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Bunocephalus is the most species-rich Aspredinidae genus, corresponding to a
monophyletic clade with 13 valid species. However, many species have their
classification put in question. Here, we analyzed individuals from four Amazonian
populations of Bunocephalus coracoideus by cytogenetic and molecular procedures.
The geographic distribution, genetic distances and karyotype data indicate that each
population represents an Evolutionary Significant Unit (ESU). Cytogenetic markers
showed distinct 2n and karyotype formulas, as well as different numbers and locations
of the rDNA sites among ESUs. One of such populations (ESU-D) highlighted an
extensive polymorphic condition, with several cytotypes probably due to chromosomal
rearrangements and meiotic non-disjunctions. This resulted in several aneuploid
karyotypes, which was also supported by the mapping of telomeric sequences.
Phylograms based on Maximum Likelihood (ML) and Neighbor Joining (NJ) analyses
grouped each ESU on particular highly supported clades, with the estimation of
evolutionary divergence indicating values being higher than 3.8–12.3% among them.
Our study reveals a huge degree of chromosomal and genetic diversity in B. coracoideus
and highly points to the existence of four ESUs in allopatric and sympatric speciation
processes. In fact, the high divergences found among the ESUs allowed us to delimitate
lineages with taxonomic uncertainties in this nominal species.

Keywords: chromosomal differentiation, molecular taxonomy, ecological adaptations, evolutionary units, banjo
catfish

INTRODUCTION

Bunocephalus is the most species-rich Aspredinidae genus, corresponding to a monophyletic clade
(Cardoso, 2008, 2010) with 13 valid species (Eschmeyer et al., 2017). However, many species have
their classification put in question (Carvalho et al., 2015), and, consequently, with questionable
taxonomy. The genetic divergence among morphologically indistinguishable specimens within a
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single “species” rises doubts on their taxonomic status, once
such variations imply in cladogenesis processes (Bickford et al.,
2007), which may end up in speciation. Some approaches based
only on morphological data may sometimes underestimate
such variation due to the phenotypic plasticity evidenced
by a significant number of species. Thus, an integrative
cytotaxonomic, molecular and morphological analysis is
required, attempting to elucidate the real taxonomic status of
polymorphic species.

Cytogenetic studies, including the molecular organization
and cytogenetic mapping of repetitive DNAs might be a
significant data set for the characterization of particular segments
of biota, providing important information for phylogenomics
(Cioffi et al., 2012). Besides, these sequences seem to escape
the selective pressure that acts in the non-repetitive segments,
thus representing good evolutionary markers to detect recent
events of evolution, once the number and location of these
sequences may reveal polymorphisms, with intra- and inter-
specific variations due to rearrangements, even in conserved
karyotypes (Cioffi et al., 2009; Matoso et al., 2011; Motta-
Neto et al., 2012; Oliveira et al., 2015). Up to now, only
two Bunocephalus species had cytogenetic studies already
conducted, B. doriae and B. coracoideus. While the first one has
2n = 50 chromosomes, the later presents 2n = 42, in addition
to a multiple X1X1X2X2/X1Y1X2Y2 sex chromosome system
(Fenocchio and Swarça, 2012; Ferreira et al., 2016).

Besides, genetic data can unmask distinct populations
covered by a same taxonomic status, which are identified
as Significant Evolutionary Units (ESUs) by the conservation
biology area. Thus, ESU corresponds to a population, or
even to a group of populations, genetically distinct within
a given species that contribute to biodiversity (Hey et al.,
2003). The ESUs recognition is a task that requires the
accordance of a group of procedures as an identification
criterion.

TABLE 1 | Estimates of evolutionary divergence between sequences using the
COI gene and the K2P model.

ESU-A ESU-B ESU-C ESU-D

ESU-A 0.2

ESU-B 12.2 0.2

ESU-C 10.6 4.0 0.7

ESU-D 12.3 5.7 3.8 2.5

Values are shown as percentages.

The present study is a contribution to the biodiversity
presented by B. coracoideus using DNA barcoding and
conventional and molecular cytogenetic methodologies. It
was analyzed four allopatric populations from the Amazonian
hydrographic basin and the results were able to highlight a huge
cryptic diversity both intra- and inter-populations, pointing out
that B. coracoideus corresponds to a species complex.

MATERIALS AND METHODS

Specimens
Individuals of Bunocephalus coracoideus from four populations
of distinct drainages of the Amazon River were analyzed
(Figure 1 and Table 1). The specimens were collected under
appropriate authorization of the Brazilian environmental agency
ICMBIO/SISBIO (License number 48795-1). All specimens
were properly identified by morphological criteria and voucher
samples were deposited in the fish collections of the National
Institute for Amazon Research (INPA: Instituto Nacional de
Pesquisas da Amazônia). The experiments followed ethical and
anesthesia conducts, in accordance with the Ethics Committee for
Animal Use of the National Institute of Amazon Research, under
the protocol number 010/2015.

FIGURE 1 | Amazonas (AM) and Pará (PA) Brazilian states map, highlighting the collection sites of the analyzed species. (A) ESU-A Igarapé Jundiá – Cuieiras River,
(B) ESU-B Demini River, (C) ESU-C Igarapé Apeú – Guamá River, and (D) SEU-D1−14 Purus River.
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FIGURE 2 | Bunocephalus coracoideus karyotypes. On the left, Giemsa staining; on the right. Double-FISH evidencing chromosome pairs bearing the 18S rDNA
(red) and 5S rDNA (green) sequences. (A,A′) ESU-A Igarapé Jundiá – Cuieiras River, (B,B′) ESU –B Demini River (Cuieiras River) and (C,C′) ESU-C Igarapé Apeú –
Guamá River. Bar = 10 µm.

Mitotic and Meiotic Chromosomal
Preparations
Mitotic chromosomes were obtained from the kidney cells
according to the protocol described by Gold et al. (1990),
using RPMI culture medium (Cultilab). Male testis were used
for meiotic preparations, following the protocols described by
Bertollo et al. (1978), with changes introduced by Gross et al.
(2009). For conventional cytogenetic analysis the chromosomes
were stained with 5% Giemsa solution (pH 6.8).

Preparation of FISH Probes
The GoTaq Colorless Master Mix (Promega) was used for the
polymerase chain reaction (PCR) amplification of the 18S and
5S rRNA genes and telomeric sequences, using the following
primers: 18Sf (5′-CCG CTT TGG TGA CTC TTG AT-3′), 18Sr

(5′-CCG AGGACC TCA CTA AAC CA-3′) (Gross et al., 2010),
5S A (5′-TAC GCC CGA TCT CGT CCG ATC-3′), and 5S B (5′-
CAGGCT GGT ATG GCC GTA AGC-3′) (Martins and Galetti,
1999). The ribosomal sequence amplification cycles comprised a
denaturation for 2 min at 95◦C; 35 cycles of 1 min at 94◦C, 30
seg. at 56◦C, and 1.5 min at 72◦C; a final extension of 5 min at
72◦C; and a cooling period at 4◦C. The primers (TTAGGG)5 and
(CCCTAA)5 (Ijdo et al., 1991), were used to obtaining telomeric
sequences. PCR was performed with the following profile: 4 min
at 94◦C; 12 cycles of 1 min at 94◦C, 45 s at 52◦C, and 1.5 min at
72◦C; and 35 cycles of 1 min at 94◦C, 1.5 min at 60◦C, and 1.5 min
at 72◦C. The 18S rDNA and the telomeric probes were labeled
with digoxigenin-11 dUTP using a DIG-Nick Translation Mix kit
(Roche), while the 5S rDNA probe was labeled with biotin-14-
dATP using a Biotin-Nick Translation Mix kit (Roche) according
to the manufacturer’s instructions.
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FIGURE 3 | Cytotypes of B. coracoideus ESU-D1−14 Purus River, with Giemsa staining. For this ESU chromosomes were not paired, once no homeology was
usually found between the correspondent pairs among the distinct cytotypes. On the right, double-FISH showing the chromosome pairs bearing the 18S rDNA (red)
and 5S (green) sequences. Bar = 10 µm.

Detection of Repetitive DNA Sequences
by FISH
Fluorescence in situ hybridization (FISH) was performed
according to the protocol described by Pinkel et al. (1986),
with some modifications. The 18S rDNA and telomeric probes
were detected with Anti-digoxigenin-rhodamin (Roche, Basel,
Switzerland), while the 5S rDNA probe was detected with avidin-
FITC (Sigma). Chromosomes were counterstained with DAPI
(1.2 µg/ml) and slides mounted with antifade solution (Vector,
Burlingame, CA, United States).

Microscopic Analysis and Image
Processing
At least 30 metaphase spreads per individual were analyzed to
confirm the 2n, karyotype structure and FISH results. Images
were captured using an Olympus BX50 microscope (Olympus
Corporation, Ishikawa, Japan) with CoolSNAP camera and the

images processed using Image Pro Plus 4.1 software (Media
Cybernetics, Silver Spring, MD, United States). The chromosome
classification followed the method proposed by Levan et al.
(1964), with the following limits for the arms relationship
(AR): AR = 1.00–1.70, metacentric (m); AR = 1.71–3.00,
submetacentric (sm); AR = 3.01–7.00, subtelocentric (st); and
AR > 7.00, acrocentric (a). For the number of chromosome arms
[fundamental number (FN)], the metacentric, submetacentric,
and subtelocentric chromosomes was considered having two
chromosomal arms and the acrocentric chromosomes a single
one.

DNA Barcoding Analysis
Representatives of each population were used (Table 1).
Bunocephalus cf. aloikae, B. amaurus, and Amaralia hypsiura
species were used as out groups. Tissues of liver and muscle were
stored in absolute ethanol for the acquisition of Cytochrome C
Oxidase Subunit 1 (COI) sequences. Total DNA was obtained

Frontiers in Genetics | www.frontiersin.org 4 September 2017 | Volume 8 | Article 120

http://www.frontiersin.org/Genetics/
http://www.frontiersin.org/
http://www.frontiersin.org/Genetics/archive


fgene-08-00120 September 19, 2017 Time: 16:32 # 5

Ferreira et al. Bunocephalus coracoideus Species Complex

FIGURE 4 | FISH with telomeric probe. (A) ESU-A Igarapé Jundiá – Cuieiras
River, (B) SEU-B Demini River, (C) SEU-C Igarapé apeú – Guamá River, and
(D1−D14) SEU-D1−14 Purus River. Arrows indicate the occurence of
interstitial telomeric sites (ITS). Bar = 10 µm.

by Wizard R© Genomic DNA Purification Kit. The pair of primers
used for the COI mitochondrial region amplification in PCR
reactions was VF1_t1 (TGT AAA ACG GCC AGT CAA CCA
ACC ACA AAG ACA TTG G) + VR1_t1 (CAG GAA ACA
GCT ATG ACT AGA CTT CTG GGT GGC CAA AGA
ATC A) (Ivanova et al., 2006). Each PCR reaction presented
a final volume of 25 µl containing 1 µl of DNA template
[250 ng/µl] + 1 µl of each primer [5 pM]. It was used the
GoTaq Colorless Master Mix R© (Promega) for the PCR. The
amplification cycles comprised denaturation, 2 min at 95◦C;

35 cycles of 1 min at 94◦C, 30 seg. at 56◦C, and 1.5 min
at 72◦C; a final extension of 5 min at 72◦C; and a cooling
period at 4◦C. PCR products were visualized on a 1.7% agarose
gel and purified with 20% PEG (Lis, 1980). For sequencing it
was used a “Big Dye Sequence Terminator v.3.1” kit (Applied
Biosystems), according to the manufacturer instructions. The
amplification conditions were comprised 25 cycles at 96◦C for 30
seg.; 15 seg. at 50◦C; and 4 min at 60◦C. After the reaction, the
products were precipitated and sequenced (sequencer model ABI
PRISM 3100 Genetic Analyzer from Applied Biosystems/made by
HITACHI).

Sequence Alignment and Phylogenetic
Analysis
Sequences with 690 pb were used to perform the barcoding
analyses, by using COI gene, which were aligned using the
Geneious R© 10.1.3 software. The distance model of Kimura 2-
parameters (Kimura, 1980), was used to build a Neighbor-
Joining (NJ) dendrogram and a bootstrap analyses was
performed (Felsenstein, 1985) with 1,000 replicates. All the
aligned sequences were translated into amino acids to detect
possible alignment errors. The Maximum Likelihood (ML) model
(Tamura et al., 2004) was performed to recover the phylogenetic
topology. All positions containing gaps and missing data were
eliminated. There were a total of 461 positions in the final dataset.
Pairwise genetic distance calculations and NJ tree analysis were
implemented using Molecular Evolutionary Genetics Analysis
version 5 (MEGA5) software (Tamura et al., 2011) and applying
1,000 bootstrap replicates.

RESULTS

Cytogenetic Data
The four B. coracoideus populations presented distinct
karyotypes, which classified as evolutionary significant
units (ESUs), with the following characteristics ESU-A: 42
chromosomes (16m+20sm+4st+2a, NF = 82) from Igarapé
Jundiá – Cuieiras River (Figure 2A), ESU-B: 44 chromosomes
(2m+14sm+2st+26a, NF = 62) from Demini River (Figure 2B)
and ESU-C: 56 chromosomes (4m+12sm+6st+34a, NF = 78)
from Igarapé Apeú – Guamá River (Figure 2C). There was
no karyotype differentiation among males and females in
these populations. For the ESU-D, from Purus River, 14
distinct cytotypes bearing variant chromosomes in number and
morphology were observed, with 2n varying from 40 to 46. Due
to such variation, chromosomes were not grouped in pairs once
homeology was not usually found among the distinct cytotypes
(Figure 3). Significant variations were also found concerning
the 18S rDNA carrier chromosomes, localization and number of
sites. For ESUs A, B, and C such sequences were found in one
or five chromosomes pairs, in the pericentromeric or telomeric
regions, in the short or long arms (Figure 2). Similar results
were also detected among the cytotypes of the ESU-D. However,
in this case, although the telomeric position of the sites was
consistent for all cytotypes, they were found in the short arms
of two chromosomes in the cytotypes D1, D2, D4, D5, D6, D7,
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FIGURE 5 | Testicular meiotic cell plates from the ESU-D in Giemsa staining. (a) Zigotene cells, with a possible tetravalent arrangement; (b–e) Aneuploid pachytene
cells and arrows evidencing chiasmata formation; (f) Diplotene cells, with associated chromosomes likely in a chromosomal chain organization. Bar = 10 µm.

FIGURE 6 | Phylogeny of B. coracoideus inferred by the analysis of (A) Maximum Likelihood (ML) and (B) Neighbor-Joining (NJ) using the mitochondrial gene COI.
The bootstrap values for 1000 replications are evidenced above the branches.
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FIGURE 7 | A general overview on the chromosomal heterogeneity on B. coracoideus. (A) ESU-A Igarapé Jundiá – Cuieiras River, (B) SEU-B Demini River,
(C) SEU-C Igarapé Apeú – Guamá River, and (D) SEU-D1−14 Purus River.

D8, D9, D11, D12 and D14, but in only one chromosome in the
cytotypes D3 and D10. In turn, the cytotype D13 highlighted
two chromosomes bearing sites in the short arms and three
chromosomes in the long arms (Figure 3).

Likewise, the 5S rDNA also showed great variation among
ESUs. Like for 18S rDNA, with distinct chromosomes carrying
these sequences and with variations in number and localization
on the chromosomes. ESU-A showed only two chromosome
pairs carrying 5S sequences, while ESUs B, C, and D presented
a higher number of these sites. Although maintaining the
preferential telomeric localization, interstitial positions were also
highlighted mainly among ESU-D cytotypes. In addition, the
syntenic localization with the 18 rDNA was evidenced in three
chromosome pairs of the ESU-B, as well as in two chromosomes
of the ESU-D – cytotype D13 (Figures 2, 3).

The mapping of telomeric sequences evidenced only the usual
terminal marks on the chromosomes of the ESUs A, B, and C.
In turn, the ESU-D exhibited additional interstitial sites (ITS) in
seven cytotypes, D1, D4, D7, D8, D9, D12, and D14 (Figure 4).

Meiotic plates from individuals of the ESU-D, showed a
variable number of chromosomes corroborating the diversity
found in the mitotic chromosomes. From 18 to 22 bivalents
were evidenced, in addition to interstitial chiasmata and
synaptic points, and probable tetravalent and chromosomal chain
formations (Figure 5).

DNA Barcoding Analysis
Topologies obtained with the Neighbor-Joining (NJ) and
Maximum Likelihood (ML) algorithms were congruent. The
major clades were well-supported and it was confirmed that
Bunocephalus represents a monophyletic group (Figure 5). Each

population was also grouped as a monophyletic and well-
supported clade, justifying them as four ESUs. ESU-A occupies
the more basal position in relation to the other ones, and the ESUs
C and D are more related to each other and with a more recent
divergence (Figure 6).

DISCUSSION

The geographic distribution, genetic distances, and karyotype
data indicated that each B. coracoideus population represents
an ESU. In fact, these populations differed by conspicuous
karyotypes variability, where each ESU shows specificities on
their 2n, karyotype formula and ribosomal sites distribution
in the genome (Figures 7, 8). In addition, they have possibly
evolved in allopatry due to vicariant events, making their
natural contact unfeasible. Oliveira and Gosztonyi (2000)
proposed that the ancestral karyotype of Siluriformes contained
2n = 56 chromosomes, mainly two-armed ones. According to
our phylogenetic data, ESU-A (2n = 42; 16m+20sm+4st+2a)
corresponds to the firstly differentiated karyotype among the four
populations analyzed. In this way, ESU- A probably retains an
ancestral feature of Siluriformes by the large number of bi-armed
chromosomes they have, but with the reduction of the 2n due
to chromosomal fusions. In this sense, the other ESUs share
a synapomorphic condition by presenting karyotypes mostly
composed by acrocentric chromosomes, where pericentric
inversions and/or centric fissions may have played a role. Such
feature is also found in other Bunocephalus species, such as
B. doriae (Fenocchio and Swarça, 2012) and B. coracoideus
population from the Negro River (Ferreira et al., 2016), in
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FIGURE 8 | Idiograms for numbers and locations of the 18S (red) and 5S
(green) rDNA sequences in the chromosomes of the B. coracoideus
populations (A) ESU-A Igarapé Jundiá – Cuieiras River, (B) SEU-B Demini
River, (C) SEU-C Igarapé Apeú – Guamá River, and (D) SEU-D1−14 Purus
River.

which acrocentric chromosomes are also mainly composing the
karyotype. Thus, taking in account the Oliveira and Gosztonyi
(2000) proposition, it can be considered that the Bunocephalus
ESUs A, B, and D presents a trend toward the reduction of the
chromosome number in relation to other Siluriformes, while
ESU-C maintained the probable ancestral 2n= 56 chromosomes.

Chromosomal rearrangements can play a role on
speciation processes as they may act in the reproductive
isolation (Mayr, 1995), generating an useful investigation
area concerning genetic variability (Faria and Navarro,
2010), Indeed, in some distinct Neotropical fish species,
such as Hoplias malabaricus (Bertollo et al., 2000),
Astyanax fasciatus (Pazza et al., 2006), Astyanax scabripinnis
(Moreira-Filho and Bertollo, 1991; Maistro et al., 2000),

and Hoplerythinus unitaeniatus (Giuliano-Caetano et al.,
2001), the chromosomal diversification raised the hypothesis
that they may encompass different species under a same
nomenclature.

Additionally, both number and location of rDNA sites were
highly variable among ESUs (Figures 2, 3), highlighting their
dynamic behavior in the genomes and in generation of the genetic
diversity among populations. Besides, it seems that multiple 5S
rDNA sites represent a synapomorphy in B. coracoideus, since all
populations analyzed present such condition. Accordingly, ESU-
A presents the lowest number of such sites (in only two pairs of
chromosomes), thus representing a basal condition (Figure 8).
Since the accumulation of repetitive sequences in particular
genomic areas can cause chromosomal rearrangements (Lim
and Simmons, 1994; Dimitri et al., 1997), the dynamic behavior
of rRNA genes might also be linked with the huge karyotype
diversity presented by this nominal species.

The occurrence of synteny between the 5S and 18S rRNA
genes in the ESUs B and D (Figure 8B, D13) represents an
uncommon condition among vertebrates (Martins and Galetti,
2001), once these genes are transcribed by distinct RNA
polymerases, suggesting the need to be distant from each other
or allocated in different chromosomes, avoiding possible harmful
rearrangements between them (Amarasinghe and Carlson, 1998;
Martins and Galetti, 1999). However, in Siluriformes, the syntenic
condition for such both rDNA classes was already found
for several species, such as Imparfinis mirini and I. minutus
(Ferreira et al., 2014), Ancistrus maximus, A. ranunculus, A.
dolichopterus, Ancistrus aff. dolichopterus (Favarato et al., 2016),
Hemibagrus wyckii (Supiwong et al., 2014), Corydoras carlae
(Rocha et al., 2016), Panaqolus sp. (Ayres-Alves et al., 2017) and
in B. coracoideus (present study). Nevertheless, the evolutionary
paths taking to the selection of this apparently non-advantageous
condition are not revealed yet but, at first, it appears to be not a
deleterious character.

An outstanding finding in our study is the huge karyotype
diversity found in the ESU D. In fact, this population highlighted
many varying cytotypes living in sympatry. Apparently,
such polymorphism does not appear to represent effective
reproductive barriers capable to impair crosses, at least among
some different cytotypes, increasing the chromosome diversity
inside the population. Similar intrapopulacional features were
also highlighted in the Characidae, Astyanax fasciatus, which
presented two well-defined cytotypes, 2n = 46 and 2n = 48,
but with numeric and structural chromosome variants when
they occur in sympatry (Pazza et al., 2006, 2007, 2008). It is
noteworthy that in both cases, ESU-D and Astyanax fasciatus, the
variant karyotypes apparently do not demonstrate deleterious
phenotypic effects on the carriers. However, the hypothesis
that such degree of chromosomal diversity may affect, in
some way, the homeostasis of the segregation cannot be fully
discarded.

To better investigate the extension of the polymorphism inside
ESU-D, we extended our analyzes to the chromosomal behavior
during meiosis, since it was found monosomies and trisomies in
nearly all cytotypes. In order to confirm this condition, meiotic
plates of three individuals were analyzed, and attested that,
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TABLE 2 | Aspredinidae specimens analyzed in the present study, with their respective collection places, number of individuals, diploid number (2n), and identification.

Species Locality Drainage GPS data Sampling N◦ 2n ESU GenBank access
number

Voucher

B. coracoideus Fazenda Dimona
(Reserva PDBFF∗),
Amazonas, Brazil

Igarapé Jundiá –
Cuieiras River

2◦20′59.9′ ′ S
60◦05′50.9′ ′ W

3♂2♀ 42 A MF416164–
MF416167

INPA-ICT
053204

B. coracoideus Barcelos, Amazonas,
Brazil

Demini River 00◦23.624′ S
062◦48.187′ W

2♂3♀ 44 B MF416168–
MF416172

INPA-ICT
053205

B. coracoideus Castanhal, Pará, Brazil Igarapé Apeú –
Guamá River

1◦23′20.4′ ′ S
47◦59′07.5′ ′ W

2♂9♀ 56 C MF416173–
MF416183

INPA-ICT
052188

B. coracoideus Tapauá, Amazonas,
Brazil

Purus River 5◦37′21.7′ ′ S
63◦15′01.5′ W

2♂ 40 D MF416184–
MF416199

INPA-ICT
052185

1♂1♀ 41 D

4♂6♀ 42 D

3♂4♀ 43 D

2♂2♀ 44 D

1♂ 45 D

1♂ 46 D

B. amaurus Castanhal, Pará, Brazil Igarapé Apeú –
Guamá River

1◦23′20.4′ ′ S
47◦59′07.5′ ′ W

1? – Out group MF416200 INPA-ICT
052187

B. cf. aloikae São Gabriel da
Cachoeira Amazonas,
Brazil

Curicuriari River,
Igarapé Bucu –
Negro River

0◦14′39.0′ ′ S
67◦03′31.1′ ′ W

1? – Out group MF416162 INPA-ICT
053207

A. hypsiura Cametá, Pará, Brazil Jutuba Island –
Tocantins River

02◦14′46.5′ ′ S
49◦24′59.7′ ′ W

2? – Out group MF416151–
MF416152

INPA-ICT
052186

∗Biological Dynamics of Forest Fragments Project.

during meiosis I, a clear numeric variation can be observed.
In fact, different bivalent numbers were found in pachytene
cells of the same individual, as well as probable trivalents with
synapses points. In addition, a typical tetravalent formation
and an apparent chromosomal chain were also observed in
zygotene and diplotene cells, respectively (Figure 5), and such
events might have contributed for irregular segregations. It
is known that chromosomal rearrangements can alter the
homologs pairing during meiosis and, as a consequence, provide
unbalanced gametes (Davisson and Akeson, 1993; Navarro and
Ruiz, 1997; Spirito, 1998). In this way, non-disjunction events
during meiosis may result in aneuploid individuals, a factor
that may, at least in part, explain the polymorphic condition
found in the ESU-D population. In addition, a second factor
probably related to such biodiversity relies on the ecological
conditions in the Purus River basin, where ESU-D occurs. This
region is located in a lowland area subjected to water flooding,
influenced by the seasonality of the river level (Haugaasen and
Peres, 2006). These flooded forests, which appear on the rainy
season, form complexes labyrinths made by tree logs, rocks and
every type of vegetation common to such environments (Luize
et al., 2015). This particular habitat favors fish dispersion and
the consequent subpopulations segregation until their future
reconnection during the dry periods.

Thus, the evolutionary scenario for the ESU-D is that
chromosomal rearrangements have occurred and that geographic
isolation periods, due to flood pulse cycles may have favored
their fixation in the population. During the flood periods, the
reestablishment of the physical connection among the previously
isolated aquatic environments allowed gene flow among them

and, as a consequence, the variety of the cytotypes observed
among the population. This hypothesis is reinforced by the
ITS found in several cytotypes, indicating the occurrence of
chromosomal rearrangements (Figure 4).

The DNA barcoding analysis is a very informative tool
for biodiversity studies. In Salminus fish, for example, it was
evidenced eight distinct lineages increasing its current diversity,
nowadays limited to four species (Machado et al., 2016).
Rhamdia voulezi and Rhamdia branneri, considered synonyms of
Rhamdia quelen, are currently argued to constitute valid species
supported by karyotype, ecomorphology and morphometric data
(Abucarma and Martins-Santos, 2001; Garcia et al., 2010; Mise
et al., 2013; Garavello and Shibatta, 2016), as well as by the
barcoding DNA analysis (Ribolli et al., 2017).

Facing the karyotype diversity found in B. coracoideus, the
DNA barcoding methodology was also useful for analyzing the
relationships among populations. In fact, this procedure is a
helpful tool for analyzing the occurrence of cryptic species
(Smith et al., 2008). Theoretically, the nucleotide divergences
between populations of a single species (intraspecific variations)
are smaller than the ones between distinct species (interspecific
variations), the “barcoding gap” (Ward et al., 2005; Hajibabaei
et al., 2006). Most congeneric species have showed substantial
nucleotide divergences by means of this molecular marker
(Hebert et al., 2003). Intraspecific divergences are rarely superior
to 2%, and usually do not overcome 1% (Avise, 2000). For
B. coracoideus the intra-population genetic distance did not
overcome the value of 2%, except for the Purus population (ESU-
D), which presented divergences among the sequences from 0.2
to 10.3%.

Frontiers in Genetics | www.frontiersin.org 9 September 2017 | Volume 8 | Article 120

http://www.frontiersin.org/Genetics/
http://www.frontiersin.org/
http://www.frontiersin.org/Genetics/archive


fgene-08-00120 September 19, 2017 Time: 16:32 # 10

Ferreira et al. Bunocephalus coracoideus Species Complex

Such molecular data corroborated the karyotype diversity
allowed us to infer that there is a probable ongoing sympatric
speciation process within this population. From the NJ analysis,
all the ESUs were supported with bootstrap values higher than
96%. The same occurred with the phylogeny based on ML,
except for the ESU-D, which presented a bootstrap value of 83%,
reflecting once more the karyotype variation present among the
specimens of this population. However, the high value observed
supports its identity as an ESU.

The ESU-A presented a mean distance of 10.6% from the other
ESUs (Table 2), which is a value equivalent to species differences.
The bootstrap value of 62% of ML between the ESU-A and the
super clade including ESU-B, ESU-C, and ESU-D is much lower
to the 95% ML and 99.8% NJ to grouping them. Besides, in the
NJ phylogram, the ESU-A is more related to B. cf. aloikae and
B. amaurus than to the other ESUs. In addition to its particular
karyotype features, ESU-A presents a high value of allopatric
speciation and the potential of being a new species. According to
Avise and Walker (1999), the high divergences among the ESUs
of B. coracoideus allowed us to delimitate lineages with taxonomic
uncertainties in this nominal species.

The genetic variability and the natural selection are important
conditions for evolutionary changes. Thus, understanding the
neutralization of the gene flow or the locking for factors that
prevent gene exchanges, such as vicariance, gene mutations and
chromosomal rearrangements, are important steps to explain
evolutionary processes that frequently lead to speciation (Turelli
et al., 2001; Kawakami et al., 2011). Indeed, it is well-known that
mutations and chromosome rearrangements can be fixated by
genetic drift and, more easily, in small and isolated populations
(Jesus et al., 2016), as is the case for the B. coracoideus populations
here investigated. However, the great challenge for genetic
biodiversity analyzes is to preserve the connection with the
natural history and the species nomenclature, with consequent
implications on their management and conservation (Pellens
et al., 2016). In this sense, a key question that emerges is
how to classify the evolutionary history of a specific population
concerning their genetic diversification. In fact, the description of
new species, based on genetic diversity, still finds some resistance
and is not yet fully adopted. In this way, many cryptic species
remain undescribed, even after their identification by genetic
markers (Schlick-Steiner et al., 2007).

CONCLUSION

The diversity of Neotropical freshwater fishes is still largely
underestimated (Reis et al., 2016) and requires additional
investigations. Nevertheless, a previous challenge remains still to
be overcome: “what is a species and what new information is
needed to solve this issue?” (Hey, 2001). Our study reveals a huge
degree of chromosomal and genetic diversity in B. coracoideus
and highly suggests the existence of four ESUs in allopatric and
sympatric speciation processes. We believe that they were enough
to reveal the occurrence of a B. coracoideus species complex.
It indicates that new available methods, such as the genetic
variability, can be definitely used in taxonomic procedures.
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