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Abstract: Superficial and life-threatening invasive Candida infections are a major clinical challenge in
hospitalized and immuno-compromised patients. Emerging drug-resistance among Candida species is
exacerbated by the limited availability of antifungals and their associated side-effects. In the current
review, we discuss the application of probiotic yeasts as a potential alternative/ combination therapy
against Candida infections. Preclinical studies have identified several probiotic yeasts that effectively
inhibit virulence of Candida species, including Candida albicans, Candida tropicalis, Candida glabrata,
Candida parapsilosis, Candida krusei and Candida auris. However, Saccharomyces cerevisiae var. boulardii is
the only probiotic yeast commercially available. In addition, clinical studies have further confirmed
the in vitro and in vivo activity of the probiotic yeasts against Candida species. Probiotics use a variety
of protective mechanisms, including posing a physical barrier, the ability to aggregate pathogens
and render them avirulent. Secreted metabolites such as short-chain fatty acids effectively inhibit
the adhesion and morphological transition of Candida species. Overall, the probiotic yeasts could be a
promising effective alternative or combination therapy for Candida infections. Additional studies
would bolster the application of probiotic yeasts.

Keywords: Candida albicans; non-albicans Candida species; Candida auris; Saccharomyces boulardii;
Saccharomyces cerevisiae; aromatic alcohols

1. Introduction

The fermented foods are a rich source of beneficial microorganisms, and they have a long history
of exhibiting health benefits, particularly S. cerevisiae and lactic acid bacteria (LAB). Their safety is
evidenced by consumption of fermented foods and beverages over centuries. Today, it is well accepted
that the rich microbial profile of fermented food provides more than just nutrition. For example,
functional activity of microorganisms in food helps enhance the bio-availability of micronutrients,
improving the sensory quality and shelf life of the food, degrading anti-nutritive factors (such as
trypsin inhibitors and phytate degradation), enriching antioxidant and antimicrobial compounds,
and fortifying health-promoting bioactive compounds [1,2]. These attractive microbial activities in
the fermented foods have been a draw in the field of probiotics.

Characteristics of bacterial strains such as Lactobacillus and Bifidobacterium species have been
extensively studied and commercially available as probiotic supplements. Yeasts, which are also
common in fermented foods, remain largely unexplored for probiotic potential. We and other researchers
have observed that yeasts that originate from fermented sources such as apple cider, wine, fermented
coconut palm, and fermented dairy products survive the harsh condition of the gastrointestinal (GI)
tract and retain the ability to attach to intestinal epithelium [3–5]. More recently, live bacteria have
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been used in fecal transplants to prevent and/or treat several GI complications [6]. The probiotic
bacteria, such as lactic acid bacteria (LAB) and Bifidobacterium species, have effectively treated several
GI complications, including candidiasis [7,8]. However, other than Saccharomyces boulardii, potential
probiotic yeasts such as S. cerevisiae and several other non-Saccharomyces yeasts are largely unexplored
use as biotherapeutics, specifically for Candida infections. In reviewing the current literature here,
we focus on the biotherapeutic potential and mechanism(s) of action of beneficial yeasts against
Candida infections.

The vast majority of fungal infections are caused by Candida albicans, a polymorphic commensal
yeast as well as some non-albicans Candida species. Disease range from superficial infections, such as
cutaneous and mucosal, to life-threatening bloodstream infections (BSI), or invasive deep tissue
infections. Superficial infections usually affect the nails, skin, and mucosal membrane of the host
and are recalcitrant to treatment. For example, vulvovaginal candidiasis (VVC) has infected 75% of
women population at least once in their lifetime. Furthermore, a small population (5–8%) suffers from
at least four recurrent VVC per year [9].

Bloodstream infection (BSI) and other invasive Candida infections cause high morbidity and mortality
especially among immune-compromised patients [10]. Candida species are the fourth-leading cause of
nosocomial infections in the world, and Candida BSI attributes to 35% mortality rate in all the Candida
associated infections [11]. Furthermore, the National Nosocomial Infection Surveillance System (NNIS),
USA, has revealed total 27,200 nosocomial infections between January 1980 through April 1990, among
these C. albicans and non-albicans Candida species were involved total 19,621 (72%) of the overall
infections [12].

Though C. albicans is a major commensal yeast flora of the GI tract, non-albicans Candida
species such as Candida glabrata, Candida tropicalis, Candida parapsilosis, and Candida krusei have been
frequently identified in a healthy individual’s gut. On the other hand, among 15–20 pathogenic
non-albicans Candida species, Candida glabrata, Candida tropicalis, Candida parapsilosis, and Candida krusei
are predominant constituting 35–65% of the overall infections [13]. As an opportunistic pathogen,
certain groups of immune-compromised individuals have a higher susceptibility towards Candida
infection. Invasive Candida infections are also closely associated with advanced medical techniques
such as medical implants and stents [14]. For instance, the patients who are on antibiotic therapy
and chemotherapy, central venous catheters, total parenteral nutrition, extensive surgery, burns,
renal failure and hemodialysis, or mechanical ventilation are at a major risk for superficial and invasive
Candida infections [14].

2. Morphological Transition and Metabolic Flexibility Promote Virulence of Candida In Vivo

As a polymorphic yeast, C. albicans and few non-albicans Candida strains, such as C. tropicalis
and C. glabrata, exhibit multiple morphological structures such as yeast form, germ tubes,
pseudo-hyphae, and/or hyphae that play a key role in the infection. For example, filamentous
morphology is well-known for epithelial invasion and is primarily involved in biofilm formation [15].
Yeast form cells are planktonic and are important for dissemination. Once they attach, they initiate
germ tubes, pseudo-hyphae, and/or hyphae that enhance adhesion to surfaces. Attachment to abiotic
surfaces initiates biofilm formation. Biofilms on implanted medical devises may lead to invasive
fungal infections—a major risk factor for Candida infection-associated mortality [16]. Attachment
to live cells (such as epithelium) causes damage, evokes an immune response and ultimately gains
access to deeper tissues. Therefore, the polymorphism of Candida is an important consideration in its
infectious outcomes.

The host’s innate immunity is a major factor in fungal clearance, normally through a process called
phagocytosis where immune cells ingest and biochemically eliminate the pathogens [17]. However,
the switch from yeast to filamentous form is a common escape mechanism of Candida species [18].
Therefore, C. albicans filament has less susceptibility for phagocytosis by innate immune cells than
the yeast form [19]. In addition, metabolic flexibility of C. albicans facilitates colonization by adapting
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to varying nutritional availability [20]. For instance, in case of Candida meningoencephalitis (Candida
infection in brain tissue), glucose and vitamins are the major nutrient sources for the pathogen, while
in liver, it utilizes glycogen as a nutrient source [9]. A study revealed that adaptation to alternative
carbon sources such as lactate and other nutrient sources increased environment stress response
and virulence [21]. All of these attributes make C. albicans and non-albicans Candida species a unique
pathogen among the microbial community.

3. Drug Resistance Is a Major Hurdle to Antifungal Therapy

Antifungal drugs used to treat Candida associated infections, work either by killing or inhibiting
the growth of Candida species. A sparse number of antifungal classes such as polyenes, azoles,
and echinocandins are used depending on conditions of invasive Candida infections [22]. Multiple
Candida strains have already developed resistance to these drugs making this a public health threat [23].
For example, surveillance data from health-care facilities revealed widespread fluconazole resistance
among clinical isolates of both C. albicans and non-albicans Candida strains [24–26]. Azoles such as
fluconazole is a first-line antifungal drug that is used extensively for therapy and prophylaxis against
Candida infections. Several resistant mechanisms have been connected to drug-resistant Candida species
including overexpression of drug efflux pumps, alteration in drug targets, and changes in membrane
sterol composition [22]. The structural heterogeneity of Candida biofilm has a major significance in
clinical context due to higher resistance against most antifungal agents. Furthermore, these drugs
can be toxic for the patients with several side effects that include GI disturbances, hepatotoxicity,
and neurotoxicity due to their target resemblance to its host cell, antifungal metabolism in liver
and cross drug interaction in the host [27,28].

More recently, multi-drug resistant Candida auris has emerged as a “super bug” posing significant
clinical challenges and a major threat to public health. Candida auris, is often involved in the nosocomial
bloodstream infection world-wide [29]. C. auris has been shown to last in the hospital settings
and spread from person-to-person by direct contact or contaminated surfaces [23]. In addition,
C. auris is closely related with Candida haemulonii and is often misidentified as such. This requires a
specialized laboratory method for identification [23], further delaying implementation of infection
control. Therefore, now more than ever, there is an urgent need for effective alternatives to conventional
modes to treat Candida infections.

Some attempts have been made to using specific diets that avoid high sugar-containing food
such as bakery products, milk, and dairy product. The claim is that it reduces Candida colonization
of the GI tract [30]. Intestinal overgrowth of C. albicans contributes to Crohn’s disease that affects
1.6 million Americans [31,32]. C. albicans overgrowth is caused by an imbalance in the intestinal
microbiota and host immune status. To restore the balance and modulate host immunity, foods rich in
antioxidants and other nutritional supplements have been suggested [30,33]. More recently, studies
on the human microbiome have opened new insight into the role of the resident gut microbiota in
physical health and mental wellbeing. Applications of beneficial microbes as fecal transplants [34] or
fermented milk products [35] for the treatment of irritable bowel syndrome (IBS) and irritable bowel
disease (IBD) has gained traction. Here we discuss the potential of probiotic yeasts against Candida
virulence and pathogenesis.

4. Use of Probiotics as Biotherapeutics

As stated by Hippocrates, “let food be thy medicine and medicine be thy food”. Today, the idea of
food and/or diet is not just extended towards mere survival or hunger satisfaction. The health-conscious
population deeply cares about additional aspects including health improvement and prevention of
diseases. In this context, functional food plays a significant role where, the concept of food has not only
intended to provide humans with necessary nutrients, but also to prevent diseases and increase physical
and mental well-being. Probiotic, considered as a functional food, is mostly consumed in the form of
traditional fermented food products such as milk products, fermented vegetables, and meats [36].
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Probiotics are defined as “live microorganisms which, when consumed in adequate amounts,
confer health benefits on the host” [37]. The archived scientific documents have explained the diverse
positive effects of probiotics on a wide range of diseases and disorders including lactose indigestion,
diarrhea, immune modulation, inflammatory bowel syndrome, constipation, infection, allergy, serum
cholesterol, blood pressure, and reduction of urinary tract infections [38]. In addition, the Human
Microbiome Project by National Institute of Health (NIH), USA, changed the views on beneficial
microbial research; it exposed the influence of gut microbiome and human health during various
infections and disease conditions including, mental health.

5. Interaction of Probiotics Yeast and Candida Species

Several reports suggest that probiotic bacteria are effective against GI complications such as
diarrhea, leaky gut syndrome, as well as Helicobacter pylori and Clostridium difficile infections [39,40].
However, Saccharomyces cerevisiae var. boulardii is the only yeast currently available for human use as
probiotics. Its efficacy against Candida has been explored previously. Specifically, pathogen-free mice
that were infected with C. albicans and subsequently treated with S. boulardii prevented the translocation
of Candida to internal organs [41–43]. These groups further confirmed that S. boulardii effectively
reduced C. albicans translocation colonization and inflammation in in vivo models.

Clinical reports around the use of probiotic yeasts are limited. One study, reports that oral
administration of S. boulardii to infants reduced the fungal colonization and invasive fungal infections [44].
Another study conducted in preteen children focused on the effects of probiotics against Candida infection.
They used a probiotic cocktail of yeast and bacteria in combination with prebiotics and demonstrated a
reduction in colonization of C. albicans [45].

6. Probiotic Yeasts Exhibit Multiple Inhibitory Mechanisms against Candida Species

Pre-clinical and/or clinical studies indicate that S. boulardii and other potential probiotic yeasts
ameliorate complications associated with Candida infection by mechanisms outlined in Table 1.
However, there was a lack of specific mechanistic insights on how these probiotic yeasts interact with
Candida species especially in the context of a live host. Pathogens in GI tract induce necrosis
and apoptosis of intestinal epithelia by reducing the production of mucin or its degradation.
Pathogens also downregulate IgA and other proteins of the tight junction thereby increasing intestinal
permeability [46,47]. S. boulardii has been shown to increase IgA production in Clostridium difficile colitis
and antibiotic-associated diarrhea in mice model [48]. S. boulardii also decreases epithelial necrosis,
apoptosis, and increases the production of antioxidant enzymes such as superoxide dismutase, catalase,
and glutathione peroxidase in mouse models in necrotizing enterocolitis in mice [49]. In addition,
S. boulardii activates the intestinal epithelial restoration in GI tract [50]. Together these cellular responses
may contribute to its beneficial properties and prevent Candida infection.

Table 1. List of probiotic yeasts and its mechanisms against virulence and pathogenesis of
Candida species.

Probiotic Yeast Strains Mechanisms of Probiotic Yeasts against Candida Species Virulence
and Pathogenesis

S. boulardii

• Inhibits C. albicans and non-albicans Candida species include C. tropicalis,
C. krusei, C. parapsilosis, C. glabrata, and C. auris adhesion, biofilm
formation and/or filamentation, in in vitro, ex vivo, in vivo, and clinical
settings [51,52]

• Secrets small bioactive molecules [52,53]
• Reduces inflammatory cytokines TNFα and INF γ in colon epithelial [41]
• Prevents the C. albicans translocation in GI tract [43]
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Table 1. Cont.

Probiotic Yeast Strains Mechanisms of Probiotic Yeasts against Candida Species Virulence
and Pathogenesis

S. cerevisiae *

• Inhibits C. albicans and non-albicans Candida species adhesion,
colonization, biofilm formation, and filamentation in in vitro, ex vivo,
and in vivo models [53,54]

• Inhibits the Candida adhesion to epithelial cells by initiation of
co-aggregation [54]

• S. cerevisiae form a barrier over the biotic surfaces and inhibits
the Candida adhesion [54]

• Reduces virulence gene expressions of C. albicans during infection [54]
• Secrets bioactive molecules [53]
• Decreases the pro-inflammatory cytokine TNF-α and enhances IL-10

expressions in the host [55]
• Decreases the colorization and host cell damage during

the infection [53,54]
• β-glucan decreased intestinal inflammation [55]

I. occidentalis *

• Inhibits C. albicans and non-albicans Candida species such as C. tropicalis,
C. krusei, C. parapsilosis, C. glabrata, and C. auris adhesion, colonization,
biofilm formation and/ or filamentation in vitro, ex vivo, in vivo
models [53]

• An unidentified metabolite (s) inhibits virulence of non-albicans Candida
species [53]

* Potential probiotic yeast, not commercialized.

6.1. Immunogenic Response and Anti-Virulence Ability of Probiotic Yeasts

Since resistance to antifungal drugs has emerged as a significant problem, researchers have
explored alternative means of treating recalcitrant fungal infections. Modulation of host immunity
is one avenue that is being considered as an alternative [56,57]. For example, S. boulardii has been
shown to reduce pro-inflammatory cytokines such as IL-1β and TNF, and increase anti-inflammatory
cytokines IL-4 and IL-10 during Candida infection [42,58]. Other alternative therapies target virulence
strategies such as adhesion and filamentation of C. albicans [59]. These maybe used to treat abiotic
surfaces to deter microbes from binding. Probiotics also have the ability to inhibit virulence factors
of the pathogen. We and others have demonstrated that cells, as well as the cell-free secretome of
probiotic yeasts such as S. boulardii, S. cerevisiae, and a non-Saccharomyces yeast Issatchenkia occidentalis
inhibit adhesion, filamentation, and biofilm development of C. albicans [52] and other non-albicans
Candida species such as C. tropicalis, C. krusei, C. glabrata, and Candida parapsilopsis. Biofilms are complex
multispecies structures that include C. albicans among other microbes [60,61]. Probiotics yeasts have
been shown to be effective against fungal biofilms composed of C. albicans and non-albicans Candida
species [53]; however, no studies have been focused on their efficacy on cross-kingdom biofilms. These
studies implicated the involvement of yeast metabolite(s) in inhibiting adhesion and/ or morphological
transition in vitro [53]. These studies also indicate that probiotic yeast affect a broad spectrum and not
limited to C. albicans; rather, it can inhibit virulence across the Candida genus.

Cultured intestinal epithelial models such as Caco-2, Intestin 407 and HT-29 have been extensively
used to study microbial interactions or host-microbe interactions. These cell lines recapitulate various
features of the intestinal epithelial surface including the formation of villi, production of mucus,
and antibodies such as IgA [62]. We and others have demonstrated that probiotic yeasts effectively
reduce adhesion of C. albicans and non-albicans Candida species to these cultured epithelial cell
lines [52,53]. In addition, yeast S. boulardii has been shown to pose a barrier and preserve the integrity
of the epithelium by the reduction of pro-inflammatory cytokines in the intestine [40,52].
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Even though live probiotic cells are known to play a significant role in preventing virulence
of C. albicans, the role of exact cellular components involved are less investigated. For example,
administration of cell wall components of S. cerevisiae reduced the Candida associated inflammation
and colonization in animal models [55]. Interestingly, one of the four S. cerevisiae strains used in
this study (strain Sc-4) increased the mortality and inflammation in the host, suggesting strain-specific
effects of the probiotic yeasts against Candida species [55]. Such strain specificity as also been reported
in the interaction of Lactobacillus strains with C. albicans [63]. Furthermore, heat-killed S. cerevisiae
reduced the vaginal colonization of C. albicans when applied against vaginal candidiasis in a murine
model [54]. These effects could either mediated by yeast cell wall components such as β-glucan or
simply that the biomass of heat-inactivated probiotic cells form a physical barrier that occludes host
factors that facilitate C. albicans attachment (Figure 1A) [54].
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Figure 1. Probiotic yeast either form a physical barrier on epithelial surfaces (A) or secretes bioactive
metabolite (B) to inhibit the adhesion and morphological transition of Candida species on epithelial
cells. Further, suitable probiotic yeasts cell number is required for the effective inhibition of Candida
virulence in the host GI tract (C).

6.2. Role of Small Bioactive Metabolites in Probiotic Action

Beneficial microbes or probiotics in the intestine are thought to control pathogen overgrowth by
competing for limited nutrients. There is a growing body of literature that supports the notion that
inhibitory function is primarily mediated by secreted small molecules with suitable probiotic cell number
(Figure 1B,C) [53,64]. Microorganisms produce metabolites that have been shown to alter the course of
an infection by synergistic or antagonistic interactions with infectious agents. Such metabolites include
hydrogen peroxide, bacteriocins, and organic acids that effectively inhibit the virulence and growth of
various Candida species [64,65] (Table 2). On the other hand, few interesting microbial metabolites,
such as tyrosol and indole-3 acetic acid, trigger the filamentation in C. albicans [66,67]. Small molecules
derived from bacteria have been evaluated for activity against Candida virulence and pathogenesis.
For example, lectins of lactobacilli and bifidobacterial strains isolated from humans have been shown to
inhibit the growth of drug-resistant C. albicans [68]. The Gram-positive pathogenic bacteria, Enterococcus
faecalis, produces a peptide called EntV which has been shown to reduce C. albicans virulence [69].
Furthermore, organic acids such as acetic acid and lactic acid have been shown to enhance antifungal
treatment of C. albicans and C. glabrata [70]. Many Lactobacillus, Bifidobacterium, and yeasts strains
produce these organic acids. S. boulardii produces several bioactive compounds such as Saccharomyces
anti-inflammatory factor (SAIF), anti-toxin factors, short-chain fatty acids, bioactive proteins of 54 kDa,
and 120 kDa which play a major role in preventing bacterial infections [38,71]. However, there has
been very limited knowledge on probiotic yeast metabolites on Candida species. Recently a group
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showed that yeast S. boulardii metabolite capric acid (Decanoic acid)—a saturated fatty acid, inhibits
the filamentation of C. albicans interaction [52].

In natural habitats, potential interaction of microbial communities has been a key element for
the ecological dynamics. Bacteria and eukaryotic microorganisms exhibit both symbiotic and/or
antagonistic interaction in the natural environment. In fact, C. albicans co-exists with other non-albicans
Candida species or bacteria in the biofilm as well as the human GI tract. These inter-species interactions
between C. albicans and other microbes typically affect filamentation of C. albicans. For instance,
certain secretory molecules of Salmonella typhimurium and Streptococcus mutants inhibit cell growth
and filamentation of C. albicans in the co-culture conditions [72,73]. Another well studied bacterium is
Pseudomonas aeruginosa, where bacterial toxin phenazine inhibits the filamentation of C. albicans [74,75].

The morphological transition of yeast has been controlled by cell density and/or quorum sensing
molecules. Apart from bacteria, the quorum sensing mechanism is also well studied in yeast such
as C. albicans and S. cerevisiae. Farnesol and tyrosol are known cell density molecules in C. albicans
which controls the morphological transition. Similarly, yeasts such as S. cerevisiae and other many
non-Saccharomyces yeast produce alcoholic signaling molecules called phenylethanol and tryptophol.
An abundant usage and availability of well-curated genetic database indicate that S. cerevisiae has gained
more attention on quorum sensing mechanisms than the non-Saccharomyces yeast strains. There are
few studies claiming that factors such as low nitrogen content and cell density play a significant role
in the production of phenylethanol and tryptophol in S. cerevisiae and regulates its morphological
transition mechanism [76]. Furthermore, these signal molecules are controlled by the expression of
ARO8, ARO9, and ARO10, where ARO8 and ARO9 encode the aromatic aminotransferases and ARO10
encodes the aromatic decarboxylase reaction [77,78].

Table 2. Microbial metabolites and its functions against Candida species.

Microbial Strains Bioactive Metabolite Functions

S. boulardii [52] Short-chain fatty acids (capric acid)
Filamentation inhibition, and antifungal

activity against
C. albicans

S. cerevisiae [53,54] Unknown Adhesion and filamentation inhibition
I. occidentalis [53] Unknown Adhesion and filamentation inhibition

Lactobacillus acidophilus, L. crispatus,
L. vaginalis [65,68]

Lectins, hydrogen peroxide,
lactic acid Inhibit cell growth of C. albicans

Bifidobacterium adolescentis, B. bifidum,
B. gallinarum [68] Lectins Inhibit cell growth of C. albicans

Enterococcus faecalis [69] Peptide EntV Filamentation inhibition
Pseudomonas aeruginosa [75,79] Phenazine, 3-oxo-C12 homoserine lactone Filamentation inhibition

Salmonella typhimurium [72] Unknown Inhibit cell growth and filamentation
Streptococcus mutants [73] Unknown Inhibit cell growth and filamentation

Several research groups have predicted and/or observed an antagonistic nature of aromatic alcohols,
phenylethanol, and tryptophol against fungi. Winters et al., (2019) reported that high concentrations of
S. cerevisiae inhibited non-Saccharomyces strains in mixed cultures and under fermentation conditions [78].
Although there were direct evidence of inhibition due to these secondary metabolites, commercially
procured phenylethanol and tryptophol have been shown to inhibit filamentation of C. albicans [77].
This result is bolstered by the observation that administration of tryptophol enhances survival of
Galleria mellonella larval that are infected with Candida [80]. Furthermore, a cocktail of phenylethanol,
isoamyl alcohol, E-nerolidol, and farnesol provides protection against Candida infection in a murine
model of infection [81]. Together these studies establish a paradigm for inhibition of fungal virulence
that is mediated by aromatic alcohols.

7. Gaps in our Understanding of Biotherapeutic Application of Probiotics for Candida Infection

Probiotic yeasts yield several positive outcomes in in vitro, ex vivo, and in vivo readouts during
colonization of Candida species. Information about their effect during systemic infection is an area
that needs further investigation. Numerous animal and handful of clinical experiments have revealed
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that probiotics and metabolites such as short-chain fatty acids, tryptophol and phenylethanol play an
abundant role in human health and diseases. However, the origin of these metabolites is ill-defined
and their effects on clinical manifestations of Candida infection need further investigation. These studies
would provide substantive information to improve biotherapeutic properties of beneficial microbes
against Candida infections.

Emergence of drug resistance and complications associated with side effects have sparked interest
in alternative therapies. Applications of food-derived yeasts have been shown to have positive outcomes
against C. albicans and non-albicans Candida species virulence and infection in pre-clinical and clinical
settings. Food-derived beneficial yeasts are also generally safe and pose an effective alternative to
traditional antifungals. They may also be used in combination therapy with conventional antifungal
drugs since the synergistic effect of probiotics and antifungal agents would prevent emergence of
drug resistance.
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