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Abstract: Serra da Estrela PDO cheese is the oldest traditional cheese manufactured in Portugal.
In this work, its microbiome as well as the main raw materials used in cheese production, raw
ewes’ milk and thistle flowers (Cynara cardunculus L.), were characterized using next generation
sequencing. Samples were accordingly retrieved from a local producer over two consecutive pro-
duction campaigns and at different time periods within each campaign. The bacterial and fungi
communities associated with each matrix were accessed through sequencing of V3–V4 and Internal
Transcribed Spacer 2 regions of rRNA gene amplicons, respectively. A high microbial diversity was
found associated to each matrix, differing significantly (p < 0.05) from each other. Over 500 taxa were
identified in each analyzed matrix, ranging from dominant (relative abundance > 1%), sub-dominant
(0.01–1%) and rare taxa (<0.01%). Specifically, in cheese, 30 taxa were present in all analyzed samples
(core taxa), including species of Leuconostoc spp. and Lactococcus spp. for bacteria and Candida spp.,
Debaryomyces spp. and Yarrowia spp. for fungi, that were cumulatively the most prevalent genera in
Serra da Estrela PDO cheese (average relative abundance ≥10%). Ultimately, this characterization
study may contribute to a better understanding of the microbial dynamics of this traditional PDO
product, namely the influence of raw materials on cheese microbiome, and could assist producers
interested in preserving the identity, quality and safety of Serra da Estrela PDO cheese.

Keywords: traditional cheeses; Serra da Estrela cheese; protected designation of origin foods; next
generation sequencing; microbiome; raw ewes’ milk; cardoon (Cynara cardunculus L.)

1. Introduction

Serra da Estrela cheese (SEC) is the most renowned Portuguese traditional cheese [1].
Produced in the foothills of the Serra da Estrela mountain, to which it owes its name, it
follows artisanal protocols passed down between generations of shepherds, tracing back to
the Roman occupation of the Iberian Peninsula [1–3]. Nowadays, SEC is the primary source
of income of local shepherds and farmers, and is one of the most important economic
activities in the region [1–3].

SEC manufacturing uses ovine raw milk from pasture feed females of “Bordaleira
Serra da Estrela” and/or “Churra Mondegueira” breeds, coagulated with the addition of
crude extracts of dried Cynara cardunculus L. flower and salt [4]. After a ripening period
of 30–45 days, a flat cylinder, highly aromatic with a clean, smooth and slightly acidically
flavored cheese is obtained. Featuring a thin, soft, uniform straw–yellowish rind and an
ivory–white, buttery, creamy and unctuous paste with none too few little eyes [1–4]. These
intrinsic characteristics earned it, in 1996, the Protected Designation of Origin (PDO) status.

Over the years, extensive fundamental and applied research has been carried out to unveil
SEC unique organoleptic characteristics (reviewed in Inácio et al. [4] and Macedo et al. [2]).
One critical factor is the use of raw untreated milk over the deliberate addition of starter
cultures. This means that the native microbiota of the milk ends up playing a critical role
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in the manufacture of SEC [2,4,5]. The microbial consortia associated with SEC has been
extensively studied, from the raw materials up to the final product [4]. However, these studies
were limited to data gathered from cultured dependent methods [3,5–8], which are unable
to truly unveil the diversity associated with these types of product [9–11]. Over the last
decade, culture-independent methods, such as high-throughput sequencing technologies, have
emerged, allowing an in-depth characterization and the identification of both high and low
abundance microbiota at a species and, even in some cases, at a subspecies level [12–16]. Hence,
Next Generation Sequencing (NGS) is been applied in the characterization of the microbial
communities of traditional cheeses [9,17–21]. However, as far as the authors know, this is the
first time that is used to characterize SEC microbiome. Therefore, the aim of the present work
was to characterize the microbial community, of both bacteria and fungi, associated with the
SEC and raw materials using NGS.

2. Materials and Methods
2.1. Cheese Manufacture and Sampling Strategy

For microbial characterization of SEC, raw ewes’ milk (REM), cardoon and cheese
samples were analyzed from two consecutive production campaigns (1) 2018/2019; (2)
2019/2020. These were subdivided into three periods: (1) November–January; (2) February–
March; and (3) May–June, as depicted in Figure 1.
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as “commercial”, and three genotypes of Cynara cardunculus L.,1 M, 3 M and 6 M [22]. 
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cardoon and Serra da Estrela PDO cheese. Co refers to the commercially used cardoon by the cheese producer and 1 M, 3 M
and 6 M refers to specific Cynara cardunculus L. genotypes used in this study in the manufacture of Serra da Estrela cheese.

The sampling strategy allowed a systematic analysis of SEC production, including
autumn, winter and spring manufactures, reflecting distinct weather and pasture conditions
that, on previous reports, posed a significant influence on microbial abundance [2,6,7].
Furthermore, to account for farmhouse variability REM from the two producers were used
and analyzed throughout the study, A in 2018/2019 and B in 2019/2020 [2]. Moreover, four
types of cardoon from Cynara cardunculus L. were used and analyzed. One was provided by
the cheese producer and is regularly used in SEC manufacture, identified as “commercial”,
and three genotypes of Cynara cardunculus L.,1 M, 3 M and 6 M [22].

Finally, SEC was manufactured in a certified PDO cheese producer from Gouveia, Por-
tugal. REM and cardoon samples used for cheese manufacture were collected immediately
before use. Serra da Estrela cheeses were produced following standard procedures and
a ripening period of 38 days. All samples were transported and kept under refrigeration
(≤4 ◦C) before processing.
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2.2. Total DNA Extraction

Upon arrival, milk, cardoon and cheese samples were prepared for DNA extraction.
For REM, three replicate tubes containing each 6 mL of milk were pelleted at 13,000 rpm
(Hettich, Tuttlingen, Germany) for 10 min [23]. The supernatant was discarded and the
pellet was resuspended in DNA/RNA Shield™ solution (ZymoResearch, Irvine, CA, USA).
For cardoon, 2 to 10 g of dried thistle flower samples were suspended in 100 mL of a
sterile solution containing 10% (v/v) Buffered Peptone Water (Liofilchem srl, Roseto degli
Abruzzi, Italy) and 0.01% (v/v) Tween 80® (PanReac AppliChem). Cardoon suspension was
subjected to an ultrasonic bath for 30 s (Jet Program option) (Soltec, Milan, Italy) followed
by 150 rpm orbital agitation for 30 min at room temperature (B. Braun Biotech International,
Melsungen, Germany). Plant material was grossly filtered out using a stomacher bag
filter and the remaining solution was divided into three 20 mL replicate aliquots. Cells
were pelleted at 10,000 rpm for 5 min, the supernatant was discarded, and the pellet was
resuspended in a DNA/RNA Shield™ solution. For cheese, three replicate portions of
400 mg were aseptically retrieved from the paste side and center of each cheese and were
transferred to a tube containing a DNA/RNA Shield™ solution. All sample replicates of
milk, cardoon and cheese in DNA/RNA Shield™ solution were homogenized in a bead
beater (Benchmark Scientific, Sayreville, USA) for 6 min at maximum speed and stored at
−20 ◦C until DNA extraction.

Total DNA was extracted from each sample replicate using ZymoBIOMICS™ DNA
Miniprep Kit (ZymoResearch, Irvine, CA, USA), following the manufacturer’s instructions.
The eluted DNAs were cleaned and concentrated using a DNA Clean and Concentrator™
Kit (ZymoResearch, Irvine, CA, USA), following the manufacturer’s instructions. Finally,
the purified DNA from three independent extractions of each sample was pooled together
and used in downstream procedures.

2.3. Sequencing Preparation, Run and Processing

The pooled DNA from each sample was subjected to two separated PCR amplifica-
tion runs, one for the V3–V4 hypervariable region of the 16S rRNA gene and the other
for the Internal Transcribed Spacer (ITS) region of the 18S rRNA. The PCR amplification
runs were performed using KAPA HiFi HotStart PCR Kit (Roche, Indianapolis, IN, USA)
according to manufacturer instructions, using 0.3 µM of each primer and 12.5 ng of tem-
plate DNA, in a total volume of 25 µL. For the amplification of the V3–V4 region, the
forward Bakt_341F 5′–CTACGGGNGGCWGCAG–3′ and reverse primers Bakt_805R 5′–
GACTACHVGGGTATCTAATCC–3′ were used [24,25]. For the amplification of the ITS region,
a pool of forward primers, ITS3NGS1_F 5′–CATCGATGAAGAACGCAG–3′, ITS3NGS2_F
5′–CAACGATGAAGAACGCAG–3′, ITS3NGS3_F 5′–CACCGATGAAGAACGCAG–3′,
ITS3NGS4_F 5′–CATCGATGAAGAACGTAG–3′, ITS3NGS5_F 5′–CATCGATGAAGAACGTGG–
3′, ITS3NGS10_F 5′–CATCGATGAAGAACGCTG–3′ and reverse primer ITS4NGS001_R
5′–TCCTSCGCTTATTGATATGC–3′ were used [26]. PCR conditions included a 3 min de-
naturation at 95 ◦C, followed by 25 cycles of 98 ◦C for 20 s, 55 ◦C (V3–V4 region)/60 ◦C (ITS
region) for 30 s and 72 ◦C for 30 s and a final extension at 72 ◦C for 5 min. Then, a second
PCR reaction added indexes and sequencing adapters to both ends of the amplified target
region according to the manufacturer’s recommendations [27]. Negative PCR controls
were included for all amplification procedures. PCR products were finally purified and
normalized using SequalPrep 96-well plate kit (ThermoFisher Scientific, Waltham, MA,
USA) [28], pooled and pair-end sequenced in the Illumina MiSeq® sequencer with the V3
chemistry, according to the manufacturer’s instructions (Illumina, San Diego, CA, USA) at
Genoinseq (Cantanhede, Portugal).

Raw reads were extracted from Illumina MiSeq® System in FASTQ format and quality-
filtered with PRINSEQ version 0.20.4 [29] to remove sequencing adapters, trim bases with
an average quality lower than Q25 in a window of 5 bases and reads with less than 100
and 150 bases in length for ITS and V3–V4 files, respectively. Forward and reverse reads
were merged by overlapping paired end reads with AdapterRemoval version 2.3.0 [30]
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using default parameters. ITSx version 1.1.2 [31] was used on ITS files to extract the highly
variable fungal ITS2 subregion from merged reads and were then filtered to remove ITS2
reads below 100 bases in length. Sample IDs were assigned to the merged reads and
were converted to a FASTA format. Chimeric merged reads were detected and removed
using VSearch [32], an implementation of UCHIME [33] against Greengenes database
version 13_8 [34] for V3–V4 and UNITE/QIIME ITS database version 8.2 [35] for ITS2
files. Operational Taxonomic Units (OTU) were generated in the Quantitative Insights
into Microbial Ecology (QIIME) software version 2020.2 [36]. OTUs were selected at a
similarity cut-off of 97% using the open reference strategy and those with less than two
reads were discarded.

2.4. Bioinformatics and Statistical Analysis

All files generated in the previous section were analyzed in QIIME software version
2020.8 [36]. Diversity indexes namely, Shannon [37], Simpson [38] and Goods Coverage [39],
as well as richness estimators, Chao1 [40] and Abundance Coverage Estimator (ACE) [41],
were determined using q2–diversity plugin and alpha pipeline.

A phylogenetic tree was generated using q2–phylogeny plugin and align–to–tree–mafft–
fasttree pipeline [42,43]. From there, OTU, Faith Phylogenetic diversity [44] and Shan-
non [37] rarefaction plots were constructed using q2–diversity plugin and alpha–rarefaction
pipeline (Figures S1 and S2 of supplementary material). Furthermore, q2–diversity plugin
and core–metrics pipeline was used to: (1) calculate α–diversity metrics, namely Shannon,
observed features, Faith phylogenetic diversity and Evenness; (2) calculate β–diversity
metrics, namely Jaccard distance [45], Bray–Curtis dissimilarity [46] and unweighted and
weighted UniFrac [47,48]; (3) generate principal coordinates analysis (PCoA) plots. The
sampling depth parameters used in this step were defined for each group of samples to
be the highest possible, while retaining all samples (Tables S1 and S2 of supplementary
material). However, due to a very low number of reads (8832), the 6M cardoon sample
from the 2019/2020 campaign was intentionally dropped from the ITS diversity analysis
between matrices. The generated files were further analyzed within q2–diversity plugin and
alpha–group–significance and beta–group–significance pipelines to explore and disclose α and
β–diversity differences, using Kruskal–Wallis [49] and Permutational multivariate analysis
of variance tests [50], respectively, between matrices, campaigns, periods and cardoon
genotypes. Differences with p < 0.05 were considered significant.

OTU taxonomy assignment was accomplished using q2–feature–classifier plugin [51].
A series of trial classification runs were made to evaluate the best taxonomy assignment in
sequence files obtained from a mock community sample (ZymoResearch, Irvine, CA, USA)
sequenced in parallel with the samples. To that end, classify–sklearn and classify–consensus–
vsearch pipelines were tested using GreenGenes (version 13_8) [34], NCBI (BioProject
33175) (U.S. National Library of Medicine, Bethesda, USA), EZBioCloud (version of Jan-
uary_2021) (ChunLab, Seoul, Republic of Korea), ARB Silva (version SSURef_NR99, release
138) [52] and UNITE (version 8.2, dynamic fungi release) [35] databases. The best taxonomic
outcome for V3–V4 mock file was obtained using the classify–consensus–vsearch pipeline
coupled with ARB Silva database and a confidence threshold for taxonomic assignment
≥90%. For mock ITS files, the best performance was obtained using classify–sklearn pipeline
coupled with a UNITE database and a confidence threshold for taxonomic assignment
≥70%. These taxonomic annotations were used throughout the work for the construc-
tion of stacked bar charts, identification of core taxa by matrix and to identify the taxa
responsible for α and β–diversity differences. A Linear Discriminant Analysis (LDA) of
Effect Size (LEfSe) was used to estimate the effect size on differentially abundant taxa
between and within matrices [53]. LEfSe was performed on a Galaxy computational tool
(http://huttenhower.sph.harvard.edu/galaxy/, accessed on 7th of April 2021) using a
0.05 alpha value for the factorial Kruskal–Wallis test among classes, a 0.05 alpha value for
the pairwise Wilcoxon test between subclasses, a “one against all” strategy for multi-class
analysis, a pairwise comparison only among subclasses with the same name and a loga-

http://huttenhower.sph.harvard.edu/galaxy/
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rithmic LDA score threshold of 3.5 and 6.0 for bacteria and fungi, respectively. Observed
abundances, at any given taxonomic level, of the total reads were then used to define the
dominant (>1%), sub-dominant (between 0.01 and 1%) and rare taxa (<0.01%) [16].

2.5. Nucleotide Sequences Accession Number

Raw reads were deposited in SRA database under BioProject PRJNA723623.

3. Results and Discussion
3.1. Microbial Community of Raw Ewes’ Milk

Milk present in the upper part of a healthy lactation female is generally considered
sterile [54,55]. Milk colonization occurs from direct and/or indirect transfer from reservoirs.
Direct reservoirs are locations and/or surfaces that at some point contact directly with
the previous sterile raw milk, such as the teat canal, teat surface and milking equipment.
Indirect reservoirs can be, for example, feed material, grass, soil, air, litter, water (drinking
and/or washing), stable, milker and milk parlour [15,54,55].

In this study, over 500 genera (213 of bacteria and 293 of fungi) were identified in the
microbial community of REM (Table S3 of supplementary material). This composition is in
general, analogous to previous reports on the microbiology of REM from Serra da Estrela
region [5], from other locations [56–61] and raw milk in general [15,54,55,62].

Despite a wide taxa variability between milk samples, α and β group significance
analysis showed that none of the possible factors, such lactation period/season and pro-
ducer/campaign, posed a significant impact on sample diversity (p > 0.05). Except for the
number of fungi OTUs, which were significantly higher in milk retrieved from producer A
(2018/2019 campaigns) in comparison to the one from producer B (2019/2020 campaigns)
(p < 0.05).

The genus Candida, frequently related to yeast udder inflammation [63,64], with 56% of
the relative frequency on average, and C. zeylanoides with 40% were the predominant fungi
taxa in REM (Figure 2 and Figure S3 of supplementary material), despite the procedures
for the production of certified SEC banning the use of ovine milk obtained from unhealthy
females [65]. This high prevalence, without any other information, could be indicative of
latent infection, which corresponds to 95–98% of all mastitis cases [63]. Hence, a constant
monitorization of the health condition of lactating females is advised to prevent economic
losses throughout the production chain.

Psychrotolerant microflora accounted for ≈40% of total bacterial counts (Figure 2 and
Figure S3 of supplementary material). This is most likely the result of a combination of milk
refrigeration, as recommended in the manufacture manual of SEC, for transportation and
storage purposes and milk handling in cold weather, typical from the region of Serra da
Estrela [65]. These conditions are known to alter the balance of milk microflora, from a gram-
positive to a gram-negative dominance [15,54,55,66]. Finally, Lactic Acid Bacteria (LAB)
accounts for a quarter of bacterial counts, with Lactococcus lactis, Enterococcus faecium and
Leuconostoc mesenteroides with 12, 4 and 3% of the relative frequency on average, respectively,
as the most prevalent species (Figure 2 and Figure S3 of supplementary material).

3.2. Microbial Community of Cardoon

The dried thistle flower of Cynara cardunculus L., cardoon is frequently used as a
clotting agent in the production of goat and ovine milk cheeses in Portugal, Spain and
Italy [67]. The addition of cardoon in cheese production is not standardized, but is still
an empirical exercise of the cheese maker, ranging from 0.15 to 0.6 g of flower in L−1 of
milk [4,67]. Furthermore, several methods are reported for the addition of cardoon in
cheese making [2]. One of the most popular, and the one used in the selected cheese factory,
consists of the maceration of cardoon flowers in water, filtering this extract with the help
of a fine clean cloth, which is poured directly into the warm milk. Extensive research
was carried out to study the influence of cardoon in cheese production, from a chemical,
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biochemical, microbiological and sensorial point of view (reviewed in Conceição et al. [67]).
However, only a few reports accessed the microbial composition of cardoon extracts [68–70].

Over 500 genera (265 of bacteria and 263 of fungi) were identified in cardoon samples,
comprised mostly by taxa with a ubiquitous distribution within the environment and
frequently isolated from vegetal material such Aspergillus, Aureobasidium, Cladosporium,
Lactobacillus, Mucor, Pantoea, Pseudomonas and Rhizopus (Figure 3 and Figure S4 and Table S4
of supplementary material) [55,71–75].
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Despite a wide taxa variability between cardoon samples, α and β group significance
analysis showed that none of the possible factors, such cardoon genotype and/or pro-
duction campaign, posed a significant impact on sample diversity (p > 0.05). Except for
the number of bacterial OTUs, which were significantly higher in cardoon samples from
2019/2020 campaign in comparison to the ones from 2018/2019 (p < 0.05).

3.3. Microbial Community of Serra da Estrela Cheese

The microbial community of cheese is composed of variable ranges of bacteria, yeasts
and molds [54,62,76,77]. Their access to cheese occurs either by deliberate addition, trans-
ference from cheese ingredients (e.g., milk, rennet, salt, among others) and/or transference
from direct contact with equipment and the cheese maker [76,78].

The microbiological characterization of SEC samples revealed the presence of almost
500 genera (138 of bacteria and 338 of fungi—Table S5 of supplementary material). A
composition that is in general, analogous to previous SEC characterizations [3,5–8,79],
other ovine milk cheeses [18,21,79–84], and cheese in general [54,62,77].

As expected, the bacterial community is mainly composed of LAB, ranging from 50
up to 90% of all counts (Figure 4 and Figure S5 of supplementary material). Of those,
Leuconostoc mesenteroides and Lactococcus lactis stand out as the major constituents. This is
in contrast with previous characterizations, that have shown a limited contribution of these
species, in particular to the overall microbial composition of SEC [5,6]. However, recent
publications concerning other ovine milk cheeses show a high prevalence of L. mesenteroides
and L. lactis, namely Azeitão from Portugal [80], Krčki, Istrian and Paski from Croatia [18],
Feta from Greece [84] and Fiore Sardo from Italy [82].
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The fungi community was dominated by the presence of Candida sake, Candida zeylanoides
and Debaryomyces hansenii yeasts (Figure 5 and Figure S6 of supplementary material). D. hansenii
is, in fact, one of the most prevalent yeasts found in cheese, previously described as a major
constituent of the SEC yeast community [5,6] and other ovine milk cheeses [21,62,77,83,85].
On the contrary, the appearance and role of Candida spp. in cheese is a controversial topic.
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Generally regarded as a cheese contaminant, some species are known to be opportunistic
pathogens (e.g., C. parapsilosis, C. tropicalis, C. albicans, among others), while others are
nowadays used as adjunct cultures (e.g., C. krusei and C. colliculosa) [62]. Candida spp. have
been previously identified as part of SEC microbiota, namely C. rugosa, C. zeylanoides and
C. etchellsii [5]. Moreover, recent microbial characterization studies have highlighted the
widespread presence of Candida species in cheese, which has led some authors to raise a
yet-undiscovered role during cheese ripening stage [21,62,81,86,87]. In this case, its high
prevalence results, most likely, from the high prevalence observed in ovine milk samples,
as previously detailed.
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Concerning food safety, the analyzed SEC samples were mostly colonized by benefi-
cial and probiotic microbiota. Although, foodborne pathogens, responsible for occasional
foodborne disease outbreaks derived from the consumption of contaminated cheese prod-
ucts, have also been detected (reviewed in Fox et al. [88]). Pathogenic bacteria such as
Clostridium perfringens, Listeria monocytogenes, Yersinia enterocolitica, Salmonella enterica and
Staphylococcus aureus were found, but at rare (<0.01%) or near the rare range (<0.09%)
(Table S5 of supplementary material), attesting the overall safety of SEC.

Interestingly, an analysis of the abundance histograms points towards a higher di-
versity of 2019/2020 vs. 2018/2019 cheeses, while some taxa appear to be season- and
campaign-specific (Figures 4 and 5). In fact, α and β group significance analysis showed
that the production campaign (2018/2019 vs. 2019/2020), as well as the manufacture period
(November–January vs. February–March vs. May–June), poses a significant impact on SEC
sample diversity (p < 0.05). Similarly, previous studies have shown the influence of the dairy
farm, production campaign, season and axial location factors on overall microbial composi-
tion of SEC [2,3,5–7]. An LEfSe analysis on the data revealed 31 divergent taxa between
campaigns (Figure 6). Of those, most of the divergent taxa were more associated to autumn
manufactures, except for Kocuria spp., Lactococcus spp., Carnobacterium spp., C. curvatus
and K. servazii, which were more abundant in winter and L. lactis, Lactobacillus spp.,
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Acinetobacter spp., Citrobacter spp., S. stellimalicola and C. metapsilosis in spring cheeses
(Figures S8 and S9 of supplementary material). Overall, these differences are likely to
reflect a higher/lower presence of each specific taxon as a resident microbiota in the REM
used for each cheese manufacture (Table S3 of supplementary material).
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3.4. Matrices Taxa Variability and Core Community

The microbial composition and diversity associated with cheese, curd, whey, milk
and the other used ingredients in cheese manufacturing, differ significantly between
each other, reflecting each matrix type intrinsic characteristics and/or interactions [14].
Unsurprisingly, α and β group significance analysis showed that overall, REM, cardoon
and SEC samples differ significantly in their microbial composition (p < 0.05). α group
significance analysis showed that cheese samples present more homogenous microbial
communities, while cardoon samples are the most diverse matrix. Finally, milk samples
presented a high bacterial and low fungi diversity, similar to those observed in cardoon
and cheese samples, respectively. Moreover, β group significance analysis showed that is
possible to discriminate between each matrix, based on their specific bacterial community
(p < 0.001), whereas the fungi community can only be used to distinguish cardoon from
the grouped milk and cheese samples (p < 0.001) (Figure S7 of supplementary material).
Overall, through an LEfSe analysis, it was found that psychrophiles, LAB and yeasts and
plant-associated microorganisms are the most discriminatory biomarkers for REM, SEC
and cardoon, respectively (Figures 7 and 8).

The abundance data allowed the determination of the core microbial community
associated with each matrix (Figures 9 and 10), that ranged from dominant, sub-dominant
to rare taxa (Tables S3–S5 of supplementary material). As demonstrated by α diversity
metrics, cardoon is by far the matrix with the most diverse core microbial community with
61 taxa, followed by REM with 47 and SEC with 30. As expected, SEC shared a higher
number of core taxa with REM than with cardoon—18 vs. 11—and only 9 were shared
between all matrices. L. lactis, one of the most prevalent species in SEC, is one of the most
important LAB species in the dairy industry [80]. Its presence in SEC derives predominantly
from REM (accounting up to 12% of total counts) and rarely from cardoon (≤0.5% of total
counts). It belongs to a restricted group of microorganisms, denominated starter bacteria,
whose main function is the production of lactic acid from lactose metabolization [89].
Furthermore, it contributes to the development of the organoleptic characteristics of cheese
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during ripening, with the production of flavor compounds (e.g., free amino acids and
medium- and small-peptides) from the metabolization of milk proteins and to texture
through the secretion of exopolysaccharides [90,91].

Likewise, L. mesenteroides composes a significant portion of the SEC microbial com-
munity. In contrast to the low abundance levels observed in the raw materials of origin,
REM and cardoon, respectively with 4 and 1% of total counts on average, resulting from a
poor growth in milk [55]. To stimulate growth, leuconostocs requires the addition and/or
synthesis of peptides and amino acids by other microorganisms and, as result of that, are
frequently found in close symbiosis with lactococci in the microbiota of fresh and semi-hard
cheeses [55,92]. Active during ripening, L. mesenteroides are involved in the development
of cheese organoleptic properties through the production of aromatic compounds from
co-metabolization of lactose and citrate [55,78].

Enterococci, namely E. faecalis and E. faecium, are another group of core microbiota
in SEC. However, they are present at relatively low abundances when compared to other
LABs (overall ≤5% of the relative frequency on average). These are a controversial group
within LAB, that, depending on the strain, can be considered as a starter culture, probiotic,
spoilage, or pathogenic bacteria [93]. They can grow under different conditions and
substrates and survive refrigeration, high-temperature and high-salinity environments.
However, SEC seems to provide an unfavorable growth environment, either by microbial
competition and/or substrate deficiency, since its load on cheese is similar to the ones
observed in the raw materials of origin, REM and cardoon (≈4 vs. ≤1%, respectively).
Furthermore, the dominance of E. faecium over other enterococci species is maintained
across matrices. Nonetheless, enterococci are known to contribute to the development of
the organoleptic characteristics of cheese through their proteolytic, lipolytic, and citrate
breakdown activities [55,77,78].

L. curvatus and L. plantarum compose the lactobacilli core microbiota of SEC, present
at a sub-dominant level (0.01 ≤ relative abundance ≤ 1%), with the exception of L. curvatus
on 2019/2020 cheeses that were found with a relative frequency of ≈5% on average. These
lactobacilli are only occasionally found in REM and cardoon, which supports an external
source of these taxa. They are active during the cheese ripening stage and are involved in
a series of events, namely residual sugar metabolization, peptide hydrolysis, amino acid
conversion, production of flavor and aroma compounds and the production of antifungal
and antibacterial compounds [77].

Salt tolerant bacteria such Hafnia spp., Vibrio spp. and micrococci were found to range
between sub-dominant and dominant levels among SEC samples. These taxa are known to
survive the brining process and actively contribute to the development of the organoleptic
characteristics of cheese [15,78]. Micrococci, and to a lower extent Hafnia spp., were found
to inhabit REM and cardoon microflora, while Vibrio spp. was practically absent from these
raw materials. An observation that points towards an equipment/facility-related input, for
example during cheese washing and salting steps [13].

Psychrobacter spp. was found at a near rare range within SEC, and only occasionally in
REM and cardoon samples. Capable of producing aldehydes, ketones and sulphur-volatile
compounds, it contributes to the development of cheese organoleptic characteristics [55].
Overall, Enterobacteriaceae composes of a noteworthy group of REM, cardoon and SEC mi-
croflora. Despite their high aromatic potential, the presence of Serratia spp., Enterobacter spp.
and Citrobacter spp. is often linked to detrimental effects, such hydrogen gas production
and off-flavor development [15,54].

Finally, the fungi core taxa of SEC are mostly composed by yeasts (Figure 10). These
are important during cheese ripening, namely in matrix deacidification through lactate
consumption and in the development of cheese flavor and aroma. Yeast colonization of
cheese occurs predominantly in the rind or in its vicinity, apart from some fermenting
species that can grow in the cheese interior [13,62,77]. D. hansenii is a natural inhabitant
of cheese, owing to its ability to metabolize lactate, lactose and tolerance to acidic and
hypersaline habitats [62,77]. As previously stated, it is the third most prevalent yeast
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in SEC, whose strains arise predominantly from REM (≈6% of total counts) and to a
smaller extent from cardoon (≤1%). For Y. porcina, K. lactis and S. cerevisiae, however,
REM acts most likely as the primary source of strains for SEC, as it is virtually absent in
cardoon samples. K. lactis plays an important role at the beginning of cheese ripening,
namely in lactose metabolization, ethanol production and in the secretion of lytic enzymes,
hereby contributing to cheese flavor and aroma [15,55,77]. S. cerevisiae, occasionally found
in cheese, is active during the ripening stage, when it metabolizes lipids and proteins,
contributing to cheese flavor and aroma [77]. On the contrary, Y. porcina is not commonly
isolated from cheese, unlike Y. lipolytica [62,77,94]. Y. lipolytica presents a strong lipolytic
and proteolytic activity, thus contributing to the organoleptic characteristics of cheese.
Accordingly, it is possible that Y. porcina, similarly to the role of Y. lipolytica in other cheeses,
is involved in flavor and aroma development in SEC.
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4. Conclusions

To the extent of our knowledge, this study represents the first application of next
generation sequencing technology to the characterization of the microbial community
associated with the Serra da Estrela PDO cheese. This comprehensive work provided
an insight into raw materials, raw ewes’ milk and cardoon, used in cheesemaking and
cheeses analyzed over two consecutive production campaigns and three periods within
each campaign. The here-disclosed microbial profiles, not just of the cheese but also of the
milk and thistle flowers used in cheese manufacture, display a high microbial variability
and have offered some insights regarding the provenience and abundance patterns of the
microbiota found in cheese. Ovine milk was found as the most probable strain source
for the core taxa revealed in SEC, with limited contributions of cardoon. Lactobacilli
and Vibrio spp. were virtually absent from the raw materials analyzed, suggesting the
contribution of other sources to the overall SEC microbiome. Moreover, the presence a
newly described yeast, Y. porcina, not commonly associated with cheese, is revealed. This
observation requires further investigation, namely in the evaluation of its impact on cheese
microbiota dynamics and its contribution to cheese organoleptic characteristics.

Overall, this study contributes to a better understanding of a complex, valuable and
appreciated product that must meet rigorous criteria for authenticity and PDO certification.
Nonetheless, future research could focus on the expansion of the scope of this characteriza-
tion, assessing microbial axial location, dairy-farm to dairy-farm variability, and microbial
dynamics during cheese production and ripening stages, potentially addressing some of
the unanswered questions raised in this work.
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