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Protein kinase CK2 is a highly pleiotropic and ubiquitously expressed Ser/Thr kinase with
instrumental roles in normal and pathological states, including neoplastic phenotype in
solid tumor and hematological malignancies. In line with previous reports, CK2 has been
suggested as an attractive prognostic marker and molecular target in acute myeloid
leukemia (AML), a blood malignant disorder that remains as an unmet medical need.
Accordingly, this work investigates the complex landscape of molecular and cellular
perturbations supporting the antileukemic effect exerted by CK2 inhibition in AML cells.
To identify and functionally characterize the proteomic profile differentially modulated by
the CK2 peptide-based inhibitor CIGB-300, we carried out LC-MS/MS and bioinformatic
analysis in human cell lines representing two differentiation stages and major AML
subtypes. Using this approach, 109 and 129 proteins were identified as significantly
modulated in HL-60 and OCI-AML3 cells, respectively. In both proteomic profiles, proteins
related to apoptotic cell death, cell cycle progression, and transcriptional/translational
processes appeared represented, in agreement with previous results showing the impact
of CIGB-300 in AML cell proliferation and viability. Of note, a group of proteins involved in
intracellular redox homeostasis was specifically identified in HL-60 cell-regulated
proteome, and flow cytometric analysis also confirmed a differential effect of CIGB-300
over reactive oxygen species (ROS) production in AML cells. Thus, oxidative stress might
play a relevant role on CIGB-300-induced apoptosis in HL-60 but not in OCI-AML3 cells.
Importantly, these findings provide first-hand insights concerning the CIGB-300
antileukemic effect and draw attention to the existence of both common and tailored
response patterns triggered by CK2 inhibition in different AML backgrounds, a
phenomenon of particular relevance with regard to the pharmacologic blockade of
CK2 and personalized medicine.
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INTRODUCTION

Protein kinases are biological messengers that control multiple
processes in cell physiology through reversible phosphorylation
of thousands of proteins encoded by the human genome. In fact,
phosphorylation is a pivotal mechanism for cell homeostasis, and
its deregulation may result in aberrant signaling pathways
implicated in a variety of human disorders (Cohen, 2002;
Ardito et al., 2017).

Protein kinase CK2 (formerly known as casein kinase 2) is a
ubiquitously expressed and constitutively active enzyme that
exists as tetrameric complexes composed by two catalytic (α or
αʹ) and two regulatory subunits (β) (Meggio and Pinna, 2003;
Venerando et al., 2014). This highly pleiotropic Ser/Thr kinase is
responsible for roughly 25% of cellular phosphoproteome, thus
playing instrumental roles in normal and pathological states
(Meggio and Pinna, 2003; Borgo et al., 2021). Of note, CK2
stands among the most studied kinases in recent years, and its
contribution to the malignant phenotype and cancer progression
has been suggested by mounting pieces of evidence (Trembley
et al., 2009; Chua et al., 2017; Zonta et al., 2021). In particular,
CK2 modulates signaling pathways critical for hematopoietic cell
survival and function, and its high expression and activity in acute
myeloid leukemia (AML) have been associated with worse
prognosis and reduced overall survival (Kim et al., 2007;
Quotti Tubi et al., 2017). Hence, in the past few years, CK2
has emerged as a promising candidate for molecular-targeted
therapy in AML, a disease often characterized by poor long-term
outcomes and resistance towards standard chemotherapy
(Buontempo et al., 2018; Rosales et al., 2021a; Klink et al., 2021).

Importantly, the development of highly specific inhibitors has
represented a major advance for CK2 substrate identification and
elucidation of its roles in cell regulation (Gyenis et al., 2011). A
number of CK2 inhibitors have been described so far, including
small molecules targeting the ATP-binding site on the CK2α
catalytic subunit (Sarno et al., 2011), several flavonoids
characterized by a planar structure and hydroxylations at the 7
and 4′ positions (McCarty et al., 2020), and two synthetic
peptides designed to antagonize the interaction between the
CK2α and β subunits (Laudet et al., 2007) and bind the
conserved acidic phosphoacceptor domain in CK2 substrates
(Perea et al., 2018). The majority of such inhibitors have
exhibited in vitro antiproliferative and proapoptotic activity,
and some of them have also shown antitumor properties in
animal models (Borgo and Ruzzene, 2021). In spite of the
foregoing, only the ATP-competitive CK2 inhibitor CX-4945
and the synthetic peptide CIGB-300 have reached clinical
trials in humans (Borgo and Ruzzene, 2021).

CIGB-300 is a peptidic inhibitor originally conceived to block
the protein kinase CK2 activity through binding to the conserved
acidic phosphoacceptor domain of substrates (Perea et al., 2004).
The peptide is able to impair proliferation and viability of a
variety of human cancer cells, including AML cells lines and
primary cells from AML patients (Perea et al., 2008; Rosales et al.,
2021a). However, pull-down assays and phosphoproteomic
analysis have suggested that CIGB-300 is able to directly
interact with the CK2α catalytic subunit and modulate the

CK2-dependant phosphoproteome (Perera et al., 2020a; Perera
et al., 2020b). Thus, CIGB-300 antineoplastic effect appears to be
more complex than originally thought, owing to the convergence
of both substrate binding mechanism and direct blockade of CK2
enzymatic activity. Considering the above, here we performed
quantitative proteomic analysis in order to explore the molecular
and cellular perturbations promoted by CK2 inhibition with
CIGB-300 in two relevant AML backgrounds.

MATERIALS AND METHODS

Cell Culture
Human leukemia cell lines HL-60 (American Type Culture
Collection, Manassas, VA, United States) and OCI-AML3
(German Collection of Microorganisms and Cell Cultures,
Braunschweig, Germany) were cultured in RPMI 1640
medium (Invitrogen, Carlsbad, CA, United States)
supplemented with 10% (v/v) heat-inactivated fetal bovine
serum (FBS) (Invitrogen, Carlsbad, CA, USA) and 50 μg/ml
gentamicin (Sigma, St. Louis, MO, United States). Cells were
maintained under standard cell culture conditions at 37°C and
5% CO2.

Sample Preparation
For proteomic analysis, HL-60 and OCI-AML3 cells (107 cells per
each condition, three biological replicates) were incubated with
40 μM of the peptide CIGB-300 for 30 min and 3 h. Parallel to
CIGB-300-treated groups, non-treated HL-60 and OCI-AML3
were incubated for 30 min and 3 h with vehicle and used as
normalization control. Proteins from each replicate of CIGB-300-
treated and non-treated AML cell groups were extracted with
1.5% SDS, 50 mM DTT, and boiling conditions for 10 min.
Protein extracts were then processed by multienzyme digestion
filter-aided sample preparation (MED-FASP) with overnight Lys-
C and tryptic digestions (Wiśniewski and Mann, 2012). Protein
and peptide concentrations were estimated by a tryptophan
fluorescence-based assay previously described by Wiśniewski
and Gaugaz (2015). Finally, 1 ng of peptides for each sample
were injected for nanoLC-MS/MS analysis.

NanoLC-MS/MS
A NanoLC EASY-nLC 1200 system coupled to a Q-exactive HF
mass spectrometer (Thermo Scientific, Waltham, MA, USA) was
used. Chromatographic runs for Lys-C and trypsin-derived
peptides were performed in a home-made column (Dr. Maisch
ReproSil-Pur C18-AQ 1.9 µm, 75 μm ID, 20 cm length)
thermostated at 60°C. Peptides were eluted at 300 nl/min with
a 120-min solution B (A: 0.1% formic acid in water and B: 0.1%
formic acid in acetonitrile) gradient, starting at 5% solution B up
to 30% in 95 min, then increased to 60% in 5 min, and finally up
to 95% in 5 min more. A voltage of 2 kV was applied to the
column tip to induce the nanospray and the mass range
300–1,650m/z was scanned for data-dependent acquisition.
Each mass spectrum obtained at 60,000 resolutions (20-ms
injection time) was followed by 15 MS/MS spectra (28-ms
injection time) at 15,000 resolutions. Proteins were only
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considered when detected in at least two replicates in any of the
groups.

Data Processing
Identification of peptides and proteins was based on the match-
between-runs procedure using MaxQuant software (v1.6.2.10)
(Cox et al., 2014), considering oxidation (M), deamidation (NQ),
and N-terminal acetylation as variable modifications. Alignment
of chromatographic runs was allowed with default parameters
(20-min time window and a matching of 0.7 min between runs).
Filtering and quantification were performed in Perseus
computational platform (v1.6.2.2) (Tyanova et al., 2016).
Student’s t test was employed to identify statistically significant
changes (p-values lower than 0.05) in protein levels, after filtering
for two valid values in at least one group. An additional cutoff of
1.5-fold change between CIGB-300-treated AML cells and the
non-treated control was also applied.

Bioinformatic Analysis
Differentially modulated proteins were tested for enrichment of
Gene Ontology (GO Biological Processes) terms using Metascape
gene annotation and analysis resource (https://metascape.org/), a
web-based tool that computes the accumulative hypergeometric
distribution and enrichment factors to identify significantly
enriched biological processes through statistical analysis (p-value
<0.01, enrichment factor >1.5) (Zhou et al., 2019). For either HL-60
or OCI-AML3 proteomic profiles, the Metascape Custom Analysis
option was selected, and all identified proteins were used as
background, and differentially modulated proteins at 30min and
3 h after CIGB-300 treatment were combined and used as input
dataset for meta-analysis. In addition, to represent the interaction
networks associated with AML cell proteomic profiles, interactions
among differentially modulated proteins were retrieved using
Metascape, which compiles information from different integrative
databases and applies the MCODE algorithm to extract highly
connected regions embedded in each network (Bader and Hogue,
2003; Zhou et al., 2019). Finally, functional classification of CIGB-
300-modulated proteins was based on the information retrieved
through literature search and database curation, and protein
interaction networks were visualized using Cytoscape software (v.
3.5.0) (Shannon et al., 2003).

Reactive Oxygen Species Detection
For detection of reactive oxygen species (ROS) levels in AML
cells treated with the peptide, HL-60 and OCI-AML3 cells were

incubated with 40 µM CIGB-300 during 30 min, 3 h, and 5 h.
Following incubation, cells were collected by centrifugation,
washed with PBS, and stained with the fluorescent probe
dihydroethidium (DHE) (Sigma, MO, United States) for
30 min at 37°C in the dark. Finally, stained cells were
analyzed in the Partec CyFlow Space flow cytometer
(Sysmex Partec GmbH, Gorlitz, Germany), and FlowJo
software (v7.6.1) (BD, Ashland, OR, USA) was used for
data analysis and visualization. In all experiments, 5 mM
H2O2 and 5 mM N-acetyl cysteine (NAC) anti-oxidant were
used as controls.

Annexin V/PI Staining
The viability of HL-60 cells treated with CIGB-300 in the
presence or absence of NAC antioxidant was assessed using
the FITC Annexin V Apoptosis Detection Kit I (BD
Biosciences, San Jose, CA, United States). Briefly, cells were
incubated with 40 µM CIGB-300 alone or in combination with
5 mMNAC for 30 min and 5 h. Cells were then washed twice with
cold PBS and resuspended in binding buffer (1×) at 1 × 106 cells/
ml. Next, 5 µl of FITC Annexin V and 5 µl of propidium iodide
(PI) were added, and cell suspensions were incubated for
additional 15 min at room temperature in the dark. Analysis
of stained cells and data processing/visualization were performed
in the abovementioned Partec CyFlow Space flow cytometer and
FlowJo software.

Statistical Analysis
Differences between groups were determined using one-way
ANOVA followed by Tukey’s multiple comparisons test.
Analyses were performed in GraphPad Prism (v6.01) software
for Windows (GraphPad Software, Inc, San Diego, CA,
United States).

RESULTS

Profiling CIGB-300-Regulated Proteome in
AML Cells
To identify the array of proteins regulated by CIGB-300 in
AML cells, we performed quantitative proteomic analysis of
HL-60 and OCI-AML3 cells treated or not with 40 µM of this
peptide inhibitor. A total of 6,270 and 6,181 proteins were
identified in HL-60 after 30 min and 3 h of CIGB-300
treatment, respectively (Table 1; Supplementary Table S1).

TABLE 1 | Proteomic profile of AML cells treated with CIGB-300 peptide.

Proteome dataset HL-60 OCI-AML3

30 min 3 h 30 min 3 h

Identified proteins 6,270 6,181 6,382 6,422

Significantly modulated proteins 25 85 74 58
Total: 109; Overlap: 1 Total: 129; Overlap: 3

Down-regulated 16 4 6 3
Up-regulated 9 81 68 55
— Total: 233; overlap: 5
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Likewise, 6,382 and 6,422 proteins were identified in OCI-
AML3 cells at the same incubation periods (Table 1;
Supplementary Table S1).

Changes in protein levels between CIGB-300-treated and
untreated cells were assessed using Student’s t test, and
p-values below 0.05 were considered statistically significant. A
fold-change threshold of 1.5 (|FC| ≥ 1.5) in treated vs control was
also applied in order to define the down- and up-regulated
proteins. As a result, in HL-60 cells, 25 and 85 proteins were
identified as significantly modulated at 30 min and 3 h, while in
OCI-AML3 cells, 74 and 58 proteins appeared differentially
modulated in response to CIGB-300 treatment (Table 1;
Supplementary Table S2).

Of note, in practically all conditions, most of the
differentially modulated proteins were up-regulated after
CK2 inhibition with CIGB-300 as determined by
distribution of down- and up-regulated proteins in volcano
plots (Figure 1; Table 1). Exceptionally, in HL-60 cells treated

with the peptide for 30 min, the number of down-regulated
proteins was higher than the up-regulated ones (Figure 1;
Table 1). Overall, a total of 109 and 129 proteins were
differentially modulated in HL-60 and OCI-AML3 cells,
respectively, with an overlap of one (MRPL52) and three
(DCTPP1, GORASP2, and RAC1) proteins that appeared
modulated at 30 min and 3 h after CIGB-300 treatment
(Table 1; Supplementary Table S2). Besides, among all
differentially modulated proteins, a total of five (CD53,
HMGN1, NDUFC1, RCN2, and TPM3) overlapped between
both cellular backgrounds (Table 1; Supplementary
Table S2).

Functional Characterization of
CIGB-300-Regulated Proteome
Functional enrichment analysis of CIGB-300-regulated
proteome in AML cells was performed using the Metascape

FIGURE 1 | Proteomic profiles of human acute myeloid leukemia (AML) cells treated with the CK2 inhibitor CIGB-300. Volcano plots correspond to quantified
proteins from HL-60 and OCI-AML3 cells after treatment with 40 µM of CIGB-300 for 30 min and 3 h. Red points indicate proteins that met the statistical significance
cut-off (|FC| ≥ 1.5, p-value <0.05).
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bioinformatic tool (Zhou et al., 2019). In such analysis, actin-
mediated cell contraction, phospholipid dephosphorylation,
transcription preinitiation complex assembly, translational
regulation, regulation of calcium ion transmembrane
transport activity, and others were identified as biological
processes significantly represented in HL-60 proteomic
profile after CK2 inhibition with CIGB-300 (Figure 2;
Supplementary Table S3). Besides, proteins involved in the
regulation of Rho protein signal transduction, leukocyte
migration, cytokine-mediated signaling pathway,
developmental growth, and cell size, as well as leukocyte
apoptotic process and actin filament organization, appeared
differentially modulated in CIGB-300-treated OCI-AML3
cells (Figure 2; Supplementary Table S3).

To further characterize the proteomic profile regulated by
CIGB-300, the interaction networks among differentially
modulated proteins in HL-60 or OCI-AML3 cells were
represented using Metascape tool, and highly connected
regions in such networks were identified using the MCODE

algorithm (Bader and Hogue, 2003; Zhou et al., 2019). As
shown in Figure 3, clusters of proteins related to actin-myosin
filament sliding (cluster 1), cell cycle (cluster 2), neutrophil
activation (cluster 3), and mitochondrial translation (cluster
4) were differentially modulated in HL-60 cells after treatment
with CIGB-300. Besides, the HL-60 proteomic profile also
includes proteins related to apoptotic cell death,
transcription, and ROS metabolic process (Figure 3).
Similar results were obtained by functional enrichment
analysis in which the biological processes of translation
elongation, actin-mediated cell contraction, and
transcription preinitiation complex assembly were found
significantly represented in the proteomic profile of HL-60
cells (Figure 2; Supplementary Table S3).

On the other hand, network analysis of OCI-AML3 cell
proteomic dataset evidenced that clusters of proteins related to
interferon type I signaling (cluster 1), protein
polyubiquitination (cluster 2), GPCR downstream signaling
(cluster 3), and cell cycle (cluster 4) were differentially

FIGURE 2 | Heatmap of enriched terms (colored by p-values) across proteomic profiles of human AML cells treated with the CK2 inhibitor CIGB-300. Enrichment
analysis for differentially modulated proteins in HL-60 and OCI-AML3 cells treated with 40 µM of CIGB-300 for 30 min and 3 h was based on annotations from Gene
Ontology (GO) database. Biological processes significantly represented in proteomic profiles (p-value <0.01, enrichment factor >1.5) were identified using theMetascape
gene annotation and analysis resource (https://metascape.org/).
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modulated in response to CK2 inhibition with CIGB-300
peptide (Figure 3). Furthermore, proteins related to
apoptotic cell death were also identified in OCI-AML3-
modulated proteome (Figure 3). In line with such result,
cytokine-mediated signaling pathway and leukocyte
apoptotic process were identified through functional
enrichment analysis (Figure 2; Supplementary Table S3).

Similar to HL-60 proteomic profile, besides proteins
involved in cell cycle and apoptosis regulation, an array of
proteins related to transcription and translation appeared
modulated in CIGB-300-treated OCI-AML3 cells
(Figure 3). Therefore, CK2 inhibition with CIGB-300 has
an impact over these biological processes independently of
the genetic background of these AML cell lines. Conversely,

FIGURE 3 | Protein–protein interaction networks associated with the proteomic profiles differentially modulated in AML cells in response to treatment with 40 µM of
CIGB-300. Proteins are shown as yellow circles and clusters identified with the MCODE algorithm are highlighted with different edge colors. For each cluster, the related
biological process or pathway according to annotations gathered from Gene Ontology (GO), Reactome (R-HSA), or WikiPathways (WP) databases are indicated.
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proteins involved in ROS metabolic process did not appear
represented in OCI-AML3 proteomic profile.

Differential Effect of CIGB-300 Over AML
Cell ROS Production
Considering that proteomic analysis suggested a differential effect of
CIGB-300 over ROS metabolic process in AML cells (Figure 3), we
sought to elucidate if intracellular ROS accumulation could be
related to CIGB-300 anti-leukemic effect. To determine ROS
levels in HL-60 and OCI-AML3 cells after CK2 inhibition with
CIGB-300, we use DHE as fluorescent probe for flow cytometry
analysis. As a result, CIGB-300 treatment significantly increased
ROS levels at all the assessed incubation times on HL-60 cells, with
the highest intracellular ROS levels at 30min of incubation
(Figure 4A). Besides, H2O2 increased ROS levels and NAC anti-
oxidant control abrogated ROS production in HL-60 cells treated
with CIGB-300 (Figure 4A). On the contrary, in OCI-AML3 cells,
CK2 inhibition with CIGB-300 did not induce any alteration of ROS
homeostasis, which is in agreement with results from proteomic
analysis (Figure 4A).

Of note, the potential connection between ROS de-regulation
and CIGB-300-induced apoptosis was explored in HL-60 cells.
Importantly, Annexin V/PI staining evidenced that the addition
of NAC anti-oxidant reduced not only the accumulation of
intracellular ROS but also the percentage of HL-60 cells
undergoing apoptosis after 30 min and 5 h of treatment with
the peptide (Figure 4B).

DISCUSSION

In the protein kinase landscape that has emerged as attractive
targets for cancer treatment, CK2 stands among the most studies

in recent years. This highly pleiotropic enzyme controls a number
of signaling networks playing essential roles for malignant
phenotype maintenance, and cancer cells often develop an
excessive “addiction” to CK2 activity (Ruzzene and Pinna,
2010). The abovementioned has fostered the investigation of
several CK2 inhibitors (Borgo and Ruzzene, 2021), including
the clinical-grade synthetic peptide CIGB-300 (Perea et al., 2004).
Accordingly, here we use quantitative proteomics to identify the
CIGB-300-regulated proteome and explore the molecular
perturbations promoted by this CK2 inhibitor in HL-60 and
OCI-AML3 cells following 30 min and 3 h of treatment. These
human cell lines derived from two relevant AML subtypes
(i.e., acute promyelocytic and acute myelomonocytic
leukemia), together accounting for roughly two thirds of all
AML cases (Hanson et al., 2002). Of note, in proteomic
profiles from both AML cell lines, CIGB-300 significantly
modulated proteins related to apoptosis, cell cycle,
transcription, and translation, while proteins involved in
intracellular redox homeostasis were only identified in HL-
60 cells.

Accumulated evidence demonstrates that CIGB-300 induces
apoptosis in cancer cells, including AML cell lines and primary
cells (Perea et al., 2004; Rosales et al., 2021a). In agreement with
such results, mediators of intrinsic and extrinsic apoptotic
pathways were both identified in the proteomic profile
regulated by the peptide in AML cells. The pro-apoptotic
proteins etoposide-induced 2.4 (EI24) and arginine-glutamic
acid dipeptide repeats (RERE) were down-regulated at 30 min
in HL-60 cells. EI24 is a p53 and E2F target gene that inhibits
tumor progression through attenuation of NF-κB signaling (Choi
et al., 2013; Sung et al., 2013), while RERE protein colocalizes with
the pro-apoptotic protein BAX and triggers caspase-3 activation
(Waerner et al., 2001). It is known that to counteract pro-
apoptotic stimuli, cancer cells might activate pro-survival

FIGURE 4 | Evaluation of the impact of the CK2 inhibitor CIGB-300 over AML cell intracellular redox homeostasis. (A) Incubation with CIGB-300 peptide increased
reactive oxygen species (ROS) production in HL-60 cells but not in OCI-AML3 cells. Intracellular ROS levels were determined by flow cytometry in AML cells incubated for
the indicated times with CIGB-300 40 μM, H2O2 5 mM, or CIGB-300 40 µM + NAC 5 mM. (B) The concomitant addition of CIGB-300 peptide and NAC anti-oxidant
reduced the percentage of apoptotic HL-60 cells after 30 min and 5 h of treatment. Results from (A) are shown as mean ± SD, n = 3, and significant differences
from comparison of each treatment with the corresponding untreated condition are indicated *p-value <0.05; **p-value <0.01.
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mechanisms, an event that could explain the decreased
expression levels of EI24 and RERE proteins in response to
CK2 inhibition with CIGB-300.

In line with these findings, TP53-regulated inhibitor of
apoptosis 1 (TRIAP1) and ATR interacting protein (ATRIP)
were up-regulated in HL-60 cells at 30 min and 3 h,
respectively. TRIAP1 mediates the transport of phosphatidic
acid across the intermembrane space for cardiolipin synthesis
and inhibits the release of cytochrome-c from mitochondria
during apoptosis (Potting et al., 2013). Furthermore, to inhibit
apoptosis and allow DNA damage repair under low levels of
genotoxic stress, TRIAP1 interacts with heat shock protein 70
(HSP70) and impairs the formation of the apoptosome
complex (Park and Nakamura, 2005; Fook-Alves et al.,
2016). On the other hand, ATRIP is an essential mediator
of the DNA damage response, which inhibits replicative stress
and TP53-dependent cell death (Matos-Rodrigues et al., 2020).
As we mentioned before, proteomic data suggests that HL-60
cells treated with CIGB-300 seem to be subjected to increased
levels of ROS, a known source of genotoxic stress, which could
lead to apoptotic cell death (Srinivas et al., 2019). In such
context, a pro-survival response could be based on the
activation of DNA repair mechanisms to mitigate the
accumulation of DNA damage.

In case of OCI-AML3 cell proteomic profile, the pro-apoptotic
protein BCL2 antagonist/killer 1 (BAK) was up-regulated after
3 h. BAK1 promotes the formation of mitochondrial voltage-
dependent anion channels leading to loss in membrane potential
and release of cytochrome-c (Wei et al., 2001). Besides, as earlier
as 30 min following CIGB-300 treatment, the expression of Fas-
associated death domain protein (FADD) increased in OCI-
AML3 cells. Such modulation of FADD protein abundance is
of great relevance for CIGB-300 chemotherapeutic potentialities,
since previous data indicate that absent or low FADD protein
expression in leukemic cells is a prognostic factor for poor
response of AML cells to chemotherapy (Tourneur et al.,
2004). FADD activates pro-caspase-8 and the subsequent
caspase signaling cascade in response to apoptotic signals
initiated by activation of death receptors belonging to the
family of tumor necrosis factor (TNF) receptors (Marín-Rubio
et al., 2019). In addition to increased levels of BAK and FADD,
the augmented abundance of caspase-7 and gasdermin-D
(GSDMD) supports the pro-apoptotic effect of CIGB-300 in
OCI-AML3 cells. Caspase-7 is an apoptotic executioner
caspase, while the N-terminal fragment of GSDMD, which is
cleaved by caspase-1, permeabilizes the mitochondrial membrane
and leads to cytochrome-c release (Sborgi et al., 2016; Rogers
et al., 2019).

Among proteins significantly regulated by the CK2
inhibitor CIGB-300, proteins related to cell cycle appeared
represented in AML proteomic profiles. For instance, in HL-60
cells, differentially expressed proteins include a cluster
(CDK5RAP2, DCTN3, TUBA4A, and TUBGCP5) involved
in the recruitment of mitotic centrosome proteins and
complexes. Other proteins related to transition through
mitotic cell cycle like centrosomal protein of 55 kDa
(CEP55) (Jeffery et al., 2016) and the heterochromatin

component M-phase phosphoprotein 8 (MPHOSPH8)
(Tchasovnikarova et al., 2015) were modulated in the
presence of CIGB-300. The expression of leucine carboxyl
methyltransferase one protein (LCMT1), which methylates
the catalytic subunit of protein phosphatase 2A (PP2A) (Lee
and Pallas, 2007), was increased after 3 h of CIGB-300
treatment. PP2A regulates G2/M transition of cell cycle and
contributes to mitotic chromosome assembly by promoting
chromosomal association of condensin-2 complex (Takemoto
et al., 2009; Li et al., 2020). Of note, the condensin-2 regulatory
subunit D3 (NCAPD3) was up-regulated at 3 h in HL-60 cells.
Similarly, proteins differentially modulated in OCI-AML3
cells include a cluster (CCND3, E2F4, and RBL2)
specifically involved in the G1/S transition. Cyclin D3
(CCND3), which functions as a regulatory subunit of CDK4
or CDK6, was up-regulated at 3 h after CIGB-300 treatment.
Also, the transcription factor E2F4, a repressor member of the
E2F family, its partner the retinoblastoma-like protein 2
(RBL2/p130), and the protein Lin-54 homolog (LIN54) were
up-regulated in OCI-AML3 cells. Such proteins are
subcomponents of the LIN complex (LINC), which
represses G1/S and G2/M genes during G0 and early G1
phase of the cell cycle (Fischer and Müller, 2017).

The impact of CK2 inhibition over cell cycle in AML was
previously corroborated using the ATP-competitive inhibitor
CX-4945 and CIGB-300 peptide. In such studies, flow
cytometry and phosphoproteomic analysis of AML cells
evidenced an impairment of cell cycle progression in
response to CK2 inhibition (Rosales et al., 2021a; Rosales
et al., 2021b). In fact, the filament-forming cytoskeletal
GTPase SEPTIN2 and the MCM2 subunit of the replicative
helicase complex (MCM complex), both well-documented
CK2 substrates related to cell cycle progression, were down-
phosphorylated in CIGB-300-treated AML cells (Rosales et al.,
2021a). Furthermore, as a downstream consequence of CK2
inhibition by CIGB-300, a significant number of down-
phosphorylated phosphosites in AML cells were attributed
to the CDK family, thus suggesting a functional impairment
of such kinases (Rosales et al., 2021a).

Likewise, proteins related to transcription and translation
were differentially modulated in both HL-60 and OCI-AML3
cells treated with CIGB-300. In agreement, previous results
have evidenced an impact of CIGB-300 on such biological
processes (Perera et al., 2015), and in AML cells, the peptide
not only interacts with proteins from the small and the large
ribosome subunits but also down-phosphorylates proteins
required for transcription, ribosome biogenesis, and initiation
of protein synthesis (Rosales et al., 2021a). Accordingly, several
components of the transcription pre-initiation complex
(TAF5, TAF1B, GTF2A, INTS9, and MED17) were modulated
by CIGB-300 in HL-60 cells. Nuclear factor-erythroid 2 (NFE2),
a transcription factor overexpressed in myeloproliferative
neoplasms and important for hematopoietic stem cell
maintenance and differentiation (Wang et al., 2010; Di Tullio
et al., 2017; Peeken et al., 2018), was down-regulated in HL-60
cells. Furthermore, the transcriptional regulator Cbp/p300-
interacting transactivator 2 (CITED2), which functions in
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stem cell maintenance and promotes leukemic cell survival
(Korthuis et al., 2015; Mattes et al., 2017), was differentially
modulated in HL-60 proteomic profile in response to CIGB-
300 treatment. The modulation of such proteins suggests a
potential role of CIGB-300 in regulating the self-renewal of
leukemic stem cells.

In line with this hypothesis, the expression of the
transmembrane receptor Notch1 was increased in HL-60, and
tetraspanin 14 (TSPAN14) and manic fringe glycosyltransferase
(MFNG), which function as positive regulators of Notch signaling
pathway (Taylor et al., 2014; Jouannet et al., 2016), were up-
regulated by CIGB-300 treatment in HL-60 and OCI-AML3 cells,
respectively. The classical view sustains that Notch signaling
keeps cells in an undifferentiated state and plays oncogenic
roles in many cancers, including hematological malignancies
(Ntziachristos et al., 2014). However, specifically in AML,
accumulating pieces of evidence suggest that Notch signaling
pathway has a tumor suppressor role (Kannan et al., 2013; Lobry
et al., 2013). In such respect, Notch1 is down-regulated in AML
cell lines and patient samples and impairs leukemogenesis of
AML by increasing the expression of the transcriptional factor
PU.1, which mediates myeloid differentiation (Yang et al., 1992;
Tohda and Nara, 2001). Since leukemic stem cell maintenance
has been associated with AML relapse and resistant phenotypes to
chemotherapy, a modulation of Notch signaling pathway by
CIGB-300 could add a benefit to the standard antileukemic
therapies.

Similar to HL-60 proteomic profile, CIGB-300 modulates the
abundance levels of several transcription factors in OCI-AML3
cells including the Myc interacting factor X (MAX) and the AF4/
FMR2 family member 4 (AFF4) (Lin et al., 2010; Diolaiti
et al., 2015). In addition, the transcription factor homeobox
A10 (HOXA10), a protein related to leukemogenesis and
chemoresistance that has been proposed as a prognostic
marker for AML patients (Yi et al., 2016; Guo et al., 2020),
was also differentially modulated. Of note, the early growth
response protein 1 (EGR1), which functions as a tumor
suppressor in AML (Gibbs et al., 2008; Tian et al., 2016), was
up-regulated in OCI-AML3 cells in response CIGB-300. EGR1
promotes myeloid differentiation and suppresses the leukemic
phenotype driven by the oncogenes c-Myc or E2F-1 (Gibbs et al.,
2008). This transcription factor is known to activate the
expression of other tumor suppressor genes including p53 and
the phosphatase and tensin homolog (PTEN), promoting growth
arrest or cell death in cancer cells (Wang et al., 2021).
Interestingly, the abundance of PTEN, which is an essential
tumor suppressor in human myeloid malignancies (Morotti
et al., 2015), was increased in OCI-AML3 cells. Noteworthy,
sustained activation of AKT by PTEN deficiency mediates the
chemoresistance of AML cells to idarubicin and cytarabine
anticancer drugs (Ryu et al., 2019). Therefore, the up-
regulation of PTEN in response to CIGB-300 treatment
supports the benefit of combining CIGB-300 with standard
chemotherapy drugs.

Remarkably, an array of proteins related to oxidative
phosphorylation was only identified in HL-60 cells. Among
these proteins, two subunits of the NADH:ubiquinone

oxidoreductase/complex I (NDUFA13 and NDUFC1) were up-
regulated in response to CIGB-300. The complex I catalyzes the
electron transfer from NADH to ubiquinone in the first step of
the mitochondrial respiratory chain, and its subunit NDUFA13,
in addition to be required for electron transfer (Lu and Cao,
2008), functions as a tumor suppressor that binds to STAT3 and
inhibits its transcriptional activity (Nallar et al., 2010). Together
with NDUFA13 and NDUFC1 subunits, complex I intermediate-
associated protein 30 (NDUFAF1), a mitochondrial chaperone
involved in the assembly and stability of complex I (Vogel et al.,
2005), was also up-regulated. The concomitant up-regulation of
these proteins suggests that complex I could have an increased
activity in CIGB-300-treated HL-60 cells, which could lead to an
over-production of ROS since complex I is one of the main
sources of mitochondrial oxidative stress (Brand, 2016).
Importantly, such finding was corroborated by flow cytometry
using the fluorescent probe DHE to determine ROS levels in
AML cells.

Along with increased ROS levels, the cellular antioxidant
defenses can be activated as a compensatory mechanism. In
line with this, glutathione peroxidase (GPX1) and NAD(P)H
dehydrogenase [quinone] 1 (NQO1) were up-regulated in HL-
60 cells. The enzyme GPX1 detoxifies the hydrogen peroxide
(H2O2) generated by superoxide dismutase (Arthur, 2001),
while NQO1 reduces quinones to hydroquinones, preventing
the generation of radical oxygen species (Ross and Siegel,
2021). Notably, AML cells have a reduced spare respiratory
capacity in comparison with normal hematopoietic cells, and
increasing electron flux through the respiratory chain
preferentially promotes oxidative stress and induces cell
death (Sriskanthadevan et al., 2015). Accordingly, we
demonstrated that the reduction of intracellular ROS
production by NAC anti-oxidant was accompanied by a
reduced percentage of HL-60 cells undergoing apoptosis
following treatment with CIGB-300. Thus, the modulation
of proteins related to oxidative phosphorylation could
mediate the antileukemic effect of CIGB-300 and promote
apoptosis in HL-60 cells. Nevertheless, the addition of the anti-
oxidant does not completely abrogate the pro-apoptotic effect
of CIGB-300, evidencing that other molecular mechanisms
different from intracellular ROS production could also be
responsible for the induction of apoptosis in HL-60 cells.
The foregoing is confirmed by the induction of apoptosis
observed in OCI-AML3 cells (Rosales et al., 2021a), in spite
of the absence of ROS accumulation when treated with
CIGB-300.

Altogether, our proteomic analysis supports previous results
evidencing that the proapoptotic effect and the impact of
CIGB-300 over cell cycle regulation and transcriptional/
translational processes are a common denominator for CK2
inhibition in AML cells (Rosales et al., 2021a). Conversely,
modulation of proteins involved in redox homeostasis was
only observed in HL-60 cells. Such findings not only provide
fresh clues related to CIGB-300 antileukemic effect but also
highlight that CK2 inhibition with the CIGB-300 triggered
common and tailored response patterns in different AML
backgrounds.
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