking about other persons [12,82,83].

Instead, the precuneus has been hypothesized to be involved

autobiographical and episodic memory retrieval and mentalizing,

which has been confirmed by several studies [12,31,35,86,87].

Consistent with this, structural neuro-imaging results point

towards a relationship between impaired insight and reduced

grey [58,59] and white matter [62] in this region among others.

Taken together, this suggests that hampered self-processing

through a lack of integration of self-related information may

underlie impaired insight in schizophrenia [12].

Schizophrenia patients had a lower, i.e. more negative,

correlation between time courses of the anterior and posterior

DMN. Though the mean connectivity was not significantly lower

in patients with poor insight compared to good insight, the

variation appeared to be higher in patients with poor insight.

Disturbed connectivity between the frontal and posterior DMN

could possibly have a modulating effect on insight. Patients with

schizophrenia have shown decreased connectivity between the

medial frontal cortex and other brain regions during self-reflective

processing [32,88]. Reduced communication between self-re-

flection areas may result in less transfer of self-related information

(i.e. autobiographical or interoceptive information) of posterior

areas to the anterior self-reflective areas.

One limitation of the study may be that insight was rated based

on one item of a standardized interview. However, as we discussed

above, this G12 item correlates highly with other more thorough

measures of insight, suggesting that it can adequately index insight.

Furthermore, it can be argued that subjects were not involved in

self-reflective processing during resting state conditions. However,

other studies have shown that self-referential processing is one of

the major processes taking place during resting state [34,35,89,90].

And as this is spontaneous self-referential processing, it was exactly

the type of processing we were interested in. More research is

needed to elucidate the contribution of different cortical midline

structures in more detail.

In conclusion, schizophrenia patients with relatively preserved

insight showed stronger connectivity than patients with poor

insight in the anterior cingulate cortex and precuneus, both key

regions in self-reflective processing. These findings tentatively

support the hypothesis that poor insight may be related to

impaired self-related processing.

Supporting Information

Figure S1 Group comparison of good vs. poor insight
patients overlayed on task related deactivation. The

anterior component shown on the left with the increased ACC

connectivity in the good insight group, and the posterior

component on the right with the increased precuneus connectivity

(p,0.001; k .10; masked with component image map), the task-

related deactivation was defined by contrasting the fixation cross

of a language task with task blocks.

(TIF)

Acknowledgments

The authors acknowledge Anita Sibeijn-Kuiper and Judith Streurman for

their assistance with fMRI scanning.

Author Contributions

Conceived and designed the experiments: LvdM MS RB HK AA.

Performed the experiments: LvdM MS. Analyzed the data: EJL BC.

Contributed reagents/materials/analysis tools: BC. Wrote the paper: EJL

LvdM MS BC RB HK AA.

References

1. Pinkham AE, Hopfinger JB, Ruparel K, Penn DL (2008) An investigation of the

relationship between activation of a social cognitive neural network and social
functioning. Schizophr Bull 34: 688–697.

2. Atkinson RL, Robinson NM (1961) Paired-associate learning by schizophrenic

and normal subjects under conditions of personal and impersonal reward and
punishment. Journal of Abnormal and Social Psychology 62: 322–326.

3. Amador XF, David AS (2004) Insight and psychosis: Awareness of illness in

schizophrenia and related disorders. Oxford: Oxford University Press.

4. Pinkham AE, Penn DL, Perkins DO, Lieberman J (2003) Implications for the

neural basis of social cognition for the study of schizophrenia. Am J Psychiatry
160: 815–824.

5. Frith CD (1995) The cognitive neuropsychology of schizophrenia. East Sussex:

Psychology Press.

6. Frith CD, Corcoran R (1996) Exploring ‘theory of mind’ in people with

schizophrenia. Psychol Med 26: 521–530.

7. Parnas J, Handest P (2003) Phenomenology of anomalous self-experience in
early schizophrenia. Compr Psychiatry 44: 121–134.

8. Nelson B, Sass LA, Thompson A, Yung AR, Francey SM, et al. (2009) Does
disturbance of self underlie social cognition deficits in schizophrenia and other

psychotic disorders? Early Interv Psychiatry 3: 83–93.

9. Sass LA, Parnas J (2003) Schizophrenia, consciousness, and the self. Schizophr
Bull 29: 427–444.

10. Raballo A, Saebye D, Parnas J (2011) Looking at the schizophrenia spectrum

through the prism of self-disorders: An empirical study. Schizophr Bull 37: 344–
351.

11. Northoff G, Heinzel A, de Greck M, Bermpohl F, Dobrowolny H, et al. (2006)
Self-referential processing in our brain – a meta-analysis of imaging studies on

the self. Neuroimage 31: 440–457.

12. Van der Meer L, Costafreda S, Aleman A, David AS (2010) Self-reflection and
the brain: A theoretical review and meta-analysis of neuroimaging studies with

implications for schizophrenia. Neuroscience and Biobehavioural Reviews 34:

935–946.

13. Flashman LA, Roth AM (2004) Neural correlates of unawareness of illness in

psychosis. In: Amador XF, David AS, editors. Insight and Psychosis: Awareness

of Illness in Schizophrenia and Related Disorders. Oxford: Oxford University
Press.

14. Lysaker PH, Carcione A, Dimaggio G, Johannesen JK, Nicolo G, et al. (2005)
Metacognition amidst narratives of self and illness in schizophrenia: Associations

with neurocognition, symptoms, insight and quality of life. Acta Psychiatr Scand
112: 64–71.

15. David AS (2004) The clinical importance of insight: An overview. In: Amador X,
David AS, editors. Insight and Psychosis. Oxford: Oxford University Press. 359–

392.

16. Dickerson FB, Boronow JJ, Ringel N, Parente F (1997) Lack of insight among

outpatients with schizophrenia. Psychiatric Services 48: 195–199.

17. Pyne JM, Bean D, Sullivan G (2001) Characteristics of patients with
schizophrenia who do not believe they are mentally ill. Journal of the Nervous

and Mental Disease 189: 146–153.

18. Stefanopoulou E, Laurente AR, Saez Fonseca JA, Huxley A (2009) Insight,

global functioning and psychopathology amongst in-patient clients with
schizophrenia. Psychiatr Q 80: 155–165.

19. Mintz AR, Dobson KS, Romney DM (2003) Insight in schizophrenia: A meta-
analysis. Schizophrenia Research 61: 75–88.

20. Schwartz RC (1998) The relationship between insight, illness and treatment
outcome in schizophrenia. Psychiatr Q 69: 1–22.

21. Kemp R, David A (1996) Psychological predictors of insight and compliance in

psychotic patients. British Journal of Psychiatry 169: 444–450.

22. Yen CF, Chen CS, Ko CH, Yeh ML, Yang SJ, et al. (2005) Relationships

between insight and medication adherence in outpatients with schizophrenia
and bipolar disorder: Prospective study. Psychiatry Clin Neurosci 59: 403–409.

23. Ries ML, Jabbar BM, Schmitz TW, Trivedi MA, Gleason CE, et al. (2007)
Anosognosia in mild cognitive impairment: Relationship to activation of cortical

midline structures involved in self-appraisal. Journal of the International

Neuropsychological Society 13: 450–461.

Reduced Connectivity in Patients with Poor Insight

PLoS ONE | www.plosone.org 7 August 2012 | Volume 7 | Issue 8 | e42707



24. Startup M (1997) Awareness of own and others’ schizophrenic illness.

Schizophrenia Research 26: 203–211.

25. Johnson SC, Baxter LC, Wilder LS, Pipe JG, Heiserman JE, et al. (2002) Neural

correlates of self-reflection. Brain 125: 1808–1814.

26. Kelley WM, Macrae CN, Wyland CL, Caglar S, Inati S, et al. (2002) Finding

the self? an event-related fMRI study. J Cogn Neurosci 14: 785–794.

27. Northoff G, Bermpohl F (2004) Cortical midline structures and the self. Trends

in Cognitive Sciences 8: 102–107.

28. Schmitz TW, Rowley HA, Kawahara TN, Johnson SC (2006) Neural correlates

of self-evaluative accuracy after traumatic brain injury. Neuropsychologia 44:

762–773.
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