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The ongoing, and very serious, threat from antimicrobial resistance necessitates

the development and use of preventative measures, predominantly vaccination.

Polysaccharide-based vaccines have provided a degree of success in limiting morbidity

from disseminated bacterial infections, including those caused by the major human

obligate pathogens, Neisseria meningitidis, and Streptococcus pneumoniae. Limitations

of these polysaccharide vaccines, such as partial coverage and induced escape leading

to persistence of disease, provide a compelling argument for the development of protein

vaccines. In this review, we briefly chronicle approaches that have yielded licensed

vaccines before highlighting reverse vaccinology 2.0 and its potential application in

the discovery of novel bacterial protein vaccine candidates. Technical challenges and

research gaps are also discussed.

Keywords: reverse vaccinology 2.0, human monoclonal antibodies, bacterial pathogens, vaccine candidate
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BACKGROUND: VACCINE DISCOVERY IN THE PRE-WHOLE
GENOME SEQUENCING (WGS) ERA

Precedent to advancements in genomics, vaccines were developed based on Pasteur’s rules of
vaccinology. A 230-fold serial passage of a bovine bacillus in bile medium produced the live
attenuated Bacillus Calmette-Guerin (BCG) vaccine againstMycobacterium tuberculosis (MTB) (1).
Then, a trivalent blend of poliovirus inactivated in <0.5% formalin was used by Salk et al. as a safe
and effective vaccine against poliovirus (2). The inability to culture some pathogens in vitro (owing
to safety or lack of suitable culture conditions), extensive antigenic variability, and molecular
mimicry limit the broad applicability of traditional culture-based techniques in the development
of vaccines targeting other economically-important pathogens such as Mycobacterium leprae and
Neisseria meningitidis.

The inadequacies of culture-based techniques caused a shift in focus to the use of subunit
components as vaccine candidates. Identification of these subunit vaccine candidates was largely
hypothesis-driven, targeted cellular components and were often well-known virulence factors:
for example, the pertussis toxin and fimbriae in the acellular pertussis vaccine (3); and the
meningococcal porin, PorA, in the epidemic-specific detergent-extracted outer membrane vesicle
(OMV) vaccines of Chile, Norway, and New Zealand (4–6). With complex biosynthetic methods,
bacterial capsular polysaccharides served as prime components of effective vaccines, used singly,
for example, in the 23-valent pneumococcal polysaccharide vaccine, PPSV23 (7). In addition,
these capsular antigens have been conjugated to carrier proteins in a dose-sensitive manner for
enhanced immunogenicity, as found in theHaemophilus influenzae type b (Hib) (8), pneumococcal

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2018.02315
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2018.02315&domain=pdf&date_stamp=2018-10-08
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:f.bidmos@imperial.ac.uk
https://doi.org/10.3389/fimmu.2018.02315
https://www.frontiersin.org/articles/10.3389/fimmu.2018.02315/full
http://loop.frontiersin.org/people/549819/overview
http://loop.frontiersin.org/people/582551/overview
http://loop.frontiersin.org/people/582533/overview
http://loop.frontiersin.org/people/272596/overview


Bidmos et al. RV 2.0 Bacterial Vaccine Discovery

(9), and meningococcal (10) conjugate vaccines. The limited
capacity of these hypothesis-driven studies to focus on only a
handful of candidates at a time was costly in time, labor and
financial terms. This is especially because of the large pool from
which prospective candidates for individual bacterial pathogens
are screened, coupled with the low likelihood of targets satisfying
key vaccine candidacy criteria (abundantly-expressed, surface-
exposed, functionally-immunogenic, and highly-conserved).
Thus, alternative high throughput methods were sought to
accelerate the pre-clinical vaccine development phase, especially
in situations requiring rapid curtailment of disease transmission.

WHOLE GENOMIC AND PROTEOMIC
APPROACHES

Reverse Vaccinology (RV)
The publication of the first complete bacterial genome sequence
in 1995 [for H. influenzae (11)] heralded a revolution in
approaches to vaccine development. By using genomic data and
preset bioinformatic screens, putative surface-associated antigens
of a pathogen were identified. The subsequent recombinant
expression of these genes and immunization of animals with
recombinant proteins, for the determination of active and
passive levels of protection, provided data that substantiated
or annulled the vaccine candidacy of selected antigens (12,
13). This “classical” RV approach led to the development
of the multicomponent meningococcal serogroup B vaccine
(4CMenB) (14). While 4CMenB has potential for cross-
serogroup protection (15), it has been argued that pan-genomic
in silico analysis is more appropriate because of the high
degree of intraspecific diversity exhibited by many bacterial
pathogens (16). Using this pan-genomic approach, Maione et al.
(17) identified four protective antigens from the analysis of an
octa-genomic panel derived from the most prevalent disease-
causing Streptococcus agalactiae strains. The main attraction
of RV lies in its applicability to any pathogen with WGS
data and to which antibody-mediated immunity for protection
against disease is crucial. Its use in the discovery of candidate
antigens comprising vaccines targeting other bacterial pathogens,
including the multidrug-resistant Acinetobacter baumanii, has
been demonstrated (18–20). However, important non-classical
surface-associated proteins may be missed due to the parameters
of the bioinformatic screen(s).

Related to RV is the use of transcriptomics to identify
novel vaccine antigens. For example, the comparative analysis
of the meningococcal transcriptome in ex vivo human whole
blood and in vitro nasopharyngeal colonization models revealed
three antigens that were differentially regulated between invasive
disease and asymptomatic colonization, and were thus subjects
for further vaccine candidacy studies (21) However, this
transcriptomics-based approach has not been widely employed.

Surfome and Secretome Analysis
Whole proteomic approaches, involving enzymatic processing
of whole cells or extracellular exudates followed by
liquid-chromatography mass spectrometry (LC-MS) or peptide
fragment fingerprinting, also allow for high-throughput

screening of the antigenic repertoire of a pathogen (22). The
power of these proteomic methods in identifying rare protective
antigens missed by the in silico screens of RV makes them
appealing [as exemplified by the case of the cell wall-anchored
antigen, SAN_1485, of S. agalactiae (23)]. Converse to RV,
proteolytic digestion is more suited toward Gram-positive
bacteria, since Gram-negative bacteria are more susceptible to
proteolysis-induced cell lysis.

REVERSE VACCINOLOGY 2.0

The majority of currently-available bacterial vaccines provide
protection by inducing pathogen-specific antibodies. Therefore,
harnessing the antibody component of a potent human
humoral response to disseminated infection is valuable for the
identification of novel protective antigens. This approach, termed
reverse vaccinology 2.0 (RV 2.0) (24, 25), relies on the isolation
and recombinant expression of the variable regions of heavy
(VH) and light (VL = κ or λ) chain genes of immunoglobulin
(focus has centerd on IgG) using a variety of molecular tools.
Enriched by the development of high-throughput technologies,
the screening of large numbers of antibody-secreting cells (ASCs)
is also advancing knowledge of host-pathogen interactive biology
and auto-immunity (26, 27).

Monoclonal Antibody (mAb) Generation
From ASCs
The first, and perhaps most crucial, phase of RV 2.0 is the
cloning of human monoclonal antibodies (mAbs) from ASCs.
Previously, immortalization of these ASCs via myeloma fusions
or Epstein Barr virus (EBV) transformation were valuable to
mAb production (28, 29). Because these were culture-based
methods, the survival of all B-cells was not guaranteed and
the omission of ASCs expressing antibodies cognate to crucial
antigens was probable. Other techniques such as phage-display
technology (30) and proteomic mining (31, 32) circumvent
the unique issues affecting ASC immortalization techniques by
focusing on recombinant antibody expression. However, the
small proportion of antigen-specific antibodies (estimated at 10–
15%) that are produced (33) because of the random pairing of
VH and VL sequences make phage display and proteomic mining
imprecise.

A more favored approach to mAb cloning is the single-cell
sorting of ASCs into multi-well plates using flow cytometry,
followed by the cloning of mAbs from each well (34, 35).
To clone a high proportion of antigen-specific antibodies, this
approach, termed expression cloning, requires blood sampling
during the peak immune response and is thus more suited
to short-lived plasmablasts (CD3−, CD14−, CD19+, CD20−,
CD56−, CD27high, and CD38high), since higher circulating
numbers of these are indicative of very recent history of infection
(36). Notwithstanding, several studies have demonstrated its
applicability to memory B-cells (37, 38). Further in vitro selection
of antigen-specific plasmablasts or memory B-cells using
eGFP-bound viral-like particles (39), labeled-antigen probes
(40, 41) or in vivo antigen-specific plasmablast enrichment
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in irradiated SCID/beige chimera mice (42) enhance the
pathogen-specific mAb output of the approach. Converse to
phage display and proteomic mining technologies, expression
cloning yields mAbs with natural, host-like VH+VL pairings.
Further refinements to this elegant method include: substituting
restriction endonuclease cloning with Gibson assembly to
enhance cloning precision (43); assembly of both VH and VL
fragments into a single expression vector (44); and succeeding
cell sorting with paired-chain antibody repertoire sequencing,
thereby encompassing all V gene families, including unique
clones expressed at low frequencies (33, 45, 46).

Assessment of Recombinant mAb Function
Subsequent to cloning, the clinical relevance of mAbs is assessed
in in vivo investigations of passive immunity (47) or in
vitro functional assays: for example, the well-established viral
neutralization (48) and serum bactericidal assays (49), some
of which have provided data employed in vaccine licensure
(50). The cognate antigens targeted by functional mAbs can
subsequently be determined using protein array screens or
classical immunoproteomic approaches.

Application of RV 2.0 to Viral Vaccine
Development
The power of RV 2.0 (see Figure 1) in the identification of
viral vaccine candidates has been demonstrated in several studies
focussing on human cytomegalovirus (HCMV), respiratory
syncytial virus (RSV), HIV, influenza and dengue viruses (25,
51). Some of these candidate antigens, discovered using RV
2.0, include a novel pentameric glycoprotein complex, the
gHgLpUL128L pentamer, which induces high neutralizing titres
against HCMV in mice (52) and the F protein of RSV stabilized
to the prefusion conformation (53, 54). Accruing data from
phase 1b/2a clinical trials show that a mAb (MEDI8897) reactive
with prefusion F epitopes is effective when used prophylactically
in preterm infants (55). Like MEDI8897, mAb MHAA4549A,
cloned from a healthy vaccinee and which targets and neutralizes
all known influenza A strains (56), demonstrated significant
antiviral activity in a phase 2 human influenza A virus
challenge (57). Thus, these studies have signified the use of RV
2.0 in producing broadly-neutralizing mAbs for post-infection
prophylaxis in addition to identifying functionally-immunogenic
vaccine candidates.

POTENTIAL APPLICATION TO
ANTIBACTERIAL VACCINE DISCOVERY

Judging by the progress made with the development of novel
and effective viral immunotherapies, RV 2.0 is showing promise
and is equally applicable to bacterial vaccinology. RV 2.0
was employed by Lu et al. (58) to identify functional anti-
Staphylococcus aureus mAbs induced during bacteraemia. A
total of ten mAbs were produced, four of which enhanced
opsonophagocytosis of Wood46, a S. aureus reference strain.
While three of the four functional mAbs targeted S. aureus
antigens with known identities, the fourth mAb reacted

with a novel antigen. Recently, Zimmermann et al. (59)
also demonstrated that functional anti-MTB surface antigen
antibodies can be cloned from patient-derived plasmablasts of
reactivated memory B-cell origins, providing further evidence
for a role for antibodies in the modulation of potent
immune responses toward MTB. Taken together with other
studies investigating the importance of antibody-mediated
neutralization of intracellular pathogens (60), a role for the
vaccine-induced generation of antibodies against pathogens such
as MTB and Chlamydia trachomatis, using antigens derived
with RV 2.0 is, thus, evidenced. Similarly, Bidmos et al.
(61) and Blum et al. (45) cloned functional antibodies from
sufferers of meningococcal and Lyme disease, respectively; thus,
underscoring the utility of the approach for identifying novel
targets in different classes of bacteria. Continued use of RV 2.0
in bacterial vaccine discovery is, therefore, encouraged following
the surmounting of technical challenges and filling of research
gaps. In the following sections of this mini-review, emphasis will
be placed on human mAb cloning and serological correlates of
protection, since other related technical aspects of RV 2.0 such
as recombinant protein expression, high-throughput sequencing
of bacterial genomes and antibody repertoires, antigen identity
determination and structure-based antigen design have been
reviewed elsewhere (62–66).

Pathogen-Specific mAb Output
To identify novel antigens using the expression cloning method
with precision, plasmablasts from patients convalescing from
bacterial disease are required. Fundamental to the application of
the expression cloning approach, therefore, is the determination
of the magnitude and peak duration of the plasmablast response
in these patients. The information on the duration of peak
plasmablast circulation instructs optimum sampling time, which
in turn impacts on the precision of pathogen-specific mAb
generation. Studies assessing this magnitude of circulating
plasmablast following bacterial infection have reported similar
durations of peak response to those reported for primary or
secondary viral infections [6–7 days for primary infections and
∼10 days post-infection for secondary infections; reviewed in
(36)]. Recently, Band et al. (67) reported a significant induction
of differentiating (Ki-67+) plasmablasts in patients of nosocomial
bacterial infections compared to healthy controls. This induction
peaked between days 8 and 16 post-culture positivity in A.
baumanii-infected patients reaching levels as high as 21% of
the total lymphocyte population. Perhaps unsurprisingly, it was
also observed that this induction was markedly different in
individuals, reflecting differences in immunocompetence, as peak
plasmablast levels ranged from: 1 to 21% among A. baumanii-
infected patients; and 5–40% in Escherichia coli-infected patients.
Consistent with the findings of Band et al. (67), a plasmablast
response presented to: MTB infection in 38% of a patient cohort
with levels ranging from 1 to 4% in those with strong serum IgG
responses (59); S. aureus bacteraemia with mean levels of ∼3.2%
(1–7% range) (58); and up to 4% of circulating CD19+ cells in
untreated sufferers of Lyme borreliosis (45).

The implications of these data for the precision of the
pathogen-specific mAb output are considerable. Firstly, there
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FIGURE 1 | Schematic representation of RV 2.0.

is a paucity of information in published literature on how
many plasmablasts are pathogen-specific (bacterial) following
inductions in patients, owing to the unavailability of suitable
molecular probes that will enhance the Fluorescent Activated
Cell Sorting (FACS) gating strategy. In the absence of such
data, strategies such as the Ig-capture based technique described
by Pinder et al. (40) could be employed to enrich for specific
plasmablasts. It is more likely that complex antigens (whole
bacterial cells, OMV, or outer membrane preparations) would
be more beneficial in these strategies, when adapted, compared
to single-antigen probes in order to obtain a plasmablast
population targeting a wider antigen pool. It is noteworthy that
in cases where patients are subjected to immediate antibiotic
therapy on hospital admission because of rapid progression of
disease (e.g., septicaemia and meningitis), clinical isolates may
be unobtainable, making the design of plasmablast enrichment
probes difficult (also, the reason behind the unsuitability of
memory B-cells in the absence of enrichment strategies). While
clinical isolates from other disease sufferers could be utilized,
they are non-ideal because rare mAb epitopes specific for the

infecting strain will be missed. Secondly, considering differences
in the magnitude of the plasmablast response and for logistic
reasons (for example, restrictions on blood sample volume in
pediatric cases), pooling of patient samples may be required for
the generation of a highly-diverse plasmablast pool, targeting
several antigens, (and their variants) of the same pathogen. This is
especially necessary for pathogens in which certain antigens are
immunodominant such as PorA of N. meningitidis, which may
mask immunity to rare but equally protective antigens.

If a total plasmablast sort approach is warranted (i.e., inclusive
of non-pathogen specific plasmablasts), an attractive option is the
rational selection of over-represented VH+VL combinations for
mAb cloning based on the assumption that overrepresentation
of V families, specifically among plasmablasts, is an indicator
of preferential usage in response to a pathogen. Adequate
depth of sequencing is, however, required in order to avoid
non-inclusion of clonal V families expressed at lower frequencies
(58). In silico analysis should also include antibodies with similar
complementarity-determining region H3 loops [key to antibody
conformation and affinity (68)] in addition to the exploitation
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of de-noising algorithms, which would minimize the presence of
errors introduced by sequencing (69).

In vitro Serological Correlates of Protection
Assessment of pathogen-specific mAb function is performed
via standardized assays. Given the differences in biology of
bacterial pathogens, these assays are specifically tailored to reflect
mode of clearance of the pathogen from systemic circulation.
Antibody-driven, complement-dependent bactericidal activity is
measured in the standardized serum bactericidal assays designed
for the meningococcus (49) while phagocytosis by neutrophils
and macrophages enhanced by opsonic antibodies is assessed
in the opsonophagocytic assays used in pneumococcal vaccine
development (70). Similar assays have been employed in the
assessment of functional immunity against Campylobacter jejuni,
Group B Streptococcus, typhoidal and non-typhoidal Salmonella
and Neisseria gonorrhoeae (71–75). While standardization of
some of these pathogen-specific assays is pending, de novo design
of in vitro correlates assessing functional activity of antibodies
is not as straightforward for other pathogens, such as Bordetella
pertussis (76). For facultative intracellular pathogens such as
Francisella tularensis and MTB, for example, current correlate
strategies in development are not suitable for assessments of
mAb function as they involve peripheral blood lymphocytes only
(77, 78). An added benefit of in vitro assessments of cloned mAb
function, as a component of RV 2.0, is the needlessness of or
significant reduction in usage of experimental animals. Efforts
to develop and standardize in vitro correlates to assess mAb
function are, hereby, merited.

Beyond bactericidal or opsonic functions, mAbs exhibit
a variety of functions, including the modulation of cellular
immune responses [extensively reviewed in Cooper (79),
Amanna and Slifka (80)], which require assessment. These
functions also include toxin neutralization (useful in pertussis

and diphtheritic infections, for example) (81, 82) and increase in
cellular cytotoxicity affecting intracellular pathogens such as C.
trachomatis (83). Hence, non-bactericidal or non-opsonic mAbs,
if exhibitive of these other functions, can still be utilized in other
immunotherapeutic avenues.

CONCLUSION

With the increase in multidrug resistance among bacterial
pathogens, the development of further effective preventive
measures will be of significant benefit to public health. RV
2.0, a conceptually-advanced approach with the advantages
of employing the natural host response (patient VH-VL
combinations), relative speed, and reduction in animal use,
has the potential to be a powerful tool in bacterial vaccine
development. However, use of RV 2.0 is dependent on
optimization of the technical aspects, and there are excellent
prospects that this is achievable.
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