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2 Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany, 3 Friedrich Schiller University, Jena, Germany

Microorganisms need to sense and respond to constantly

changing microenvironments, and adapt their transcriptome,

proteome, and metabolism accordingly to survive [1]. However,

microbes sometimes react in a way which does not make

immediate biological sense in light of the current environment—

for example, by up-regulating an iron acquisition system in times

of metal abundance. The reason for this seemingly nonsensical

behavior can lie in the microbe’s ability to predict a coming

change in conditions by cues from the current environment. If the

microbe (pre-)adapts accordingly, it will increase its fitness and

chances of survival under subsequent selection pressures—a

concept known as adaptive prediction (Figure 1) [2].

In metazoans with complex neural network architecture, the

capacity to anticipate changes in the environment is understand-

able. It can be achieved in a single multicellular organism, e.g., by

classical conditioning. In unicellular organisms, however, this type

of learning normally requires generations of selection pressure to

connect one predictor to a coming condition.

Why Is Adaptive Prediction Relevant for Human
Pathogens?

The human host is, to a certain extent, a highly predictable

environment. In its different niches, pH values, ion concentrations,

temperature, and many other factors are normally kept within

small ranges. Transiting from one niche to another usually follows

a predetermined pattern—entering the host from the environment

is associated with an increase in temperature; in the gastrointes-

tinal (GI) tract, the neutral gut will follow the strongly acidic

stomach; invasion into tissue and entering the bloodstream will

likely lead to engulfment by immune cells, followed by oxidative

stress and starvation for micronutrients such as iron or zinc; and

passaging through the gut means decreasing oxygen and glucose

levels. These cues can be used by commensals and potential

pathogens to optimize their fitness by predicting the next stage in

host–microbe interaction.

Sensing and Making Sense—The Example of
Escherichia coli and Other Enteric Bacteria

A good example for adaptive prediction comes from the gut

bacterium Escherichia coli. In this microbe, an increase in

temperature elicits a transcriptional response typical for low

oxygen levels [3]. This makes biological sense, as the increase in

temperature can indicate the bacterium’s arrival in the gut, where

oxygen will soon become limiting. Interestingly, this predictive

function can be disrupted if temperature and oxygen levels are

dissociated over evolutionary timescales. In a laboratory micro-

evolution experiment with a reversed temperature–oxygen rela-

tionship (i.e., high temperature is followed by high oxygen),

Tagkopoulos et al. obtained E. coli strains where the predictive

quality of temperature for oxygen was largely lost [3]. Similarly,

maltose utilization genes are activated in E. coli upon exposure to

lactose, reflecting the sequential abundance of these sugars in the

gut [2]. Again, disruption of this sequence over hundreds of

generations was able to abolish this adaptive prediction in vitro

[2]. These two examples show how strongly an evolved adaptive

prediction response can impact microbial fitness.

As many pathogens are gut-associated, similar patterns can be

found in pathogenic enteric bacteria. The enterohemorrhagic E.
coli (EHEC) serotype O157:H7, for example, can use the presence

of bile as a signal to induce transcription of iron acquisition genes,

independent of actual iron levels [4]. This can be useful in the

iron-sequestering environment of the small intestine, where bile

abounds. On the other hand, pathogenicity-island encoded genes

that are specifically expressed at later stages of the intestinal

passage by EHECs were found to be repressed by bile in the upper

part of the small intestine [4]. Many other enteric bacteria, like

Salmonella, Shigella, and Vibrio spp. also use bile as a signal to

regulate virulence programs, which are biologically unlinked to

bile salts but are advantageous at later stages in their mammalian

hosts (reviewed in [5]). Vibrio cholerae is also known to induce

genes late in its infection cycle that are of no immediate use in the

host. These genes, for example those involved in chitin binding

and degradation, should benefit the bacteria only after they are

released into the aquatic environment where crustaceans provide

ample chitin [6]—although it is tempting to speculate that chitin

degradation may play an additional role in competition with

resident fungi in the gut. In summary, sensing certain host-specific

factors can herald changing conditions, and pathogens can use

these signals in their (pre-)adaptation to the host or for transition

from the host.

(Re-)interpreting Old Cues—The Candida albicans
Example

Candida albicans is a fungal pathogen that can transit from a

commensal state in the gut to an aggressive pathogen that invades

tissue and disseminates via the bloodstream. Tissue invasion is

linked to a specific morphology change, the yeast-to-hypha

transition (Figure 2). The hyphal program is triggered by multiple

stimuli, including contact with epithelial cells and body temper-

ature [7]. Part of this program is the expression of the
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multipurpose, hypha-associated cell wall protein, Als3, which

enables the fungus to attach to and invade host cells and use the

intracellular host iron storage protein ferritin as an iron source

after invasion [8]. Other hypha-associated factors are the Sap4-6

proteases, which can degrade host proteins during invasion, and

the cell surface localized superoxide dismutase Sod5, which can be

used to detoxify reactive oxygen species likely to be produced by

attracted immune effector cells when tissue is damaged. Therefore,

by triggering hyphal morphogenesis, C. albicans produces factors

that are required during or after tissue invasion even before the

actual invasion process is initiated [7].

In the blood, C. albicans seems to interpret the presence of (even

low) amounts of glucose as a cue for potential encounters with

immune cells. While the related baker’s yeast, Saccharomyces
cerevisiae, down-regulates most stress-response genes in the

presence of glucose, C. albicans up-regulates oxidative and

osmotic stress responses when encountering glucose levels similar

to the bloodstream [9]. While not necessary for growth on glucose,

these adaptations would allow better survival of attacks by blood-

borne phagocytic cells after leaving the glucose-poor gut.

Accordingly, the signaling networks leading from glucose to stress

response differ significantly between the two species, allowing C.
albicans to reinterpret glucose as a pre-indicator of possible future

dangers [9].

In a similar vein, C. albicans responds to neutral or alkaline pH

by expressing genes involved in iron and zinc uptake via an

alkaline-induced transcription factor, Rim101 [10,11]. As these

metals are generally less soluble at high pH, this connection

makes biological sense and may help in a timely response, even

before the full effect of metal limitation is felt by the cell. Thus,

common environmental cues like presence of carbon sources or

pH changes can obtain a new, additional meaning and allow the

pathogen to predict conditions in different host niches. To this

end, established signaling pathways for these conditions can be

rewired to novel outputs and thus allow an adaptive prediction

response.

Weighing Costs and Risks—The Plasmodium
Example

Predicting the future environment comes with a risk. A ‘‘false

positive’’ prediction—in which the pathogen falsely predicts a

future environment that it will not encounter in reality—will leave

the pathogen in a state less adapted to the current environment,

with all the associated fitness costs. A ‘‘false negative’’ prediction

(in which the pathogen does not interpret the signal correctly to

prepare for a future change) will lead to a severe loss in fitness in

the coming environment [12]. Because of this trade-off, any

(costly) adaptation must rely on robust and reliable signals before a

population of cells commits to a new phenotype. Alternatives exist

in the form of stochastic switching and phenotypic heterogeneity,

in which only a random subpopulation expresses a certain trait

[13]. This strategy is more common in unpredictable and

fluctuating environments [14].

The causative agents of malaria, Plasmodium spp., normally

replicate asexually inside the bloodstream of their host. However,

at every replication cycle, a portion of the parasites develops into

gametocytes instead. For these sexual stages, the mammalian host

is a dead end, as the gametocytes cannot replicate asexually

anymore. However, after a mosquito bite, only gametocytes can

enter this new, suitable host to differentiate and mate [15]. Thus,

in every replication cycle, there is a trade-off between investing

resources into forming the sexual stage for propagation between

hosts and asexual reproduction within a host. Interestingly, the

rate of conversion to the sexual stage varies between Plasmodium
species, and antimalarial treatment, as well as an increase in young

reticulocytes, increases the number of sexual gametocytes [16].

The malaria parasites use these indicators as signs of imminent

host death or clearance of infection. In a ‘‘terminal investment,’’

the sexual between-host transmission strategy is then followed.

Similarly, in a freshly infected naive host, investment in sexual

forms is possible since the associated fitness costs are low. In

contrast, in the presence of low levels of stress, for example caused

Figure 1. The basis of adaptive prediction. (A) The conditions in environment 1 (red circles) activate a distinct response (green circles) in a
microbe. After changing to environment 2, altering, e.g., the expression pattern to respond to the new conditions (triangles) requires time, during
which the microbe is not well adapted. (B) If the sequential temporal order of the two environments from (A) is kept over many generations, a new
signal pathway can form. Now, the conditions in environment 1 induce responses to both the first and the second environment. When changing to
environment 2, the microbe is hence already pre-adapted.
doi:10.1371/journal.ppat.1004356.g001
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by parasites of different genotypes competing for the same host

resources, fitness costs for not replicating asexually are high, and

asexual reproduction, hence, dominates (discussed in [17]).

Overall, environmental cues allow the pathogen to weigh the

risks for committing to a pre-adapted phenotype.

Adaptive Prediction and Coordinated Regulation

Adaptive prediction seems, in many aspects, similar to the

concept of coordinate regulation, in which several genes, often

including virulence factors, are controlled by a common regulatory

system in response to an environmental trigger [18]. Conceptually,

however, coordinate regulation responds to environmental factors

that are linked by their simultaneous occurrence rather than their

temporal succession. A good example is the iron-starvation–

induced expression of the siderophore synthesis machinery,

siderophore binding proteins, and cytolytic toxins in many

bacteria. In that process, iron starvation indicates a host

environment or activities by the host, and a coordinated

transcriptional regulation allows immediate destruction of host

cells, binding, and finally, uptake of iron in response. In a sense,

signal and bacterial adaptation responses are spatially linked, as

they occur in the immediate environment of the microbe. In

contrast, in adaptive prediction, signal and responses are

temporally linked.

It may prove difficult, however, to draw a precise dividing line

between the two concepts, as many intermediate forms likely exist.

Furthermore, a coordinated regulation could feasibly evolve into

an adaptive prediction system. Coordinately regulated genes come

under control of one or a few transcription factors or regulatory

pathways. If an independent signal (nearly) always predictively

precedes the coordinated expression, these few signal pathways (or

the single pathway) can easily evolve to accept this signal for a

‘‘pre-emptive’’ response [3]. Adding a predictive to the existing

immediate trigger, hence, allows a complex and fully coordinated

response to take place in anticipation of a new environment. This

way, coordinated regulation could make the appearance of

adaptive prediction evolutionary more likely.

On the other hand, the expression of many genes can come with

a higher fitness cost. Mathematical models show that this kind of

adaptive prediction is more likely to occur in environments where

stresses (rather than future improvement in growth conditions) are

able to be predicted well and may be even modified to include a

partial response (for details, see [12]).

Prevalence and Possible Medical Applications of
Adaptive Prediction

How prevalent is this phenomenon in pathogens? It seems likely

that adaptive prediction processes are more common than is

currently appreciated. In the laboratory, microbes are rarely

exposed to two or more consecutive environments that reflect the

natural progression through habitats. Unusual (i.e., predictive)

transcriptional responses occur, but without a biological explana-

tion these may not be followed up when investigating the

microbe’s response to a specific environment. Especially in

environmental microbes, which are not known to be generally

associated with animal hosts, a host-adaptive response to certain

environmental stresses may indicate potential for pathogenicity.

Such adaptations would likely be different to commensal

organisms, and may result from transient but repeated exposure

to animal hosts.

In simulations, predictive behavior of genetic networks appears

fast and frequently [3]. In directed evolution experiments, yeast

can acquire the ability to predict one stress from the presence of

another remarkably quickly [19]. Finally, without the need for

Figure 2. Candida albicans as an example for adaptive prediction of pathogens in the host. When attaching to epithelial cells,
environmental signals trigger hyphae formation. The hyphae start to express a set of proteins which are not apparently beneficial for the fungus in its
current situation (green symbols). Only when penetrating into the host tissue and during encounters with host immune cells like neutrophils, the
stresses (red symbols) occur under which these proteins give C. albicans an advantage in survival and growth (see text for more details).
doi:10.1371/journal.ppat.1004356.g002
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evolutionary processes spanning generations, associative learning

is considered feasible in individual single cell organisms [20] and

even in simple chemical networks [21]. While still mostly

hypothetical, this would allow microbes to expand beyond

evolutionarily acquired adaptive prediction into responses shaped

by individual cell life histories.

It therefore seems highly likely that many pathogens can switch

to a (currently) non-adaptive phenotype when external cues

indicate a coming change in environment. Using these signals to

‘‘trick’’ a pathogen into a phenotypic conversion may be exploited

to render microbes maladapted to their current surroundings. As

an avenue for future treatment options, adaptive prediction

responses may therefore deserve deeper consideration.

Acknowledgments

We would like to thank all members of the team ‘‘Evolution and

Adaptation in Pathogens’’ at the Department of Microbial Pathogenicity

Mechanisms for helpful discussions, Duncan Wilson for critical reading of

this manuscript, and the anonymous reviewers for their constructive

criticism and valuable input, which helped to improve this manuscript.

References

1. Perkins TJ, Swain PS (2009) Strategies for cellular decision-making. Mol Syst

Biol 5: 326.

2. Mitchell A, Romano GH, Groisman B, Yona A, Dekel E, et al. (2009) Adaptive

prediction of environmental changes by microorganisms. Nature 460: 220–224.

3. Tagkopoulos I, Liu YC, Tavazoie S (2008) Predictive behavior within microbial

genetic networks. Science 320: 1313–1317.

4. Hamner S, McInnerney K, Williamson K, Franklin MJ, Ford TE (2013) Bile

salts affect expression of Escherichia coli O157:H7 genes for virulence and iron

acquisition, and promote growth under iron limiting conditions. PLoS ONE 8:

e74647.

5. Gunn JS (2000) Mechanisms of bacterial resistance and response to bile.

Microbes Infect 2: 907–913.

6. Schild S, Tamayo R, Nelson EJ, Qadri F, Calderwood SB, et al. (2007) Genes

induced late in infection increase fitness of Vibrio cholerae after release into the

environment. Cell Host Microbe 2: 264–277.
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