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Abstract
Background: Serial Analysis of Gene Expression (SAGE) and microarrays have found awidespread application,
but much ambiguity exists regarding the evaluation of these technologies. Cross-platform utilization of gene
expression data from the SAGE and microarray technology could reduce the need for duplicate experiments and
facilitate a more extensive exchange of data within the research community. This requires a measure for the
correspondence of the different gene expression platforms. To date, a number of cross-platform evaluations
(including a few studies using SAGE and Affymetrix GeneChips) have been conducted showing a variable, but
overall low, concordance. This study evaluates these overall measures and introduces the between-ratio
difference as a concordance measure pergene.

Results: In this study, gene expression measurements of Unigene clusters represented by both Affymetrix
GeneChips HG-U133A and SAGE were compared using two independent RNA samples. After matching of the
data sets the final comparison contains a small data set of 1094 unique Unigene clusters, which is unbiased with
respect to expression level. Different overall correlation approaches, like Up/Down classification, contingency
tables and correlation coefficients were used to compare both platforms. In addition, we introduce a novel
approach to compare two platforms based on the calculation of differences between expression ratios observed
in each platform for each individual transcript. This approach results in a concordance measure per gene (with
statistical probability value), as opposed to the commonly used overall concordance measures between platforms.

Conclusion: We can conclude that intra-platform correlations are generally good, but that overall agreement
between the two platforms is modest. This might be due to the binomially distributed sampling variation in SAGE
tag counts, SAGE annotation errors and the intensity variation between probe sets of a single gene in Affymetrix
GeneChips. We cannot identify or advice which platform performs better since both have their (dis)-advantages.
Therefore it is strongly recommended to perform follow-up studies of interesting genes using additional
techniques. The newly introduced between-ratio difference is a filtering-independent measure for between-
platform concordance. Moreover, the between-ratio difference per gene can be used to detect transcripts with
similar regulation on both platforms.
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Background
Methods for the analysis of gene expression profiles have
gone through progressive development over recent years.
Traditionally, the level of transcribed mRNA has been
analyzed using methods such as Northern blots, quantita-
tive RT-PCR, differential display [1,2], representational
difference analysis [3], total gene expression analysis [4]
and suppressive subtractive hybridization [5,6]. All these
methods, although fruitful and still in use, have a limited
scope with regard to the number of genes that can be ana-
lyzed simultaneously. Because of this limitation, new
methods have been developed, including serial analysis of
gene expression (SAGE) [7], massive parallel signature
sequencing (MPSS) [8], cDNA and oligo microarray chip
technologies [9-13] and Affymetrix GeneChips [11].

SAGE is based on the high-throughput sequencing of con-
catemers of short (13–14 bp; recently 21–25 bp) sequence
tags that originate from a known position within a tran-
script and therefore theoretically contain sufficient infor-
mation to identify a transcript [7]. In contrast to
microarrays, SAGE estimates the abundances (expression
levels) of thousands of transcripts without prior knowl-
edge of the transcripts being expressed. The proportion of
the tag within the total number of tags in the library gives
a direct estimate of the abundance of the transcript within
a biological sample. The advantage of the SAGE technique
is that it performs a random sampling from the pool of all
expressed transcripts (also called a transcriptome) allow-
ing the discovery of new transcripts. The proportional
nature of the data enables easy exchange among research-
ers thus allowing the creation of large public SAGE data
sets for numerous human tissues, both normal and dis-
eased [14,15]. Disadvantages of SAGE are that the tech-
nique is expensive, labor-intensive and prone to
sequencing errors. Moreover, the annotation of the short
10 bp sequence tags may identify more than one tran-
script. This can be overcome by using LongSAGE libraries
that contain 17 bp tags which can be more reliably
mapped to Unigene clusters or the complete genome
sequence [16]. However, SAGE is not suitable for high-
throughput analyses of multiple samples.

In contrast to SAGE, DNA microarrays are used to measure
relative expression levels between samples of thousands
of known transcripts. Currently, three array variants are
being used (for reviews see [17,18]) i.e. spotted cDNA
microarrays, spotted oligonucleotide microarrays and
synthesized oligonucleotide microarrays (Affymetrix
GeneChips). The advantages of Affymetrix GeneChips are
that they are highly sensitive enabling the detection of
mRNAs present at levels as low as 1 transcript in 100000
[11] when the probe labeling step is not considered [19].
They are suitable for high-throughput analyses of multiple
samples, and data can easily be shared and used for com-

parisons with other researchers using the same chips. Dis-
advantages of Affymetrix GeneChips are that they are only
commercially available, are costly and require expensive
specialized equipment and are inflexible in design
(although custom design is possible at high cost). Further-
more, GeneChips only measure the expression of genes
represented on the chip in contrast to SAGE, in which the
expression profile of the complete transcriptome can be
mapped.

At present, SAGE, oligo microarrays, cDNA microarrays
and Affymetrix GeneChips are the most widely used tech-
niques for determining gene expression levels and gene
expression ratios in different disease states and in cells
under different physiological conditions or environmen-
tal stimuli. Often these different gene-expression profiling
platforms are being used in parallel and data generated
with the different techniques need to be compared, and
possibly interchanged, within and between laboratories.
Due to the overall difference in platform design, transcript
level estimation, and gene annotation, direct comparisons
are difficult and only a few attempts have been made to
compare these different platforms (Figure 6). To deter-
mine the overall correspondence between expression lev-
els or expression ratios of two different platforms several
methods have been used in literature (Figure 1A,B and
1C). These include the parametric (Pearson) or non-para-
metric (Spearman) correlation coefficients between plat-
forms, and contingency tables with varying numbers of
classes for each platform. For the latter a correspondence
measure can be calculated as the percentage of transcripts
falling in the cells on the diagonal (Figure 1B). An extreme
form of the contingency table has only 2 classes per plat-
form (ratios above and ratios below 1) and therefore only
4 cells. This form of concordance estimation is dubbed
"Up/Down classification" (Figure 1A). None of these cor-
respondence measures was deemed satisfactory because
they either treat very different ratios as similar (points A
and B in figure 1A). This, in our view, makes the Up/
Down classification very unreliable as an agreement
measure. The use of contingency tables with more classes
is already a better approach, but still some genes will be
considered to be "in disagreement" while they have nearly
corresponding expression ratios (points A and B in figure
1B). The Pearson correlation coefficient is a measure for
the fraction of variation in Y that is explained by the vari-
ation in X, and as such, only gives a measure for the ten-
dency of the plotted points to increase simultaneously
(solid line, Figure 1C). Because of the large number of
points, a slight linear regression of Y on X will give a
highly significant correlation coefficient. However, when
studying the correspondence between gene expression
platforms, the expected linear relation has a slope of 1,
when the results of both platforms are in complete corre-
spondence (dashed line, Figure 1C), and the deviation of
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the observed scatter plot from this expected relation
should be tested. Neither the linear Pearson, nor the
Spearman rank correlation coefficient is suited for such a
test. Although the fit of the point cloud to the Y = X rela-
tion can be easily calculated, the resulting statistic would
still only provide a goodness of fit measure for the whole
data set without giving any information on the corre-
spondence per gene. To remedy these pitfalls we will
introduce a correspondence measure based on the differ-
ence between the log(ratio) values in the two platforms
for each individual transcript. Apart from serving as the
basis for a measure for overall platform concordance, this
method also provides the user with an agreement measure
for each individual transcript which is of more interest
than the overall correlation.

In the current study we have determined the similarity
between SAGE- and Affymetrix GeneChips-generated
gene expression profiles of two independent RNA sam-
ples. One RNA sample is isolated from a Wilms' tumor;
the other is the Stratagene Universal reference RNA. These
expression data were then used to evaluate the annotation
problems when comparing different gene profiling plat-
forms and the methods that can be used to compare two
different platforms with respect to individual gene expres-
sion measurements and with respect to between-sample
gene expression ratios. Finally, it is demonstrated that the
between-ratio difference can be applied to select those

transcripts that display similar expression changes in both
platforms.

Results
SAGE data analysis
In order to compare SAGE with other gene expression pro-
filing techniques we created a SAGE library with 69792
tags from a Wilms' tumor sample. SAGE data (51954 tags)
for the Stratagene Universal reference RNA
(GSM1734;[20]) were obtained from the NCBI website.
All tag counts are after removal of duplicate dimers and
linker sequences. Within the SAGE libraries we could
identify 25052 and 17497 unique SAGE 10 bp tags, for
the Wilms tumor sample and the Stratagene sample,
respectively. Tags can be divided into tags with low abun-
dance (1–5 tags per 100000), intermediate abundance
(6–50 tags per 100000), and high abundance (more than
50 tags per 100000). In each of the libraries, these catego-
ries contained on average 84%, 15% and 1% of the total
number of unique tags (Data not shown). In addition, we
created a LongSAGE library of the Wilms tumor sample
for annotation purposes (as described below) and not for
the comparison with Affymetrix GeneChips. This library
could be used as a technical replicate of the 'short' SAGE
library. Comparison of the SAGE and LongSAGE libraries
showed a Pearson Correlation coefficient of 0.651 (P <
0.01) and using Z-test statistics [21] the two libraries only
differed significantly from each other in 3% (α = 0.05) or

Illustration of the methods used for the comparison of expression profiles from different platformsFigure 1
Illustration of the methods used for the comparison of expression profiles from different platforms. A: Up/Down 
classification: The points A and B with very different ratios are both considered to reflect a common tendency; B: contingency 
table diagonal: The points A and B, with very similar ratios, end up in different classes; C: correlation coefficients: The solid line 
fits to the point cloud which has a significant correlation coefficient between X and Y. However, the dashed line (Y = X) is the 
expected line when both platforms show identical expression patterns.
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Evaluation of gene expression in Wilms' tumor tissueFigure 2
Evaluation of gene expression in Wilms' tumor tissue. The comparison of SAGE and Affymetrix duplicate samples 
demonstrates the reproducibility in both platforms (A, B). In addition, gene expression was compared between platforms (C) 
and showed a wide range of variation. The frequency distributions of gene expression values the final data sets do not differ 
from the total distributions (D). A: Comparison of a SAGE versus a LongSAGE library of the same sample Blue dots represent 
tag counts that are significantly different between the two libraries (according to the Z-test, Kal et al. 1999), green and red dots 
represent tag counts that do not differ between libraries. The red spots are tag counts that do not significantly differ from tag 
count 0 within the specified library (See also Table 4). B: Comparison of a duplicate analysis of one Wilms tumor sample using 
Affymetrix HG-U133A GeneChips. Gray spots represent probe sets that have an absent call. C: Comparison between SAGE 
and Affymetrix GeneChips for the Wilms' tumor sample. Red spots represent the total matching data set (n = 6408) and black 
spot represent the final selection (n = 1094). D: Frequency distribution of the Affymetrix intensity and SAGE tag counts from 
the final matched data set (1094 Unigene clusters) and the total matching data set. The smoothed line represents the distribu-
tions of the total data set in each platform. For both Affymetrix (classes with an intensity width of 10) and SAGE (classes based 
on tag counts) the distributions of the final data set and the total data set do not differ from each other (Chi-square values of 
327 (df = 323; P = 0.412) and 104 (df = 105; P = 0.506), respectively).
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0.6% (α = 0.001) of the tags (Figure 2A). The observed dif-
ferences in the LongSAGE library versus the normal SAGE
library might be due to treatment with different linkers,
tagging enzyme (MmeI instead of BsmF1) and elimination
of a blunt-end ligation. The pattern of variation in figure
2A closely resembles the variation predicted by the bino-
mial distribution [22] of SAGE tag counts with only the
3% significantly different tag counts (blue dots; α = 0.05),
falling outside the range of critical values. Overall SAGE
and LongSAGE give identical results.

Microarray analyses
Microarray experiments were performed using Wilms'
tumor RNA and the Stratagene Reference RNA. Results of
biological replicas of each sample, with independent
cRNA synthesis and hybridizations, showed a good repro-
ducibility (Pearson correlation coefficients of 0.982 (n =
11938) and 0.979 (n = 10489);both P < 0.01) using inten-
sity values for all probe sets with a "present" signal (on
average 54%; absent = 44% and marginal = 2%) (Figure
2B; black spots). This indicates that two identical RNA
samples perform very similar within the pre-processing
and final hybridization reactions. Although, in contrast to
SAGE, the intensity signals on the array do not represent
the actual abundance of mRNA molecules, we classified
the Affymetrix data to get an impression of the signal dis-
tribution. These distributions are similar to those of the
SAGE data. The majority (~90%) of the probe sets showed
low signal intensity.

Annotation problems
In the comparison of data obtained by SAGE and Affyme-
trix GeneChips only reliably annotated tags can be
included (as described in the 'Matching of platforms' par-
agraph of the Material and Methods section; see also
Shippy et al.[23]). Annotation of SAGE tags to genes and
their corresponding Unigene cluster numbers revealed
that on average 30% of all tags (including low abundant
tags) could be reliably annotated based on the SAGE
Genie principles [24]. Annotation improves to an average
of 70% for tags that have an intermediate to abundant
expression level. The remainder of the tags could not reli-
ably be associated with a gene or Unigene cluster because
they were not available through the SAGE Genie site,
annotated to unclustered ESTs, or their reliability was
below 67% (according to the SAGE Genie principles).
Additionally, we performed LongSAGE for the Wilms'
tumor sample, which allows the identification of 17 bp
tags instead of 10 bp tags. Theoretically, over 99.8% of the
17 bp tags are expected to occur only once in the human
genome. However, analyses based on actual sequences
have demonstrated that only 75% of the 17 bp tags occur
only once in the human genome, with the remaining tags
matching duplicated genes or repeated sequences [16].
Complete annotation of LongSAGE tags using SAGE

Genie data and principles revealed that 28% of all tags
could be assigned a reliable Unigene cluster. Similar to
SAGE, the annotation improves to approximately 70% for
tags that have an intermediate to abundant expression
level.

The Affymetrix HG-U133A GeneChips contained probe
sets for 13727 Unigene clusters that could be identified,
whereas eight percent of the probe sets (i.e. 1795 probe
sets) could not be linked to a Unigene cluster because
these sequences are withdrawn or because these
sequences are currently under revision. Figure 3 gives a
schematic representation of the matching of SAGE and
Affymetrix HG-U133A GeneChips data with additional
information about the number of Unigene clusters within
each platform, number of unambiguous Unigene clusters
in each comparison and the Unigene clusters included in
the final comparison. This final comparison contains 13%
of the SAGE Unigene clusters and 8% of the Affymetrix
Unigene clusters. These data represent 32% of the unam-
biguous Unigene clusters. Because of the above-men-
tioned problems and restrictions, only 1094 tags and
probe sets were uniquely matched to the same Unigene
clusters and were 'present' in both tissue samples and plat-
forms. This relatively low number underscores the major
problem in "how to merge different expression plat-
forms". However, in view of the following quantitative
comparison of gene expression platforms it is important
to note that a comparison of frequency distributions of all
clusters and of the selected clusters showed that the final
selection of 1094 Unigene clusters does not represent a
biased sample neither for the SAGE tag counts, nor for the
Affymetrix array intensities. This is illustrated in figure 2D
in which the frequency distributions are given for Affyme-
trix intensities and SAGE tag counts from the final data set
of 1094 Unigene clusters. The smoothed line, which rep-
resents the frequency distribution of all SAGE tag counts
and all Affymetrix intensity data (only present calls), does
not differ from the distribution of the subset included in
the comparison of the two platforms.

Comparison of gene expression levels
In the comparison of platforms, we first analyzed the sim-
ilarity of gene expression levels between SAGE and
Affymetrix data in one tissue sample. Both datasets were
matched according to their Unigene cluster numbers. Fig-
ure 2C shows a scatter plot of SAGE and Affymetrix gene
expression values of the 6408 Unigene clusters before
exclusion of ambiguous matches (red spots). For multiple
matches, the highest tag count or intensity value per clus-
ter was plotted. In this scatter plot the black spots repre-
sent the final selection of 1094 unambiguous and filtered
Unigene clusters. Note that high Affymetrix expression
levels are observed for low SAGE tag counts (spots in top-
left quadrant of figure 2C), but that no high tag counts are
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Flow chart for matching data from two gene expression platformsFigure 3
Flow chart for matching data from two gene expression platforms. SAGE tags were converted into Unigene clusters 
using data from the CGAP website. Accession numbers from Affymetrix GeneChips were also converted to their correspond-
ing Unigene cluster. Platforms are matched according to their Unigene cluster and only unambiguous Unigene clusters are 
selected. Finally, data are filtered for tag counts >0 and present calls on microarray platforms. 1. In the complete process of 
annotation a large number of tags or probe sets lost due to the following reasons: SAGE: 11733 tags with no annotation, 13113 
tags with no reliable annotation, 913 tags with multiple Unigene Clusters, 80 tags belonging to linker sequences, 20 tags belong-
ing to repetitive sequences, 22 tags belonging to mitochondrial DNA; Affymetrix: 1795 Probe sets no longer belong to a Uni-
gene Cluster (Build 160). The remaining 20488 probe sets represent 13727 unique Unigene clusters. 2. Unambiguous Unigene 
clusters refer to those clusters that occur only once within each platform.
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found for low Affymetrix data (few spots in bottom-right
quadrant). Overall, the correlation between SAGE tag
counts and Affymetrix intensity levels of the 6408
matching Unigene clusters seemed to be modest. This was
confirmed by mapping the distribution of the top 100
highly expressed genes in SAGE in the distribution of the
Affymetrix dataset, and vice versa (Data not shown, but
this can be inferred from figure 2C). In both comparisons,
only halve of the genes from the top 100 of one platform
have a rank in the top 100 of the other platform, whereas
approximately 10% are matched to genes with ranks of
over 1000 in the other platform. This already shows that
the correlation of expression levels between platforms is
modest.

Comparison of between-sample expression ratios
In most gene expression studies, alterations of expression
levels are expressed in relation to the simultaneously
determined expression level of a reference sample and
conclusions are drawn based on these ratios. To this end,
expression ratios were calculated between the reference
RNA and the Wilms' tumor data for the SAGE tag counts
as well as for Affymetrix HG-U133A GeneChips spot
intensities. In this comparison the final data set contain-
ing only the between-sample ratios for unambiguous
transcripts was used (Figure 3), allowing effective compar-
ison of the two platforms.

To enable direct comparisons of ratio measurements
using different gene expression platforms, the ratios of the
Affymetrix platform were scaled to those of the SAGE plat-
form as described in Figure 4 ("scaling of two platforms").
In addition, different approaches were used to describe
the correlation of the resulting scaled gene expression
ratios between platforms (Figure 5). For the comparison
of gene expression ratios based on contingency tables we
used two approaches, i.e. Up/Down classification (Figure
5A) and a contingency table diagonal based on intensity
classes (Figure 5B). These comparisons lead to an agree-
ment of 63% and 76% between platforms, respectively.
Furthermore, the Pearson correlation coefficient, calcu-
lated as a measure for the agreement between platforms,
was 0.453 (P < 0.01). Regression analysis shows a linear
trend with a slope of 0.477 for Affymetrix versus SAGE,
which according to the correlation coefficient differs sig-
nificantly from a slope of 0. However, this slope also devi-
ates significantly from the slope value of 1 which is
expected when the platforms are identical (t-test for
slopes; P <0.001; Figure 5C). Finally, we compared SAGE
and Affymetrix data using our proposed classification
based on the difference between the two ratios per Uni-
gene cluster. When we accept a 0 to 3-fold difference as
indicative for agreement between the two platforms (red
points in figure 5D), this approach showed that the two
platforms have an agreement of 78%.

Like others have demonstrated (Figure 6) the overall
agreement between platforms improves when only highly
expressed transcripts (based on their tag counts) are
included (Table 1). When only lowly expressed genes
were included the concordance based on the contingency
table diagonal and correlation coefficient steeply
decreased whereas the other measures were both hardly
affected. Inclusion of only those tags that were
significantly differentially expressed between the two
samples markedly improved the Up/Down classification
and correlation coefficient based measures. Note that the
concordance measure based on the between-ratio differ-
ence was least affected by these selections. This indicates
that this new measure is robust and less dependent on fil-
tering than the other overall measures.

Sources of differences in gene expression ratios
In an attempt to explain the difference in gene expression
between SAGE and Affymetrix GeneChips we summarize
different sources. Variation due to "noisy fold ratios" gen-
erated from low-intensity transcripts is a widespread cause
of error when computing statistics on ratios without
accounting for the intensities from which the ratios were
derived [25]. Within our data set we have shown that the
final data set is an unbiased selection of the total data set
(Figure 2D). Additionally, the mean intensity signals for
both SAGE and Affymetrix GeneChips appear to be ran-
domly distributed over the ratio distribution (data not
shown). This indicates that the difference in expression
ratios between platforms is not caused by low intensity
values.

In addition, it has been suggested that the GC-content of
the transcripts could influence the correspondence
between platforms [26]. To test this hypothesis for the
final data set (n = 1094) we retrieved all transcript
sequences (mostly Refseq sequences [27]) and probe set
sequences and calculated the GC-content for each tran-
script and the average GC-content of the corresponding
probe sets. The GC-contents were divided into classes
(30–35%; 35–40%; 45–50% etc.) and the correlation
between GC-content and the differences in expression
ratios between platforms was tested. Statistical analysis
showed that ratio differences did not depend on the GC-
content of the transcript (Chi-square value of 25.69; df =
35; P = 0.875). However, Unigene clusters showing good
agreement between platforms tend to depend on the high
GC-content of the corresponding probe sets (Chi-square
value of 61.114; df = 30; P = 0.001). This GC-analysis indi-
cates that expression data from probe sets with a higher
GCcontent show a better agreement with their corre-
sponding SAGE data and are more reliable. Note in this
respect that for a Unigene cluster the GC content of a
probe set is not necessarily the same as that of a transcript.
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Scaling of two gene expression profiling platformsFigure 4
Scaling of two gene expression profiling platforms. Illustration of the steps involved in the scaling of values in each of 
the platforms to a common scale. The procedure takes the ratio distribution in one of the platforms and scales the other to 
match the same range of ratio values using a quadratic equation based on ratio 1 and the 10th and 90th percentile values of each 
platform. The (scaled) ratio values are then used to calculate between-platform ratio differences per transcript. In addition, it is 
demonstrated how the ratio differences can be used to calculate the standardized between-platform log(ratio) difference and a 
probability value. For further details: see the Materials and Methods section.

1. Calculate 10Log of the sample ratios X/Y for all genes for each platform

2. Calculate the 10th percentile of ratios less than 1 (=R10)

3. Calculate the 90th percentile of ratios above 1 (=R90)

Solve a quadratic equation:

to apply the following scaling rules:

• 10th percentile platform B = 10th percentile platform A (R10B=R10A)

• 0 = 0 (a=0)

• 90th percentile platform B = 90th percentile platform A (R90B=R90A)

4. Calculate b and c for each platform

5. Use parameters b and c to scale ratios of each platform

6. Calculate the between-ratio difference for each gene i

In addition, because the between-ratio differences are approximately normally 

distributed it is possible to attach a probability value to each individual difference.

7. Calculate a standardized difference (DiffSt) for each gene i.

Where m is the mean of the differences and s is the standard error of the 

between-ratio differences.
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Discussion
To answer the question whether gene expression data gen-
erated by SAGE and by Affymetrix HG-U133A GeneChips
can be used interchangeably, data from these two tech-
niques were compared using two independent RNA

samples. Analysis of intra-platform variation shows good
correlation for both SAGE and Affymetrix; this is also
observed by others (see Figure 6). The inter-platform com-
parison depends on reliable annotation of the SAGE tags
for which we used the tag annotation from SAGE Genie

Comparison of SAGE and Affymetrix HG-U133A GeneChips results using the scaled ratios between Wilms' tumor and Strata-gene Universal Reference RNA expression levelsFigure 5
Comparison of SAGE and Affymetrix HG-U133A GeneChips results using the scaled ratios between Wilms' 
tumor and Stratagene Universal Reference RNA expression levels. A: Up/Down classification. The red points in the 
upper-right and lower-left were considered to be in agreement between the platforms. B: contingency table diagonal based on 
the classification of gene expression ratios into log (10-fold) classes. The genes falling in the classes on the diagonal were con-
sidered to be in agreement between the platforms. C: Pearson correlation coefficient. The correlation coefficient was 0.472 
and corresponds to a linear regression line with a slope of 0.492 (solid line) The Y = X line with a slope of 1 (dashed line) is the 
expected line when both platforms have identical expression patterns. D: absolute between-platform ratio differences (see Fig-
ure 4) were calculated and classified: 0–0.5 (red), 0.5–1.0 (green), 1.0–1.5 (blue), 1.5–2.0 (magenta), 2.0–2.5 (light blue). These 
classes represent an approximate less then 3, 10, 30, 100, and 300-fold difference, respectively, between the two platforms. 
The points in the 0.5 zone were considered to be in agreement between the platforms.

A

C D

B
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[24]. A reliable association could be made only for 30% of
all tags, which increases to 70% for intermediate and high
abundant tags. This indicated that SAGE tag annotation
requires improvement, especially for low abundant tags.
Based on literature findings, the use of LongSAGE should
refine annotation of SAGE tags [16]. However, the current
study showed an annotation profile similar to the above-
mentioned percentages, indicating that LongSAGE is still
not sufficient for unique gene identification. Similar dis-
appointing improvements in annotation efficiency have
been found in other studies [19]. Further comparison of
SAGE and LongSAGE requires a study that falls beyond
the scope of this paper; such a study has recently been
published [19]. For the annotation in Affymetrix Gene-
Chips, accession numbers had to be converted to Unigene
clusters, which was hampered by the fact that 8% of the

transcripts present on Affymetrix HG-U133A GeneChips
were no longer present in a Unigene cluster. Moreover,
some probe sets might represent a different transcript than
initially reported (see for an example [28]).

A first impression about the agreement between SAGE and
Affymetrix HG-U133A GeneChips was obtained from the
evaluation of the top100 of highly abundant transcripts in
one RNA sample in each platform. This comparison
showed that approximately 50% of the top100 of highly
expressed transcripts showed a corresponding expression
within the top100 of highly expressed transcripts of the
other platform. This is in line with the findings of Ishii et
al. [29] who compared SAGE with Affymetrix GeneChips
containing approximately 6000 transcripts, and
Iacobuzio-Donahue et al. [30] who showed that only

Literature overview of platform comparisonsFigure 6

Platforms Ref. Correlation 
(Intra platform) 

Correlation
(Inter platform) 

After filtering 

Scatter 
plots

Up/down QRT-PCR Other 
graphical 

presentations

Affymetrrix vs Codelink [23]  Ratios r=0.62 
(n=10763)  

r=0.79 (n=1760) Ratios QRT-PCR 
Affymetrix 11/25 
Codelink 13/25 

r=0.92 Codelink 
r=0.79 Affymetrix 
(n=25) 

Venn Diagram 

Affymetrix vs Agilent [33] Affymetrix 
Biological replica r=0.91 
Technical replica r=0.92 

r=0.5 (n=4018)  Mean  
Log 
Intensities 

  Venn Diagram 

Affymetrix vs Amersham  Agilent 
Biological replica r=0.96 
Technical replica r=0.99 

r=0.59 (n=4018)     Bin/Cross 
tables 

Agilent vs Amersham  Amersham 
Biological replica r=0.98 
Technical replica r=0.99 

r=0.48 (n=4018)      

Affymetrix vs SAGE [47]  Ratios (median) 
r=0.30 

    Box plot 

Affymetrix vs EBE   Ratios (median) 
r=0.50 

    Clustering 

SAGE vs EBE   Ratios (median) 
r=0.50 

     

Affymetrix vs Agilent [48] r>0.94 Ratios r=0.59 
(n=1307)  

r=0.94 (n=252) Log ratios Affy=22.7% 
r=0.343 
Agilent=23.5% 
r=0.515 

(n=35)  

Affymetrix vs Operon Oligo [25] Affymetrix r=0.96 r=0.66 (n=668)  r=0.87 (n=74) Log ratios  Affymetrix r=0.76  
Affymetrix vs cDNA  cDNA r=0.98 r=0.82 (n=1540) r=0.89 (n=60)   cDNA r=0.59  
cDNA vs Operon Oligo  Oligo r=0.93 r=0.47 (n=752)  r=0.86 (n=56)   Operon r=0.42  
Affymetrix vs Compugen Oligo   r=0.79 (n=54)    Compugen r=0.22  
cDNA vs Compugen Oligo   r=0.60 (n=40)      

cDNA vs Oligo [49]  r=0.75     Clustering 

cDNA vs Oligo [26]  r=0.328  Intensities    

Array vs Northern blot [34] r=0.991 (n=84)   Log ratios    

cDNA vs Oligo [50]  r=0.793 (n=47)  Log ratios  Oligo:14/17 
cDNA:16/17 
Affymetrix:16/17 

Rank order 

Short vs Long Oligos vs 
Affymetrix 

[36] r=0.94 r=0.8 (n=7344)  r=0.89 (n=2877) Log ratios   Venn Diagram 
Bin/Cross
tables 

SAGE vs Oligo [32]  r=0.425 
(n=1168) 

r=0.617 (n-73) Intensities 
vs tagcounts 

         

SAGE vs Affymetrix [29]  r=0.645 (n=364) r=0.817 (n=224) Intensities 
vs tagcounts 

  Rank order 

SAGE vs Affymetrix [51]*       Venn Diagram 

SAGE vs Affymetrix [43]       Rank Order 

SAGE vs Affymetrix [31]       Bin/Cross 
tables 

SAGE vs Affymetrix [52]*        

SAGE vs Affymetrix [19]  r=0.41 (n=1716) r=0.51 (n=369) Intensities 
vs tagcounts 

  Rank Order 

SAGE vs Affymetrix This 
study 

Affymetrix r=0.982 
SAGE r=0.651 

r=0.453 
(n=1094) 

r=0.636 (n=167) Intensities 
vs tagcounts 
Log ratios 

Same tendency in 
63-85% of the 
transcripts 

 Rank Order 
Bin/Cross
tables 

*These references do not give a quantitative result about the agreement between the platforms
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genes that display robust changes in gene expression were
identified by both platforms. In our current study, approx-
imately 80% of transcripts detected in the top100 of one
platform were mapped within the top1000 of the compet-
ing platform. A similar figure was presented by Evans et al.
[31] who used the RG-U34A Affymetrix GeneChips.
Recently, Kim [32] suggested that absolute expression
analyses of SAGE and oligonucleotide microarray tech-
nology reliably detected medium-to-high abundant
transcripts.

For a more extensive comparison between the individual
gene expression profiling platforms we used gene expres-
sion ratios between Wilms' tumor and Stratagene Univer-
sal reference RNA as determined by SAGE and Affymetrix
GeneChips. The use of ratios might have the disadvantage
of losing information about individual expression values.
However, it corrects for platform specific variations (i.e.
probe design, hybridization efficiencies etc.). By matching
SAGE and Affymetrix data, an unambiguous data set was
generated. On average about 30% of the unambiguous
genes were observed to be expressed by both SAGE and
Affymetrix GeneChips and could be included in the final
comparison. Although this comparison comprised only
13% of all SAGE Unigene clusters and only 8% of the
Affymetrix Unigene clusters, it was demonstrated that this
selection was unbiased with respect to gene expression
levels in each of the platforms. This allows the extrapola-
tion of the conclusions to the whole platform.

We looked for the correspondence in gene expression
results between the two techniques using Up/Down clas-
sification (Figure 1A), the contingency table diagonal
(Figure 1B) and correlation coefficients (Figure 1C). In
addition, an approach was introduced in which differ-

ences between scaled ratios were calculated. The latter
measure was introduced to circumvent pitfalls of Up/
Down classification, contingency tables and correlation
coefficient that were discussed in the background section.
To this end, we introduced an approach in which the scal-
ing of the ratio data enables the calculation of individual
ratio differences between platforms. These ratio differ-
ences can then be used to determine to which extend and
in which range (e.g. 0–3 fold difference) two platforms
differ in their expression ratio estimation. In this study we
show that, as opposed to the other overall concordance
measures, the between-ratio difference is hardly sensitive
to filtering of noisy data. From the current analysis, we
conclude that contingency tables and, preferably, calcula-
tion of ratio differences between two platforms should be
used to compare gene expression profiles from different
platforms. Moreover, the between-ratio difference pro-
vides the user with a correspondence measure per individ-
ual gene that can be used to select those genes for which a
predetermined correspondence level is reached. The
approximately normal distribution of the between-ratio
differences (Figure 4) allows the calculation of a standard-
ized difference value for each gene from which a P-value
can be obtained. Note that this P-value cannot be used to
test whether the ratio difference equals zero. Such a test
requires a gene specific variance estimate in the denomi-
nator of the standardized difference and such a variance
estimate cannot be obtained from the four non-replicated
expression values that are used to calculate the ratio differ-
ence. However, the standardized difference and its P-value
can be used as a measure for the position of a specific gene
within the distribution of between-platform ratio differ-
ences and as such they can serve as a statistical threshold
to determine which genes can be confidently
interchanged between platforms. For instance, in the cur-

Table 1: Summary of similarities between SAGE and Affymetrix HG-U133GeneChips for the final dataset (= 1094)

UP/DOWN 
classification

Contingency table 
diagonal

Pearson Correla-
tion coefficient3

0–3 fold between-
ratio difference

N

All transcripts 63% 76% 0.453 78% 1094
Low expresssion1 57% 81% 0.222 78% 572
High expresssion1 69% 81% 0.578 90% 226
Significant 
difference2

86% 47% 0.636 70% 167

1. Based on the binomial sampling error of SAGE tags, tags counts below 5.7 and 7.7 (per 100,000) for the WT and Stratagene sample, respectively, 
are not significantly different from tag count 0. When a tag falls below these thresholds in both libraries it is included in the "Low expression" group 
(line 2); when a tag counts is above these thresholds in both libraries it is included in the "High expression" group (line 3). The thresholds were 

calculated as the 95% confidence interval of the tag proportion: CI95%) = n ± 1.96*  with n = tag count; N = Library size and p = n/N 

(proportion)
2.Significant difference between the two SAGE libraries is defined as a significant P-value (α<0.05) according to the Z-test between two libraries 
[21].
3.All observed correlation coefficients are significant at P < 0.01

p p

N

*( )1 −
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rent study, the transcripts with a less than 0.5 fold
between-ratio difference (red dots in figure 5D) have a
chance of at least 0.8 that they show similar gene expres-
sion on both platforms. Some of the choices in the scaling
procedure can be considered to be ad-hoc. However, given
the current state of understanding of the causes for within
and between platform variability it was deemed best to
opt for a simple quadratic scaling equation to convert the
distribution of ratios, which is asymmetric around 1 to a
common scale. When the knowledge on the physics,
chemistry, and sampling statistics increases, better conver-
sion functions will present themselves.

The overall similarity between SAGE and Affymetrix
GeneChips is modest when expression ratios are com-
pared. The correspondence improves to 90% when only
highly expressed transcripts are included which means
that noise is filtered out for both platforms. The differ-
ences between SAGE and Affymetrix GeneChips were not
caused by a biased selection of the final data set, differ-
ences in GC-content of the included transcripts or extreme
ratios resulting from low gene expression values. The
observed cross-platform differences, arise from intrinsic
properties of the platforms themselves, differences in the
principle of determining the expression levels, such as
absolute (SAGE) versus quantitative (microarray) mRNA
levels, and/or processing and analytical evaluation [33].
These disparities of the two technical approaches are sum-
marized in table 2 and may all contribute to the modest
overall correlation of SAGE and microarray data. We can-
not conclude which of the platforms performs best. These
results show, as also argued by Tan and co-workers [33],
that it is important to validate the results obtained with
SAGE or Affymetrix GeneChips with subsequent northern
blots or quantitative PCR analysis [34-36]. It was beyond
the scope of our analysis to perform such a verification of
expression data. Anyway, such a validation is impractical
for large numbers of genes. However, it seems that the
divergence of the SAGE and Affymetrix platforms in this
study is for a large part due to the wide range of Affymetrix
gene expression values observed for transcripts with a low
gene expression level in SAGE (Figure 2C). A similar over-
representation of high Affymetrix expressions for low
SAGE tag counts has been published by Lu et al. [19]. We
currently showed that a SAGE and LongSAGE library from
the same RNA sample showed nearly identical expression
profiles (Figure 2A). These findings confirm the results
found within direct comparisons of SAGE libraries [37-
39]. In addition, the differences between SAGE and Long-
SAGE can be fully explained by the binomial distribution
of the sampling error in individual SAGE tag counts [22].
Therefore, it can be ruled out that many low SAGE tag
counts originate from high abundant transcripts. This is
also confirmed by Sun et al. who demonstrate that 70% of
the low-copy SAGE tags represent real low level transcripts

[40]. The Affymetrix platform showed highly reproducible
intensity values when applied twice to the same tissue
sample. However, because of the variation between probe
sets per Unigene cluster [25] it cannot beruled out that
some Affymetrix probe sets provide systematically biased
intensity levels and expression ratios. It is a known prob-
lem that different probe sets belonging to the same tran-
script show variation in expression detection. Several
explanations have been given for this variation: (1) probe
sets may represent splice variants or may cross-hybridize
to different members that belong to a highly similar gene
family or transcripts with different poly-A sites; (2) one
probe set is more 5' located than the other and (3) one
probe set is better designed than the other [41]. Such a
bias might explain the weak correspondence between the
SAGE and Affymetrix platform observed in this and other
studies [19,23,25]

Future studies should be aimed on improving the effi-
ciency of SAGE tag annotation and avoidance of system-
atic bias in microarray techniques. Only then,
measurements of various technologies can be directly
compared and transformed to a universal gene expression
catalogue. SAGE has the advantage that a whole transcrip-
tome is analyzed, but is limited to the analysis of a small
number of samples. For screening of large sets of samples
SAGE cannot be the favored choice and Affymetrix Gene-
Chips might be a good alternative. Therefore, we think
that the future lies in combining the data from SAGE with
Affymetrix GeneChips, custom cDNA or oligo arrays. This
gives the advantage of complete expression profiling using
SAGE and high-throughput array screening of a larger
panel of samples allowing rapid identification and for
instance validation of clinical relevant genes involved in
disease onset [42,43]. Finally, the proposed ratio differ-
ence between platforms using an universal reference sam-
ple (as also indicated in [25]) can serve as a measure for
interplatform correspondence per individual gene.

Conclusion
This paper evaluates several approaches for the compari-
son of different gene expression platforms, outlined using
SAGE and Affymetrix GeneChips. We demonstrate that
for both SAGE and Affymetrix GeneChips the intra-plat-
form correlations are extremely good, but that the inter-
platform agreement based on an unbiased selection of
transcripts is modest. The agreement between platforms
increases if only transcripts are included with high tag
counts and high hybridisation intensities. It appears that
the expression distributions are similar for each of the
platforms, but that the correlation between platforms is
modest due to intrinsic differences, like sensitivity, levels
of noise, and gene annotation. Finally, we introduce a
novel, filtering-independent approach for data analysis
based on the calculation of differences between expres-
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sion ratios observed in SAGE and Affymetrix GeneChips
for each individual transcript. The statistical probability
value that can be assigned to each individual betweenratio
difference, allows the selection of individual transcripts
that display similar regulation on both platforms.

Methods
Tissue and RNA extraction
Wilms' tumor tissue was obtained from a single individ-
ual after resection of the tumor. Tissue was immediately
frozen in liquid nitrogen. Informed consent to use this
material for scientific research was obtained. After homog-
enization, total RNA was extracted using Trizol (Invitro-
gen, Breda, The Netherlands), dissolved in RNase free
water and stored at -80°C. The Stratagene Universal refer-
ence RNA was obtained from Stratagene (Stratagene,
Amsterdam, The Netherlands, catalog #740000-41).
Purity and integrity of the RNA samples was confirmed on
the Agilent 2100 Bioanalyzer (Agilent Technologies Neth-
erlands B.V., Amstelveen, The Netherlands), using the
LabChip® approach.

Construction of SAGE libraries
The SAGE library of the Wilms' tumor RNA was generated
using the I-SAGE kit according to the manufacturer's
instructions (Invitrogen, Breda, The Netherlands; cat.
#T5000-03). A detailed protocol may be obtained as a free
download [44]. For LongSAGE minor modifications were
implemented in the protocol of the I-SAGE kit; i.e. the
restriction enzyme BsmFI was replaced by MmeI, linkers
were adapted for LongSAGE and ditags were created using
sticky-end ligation. All sequence files were processed
using the SAGE2000 software provided by Dr. K.W. Kin-
zler (see also [45]). The SAGE library from the Stratagene
Universal reference RNA was obtained from the NCBI

website. This library can be retrieved in the Gene Expres-
sion Omnibus under code GSM1734 [14,20]).

Annotation of tags
Extracted SAGE tags were annotated based on the SAGE
Genie principles [24] through several stringent filters
using data from the CGAP website [15]. Several databases
(i.e. HsMap.txt, HsRepetitive.txt and HsDatasets.txt) were
combined to a final dataset containing all information
necessary for tag annotation. Tags matching to unclus-
tered EST's were considered to be no-matches. Tags
matching to Unigene clusters retrieved from low ranked
databases (<67%; according to the rules set by CGAP)
were not included in our comparisons. During this proc-
ess tags are matched to no, one unique, or more than one
Unigene cluster (Unigene Build 160, March 2003). To fur-
ther identify tags matching more than one Unigene clus-
ter, we extracted the 11th base from our original sequence
files using the SAGE2000 software. This 11th base can be
used to match against the deposited sequences (Genbank,
EMBL etc.) and in this way one may be able to exclude
Unigene clusters that contain a different 11th base in their
sequence and thereby minimize the number of multiple
matches. In the final comparison tags matching to multi-
ple Unigene clusters were excluded. For annotation of
LongSAGE tags we used the data available at the CGAP site
for Unigene Build 170 (July 2004). These annotations
were not available for Unigene Build 160.

Affymetrix
Affymetrix HG-U133A GeneChips were used and the
hybridizations were performed according to the manufac-
turer's protocols and carried out at the Micro-array
Department (MAD; Institute for Life Sciences, Faculty of
Science, University of Amsterdam). For analysis, the MAS

Table 2: Disparities of the technical approaches

SAGE

• Sequence errors (although it has been shown that most of the single-copy SAGE tags are not generated from experimental sequence errors, 
but that they are novel tags derived from novel transcripts [53])
• Tag annotation difficulties
• Missing transcripts due to absence of a recognition site for the anchoring enzyme (approximately 0.7%) or GC-content bias [24,54]
• Incorrect tags arise from incomplete digestion or alternative poly-adenylation [55]
• Sequence polymorphisms resulting in multiple tags for a single transcript

Affymetrix HG-U133 GeneChips

• Probe design issues (such as distance of the target sequence from the poly-A tail; secondary structures within the target sequence; cross-
reactivity of the probe with other transcripts, nucleic acid structure)
• Differences in hybridization efficiencies between probe sets
• Incorrect annotation of transcripts (no sequence verification)
• Efficiencies in dye incorporation
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5.0 software suite was used and comparisons between
duplicate Wilms' tumor hybridizations and duplicate
Stratagene Universal reference RNA hybridizations were
made (data were deposited into the GEO under accession
GSE1158). This gives four comparisons (2 Log ratios),
from which the geometric mean gene expression ratio
between the two samples was calculated. Probe sets on the
Affymetrix chips were matched with Unigene clusters
(Unigene Build 160, March 2003).

Matching of platforms
The matching of data from two different gene expression
profiling platforms (as illustrated in figure 3) poses a cou-
ple of problems. On the one hand, a SAGE tag may link to
more than one Unigene cluster which results in matches
with multiple different Affymetrix probe sets. On the
other hand multiple tags originating from one Unigene
cluster might match with one Affymetrix probe set. Exam-
ining all multiple matches for each individual transcript is
extremely laborious and beyond the scope of this study.
To circumvent these and other problems we included in
our comparison only those clusters for which a one-to-
one relation between the two platforms was found. These
clusters are called unambiguous Unigene clusters. This
matching step already results in a considerable reduction
of data available for the comparison. In addition, data
were filtered for the presence of gene expression (tag
count>0 in both SAGE libraries and present signal on the
arrays for both RNA samples).

Comparison of expression ratios between samples
For each platform and each transcript that full-filled the
matching criteria an expression ratio between Wilms'
tumor and Stratagene Reference RNA was calculated. With
these ratios the correspondence between platforms was
estimated using the Pearson correlation coefficient, Up/
Down classification and a contingency table (Figure 1A,
1B, 1C). Because none of these measures was deemed sat-
isfactory as overall correspondence measure (see back-
ground section) we developed a new measure based on
the difference between the log(ratio) values in the two
platforms for each individual transcript (Figure 4). The
chemistry, physics and statistics of the detection tech-
nique make that in each platform the observed gene
expression is a non-linear transformation of the real gene
expression level. For instance, saturation of the array
hybridization makes that the high expression levels are
truncated. However, because such artifacts affect genes in
both tissues in the same way, an observed expression ratio
of 1 can still be expected to be observed for genes that are
not differentially expressed in the studied tissues. On the
other hand, these saturation effects, as well as the rela-
tively larger Poisson error in the detection of low intensity
values will affect the ratios on both sides of the ratio dis-
tribution in an unpredictable way. Similarly, the sampling

error in SAGE will affect ratios for lowly expressed genes,
despite the fact that SAGE tag counts are linearly related to
transcript abundance. The substitution of zero tag counts
that is required for the calculation of ratios will also skew
the ratios [46]. Finally, the discrete nature of tag counts,
combined with the necessary normalization of tag counts
to tags per 50000, will have non-linear effects on the
observed ratio distribution in the SAGE platform. There-
fore, the relation between the gene expression ratios
observed in the SAGE and Affymetrix platform cannot be
assumed to be a simple linear Y = X relation. This is
already clear from the difference ranges of ratio values in
each platform. To directly compare the ratios observed in
both platforms at least the range of observed ratios should
be similar. The nature of the relation is unknown and fully
obscured by the variability in both platforms. However,
because in each platform the observed ratio of 1 can be
assumed to be true, the simplest function to scale the
range of ratio of one platform to that of the other platform
is a quadratic equation. Such a scaling function can be
based on three values from each ratio distribution. These
are the ratio of 1 and, to avoid undue influence of the
extreme ratios, the 10th and 90th percentile values. The
quadratic scaling takes into account that the ratio distribu-
tion is not symmetrical around ratio 1. The full scaling
procedure is illustrated and detailed in Figure 4. Note that
the scaling uses log(ratio) values. After scaling, the abso-
lute difference between the log(ratios) per individual gene
was calculated. The resulting differences of log(expression
ratios) were classified into classes of width 0.5, which cor-
responds to an approximate 3-fold difference in expres-
sion ratio between platforms. These classes were used to
label the genes in scatter plots of two different platforms
(Figure 2D). As illustrated in Figure 4, the distribution of
between-ratio differences is approximately normal. There-
fore, the mean and standard deviation of this distribution
can be used to calculate a standardized difference value
(Diffst) per gene and a P-value for this standardized differ-
ence can be obtained from the normal distribution. This
P-value can then serve as a measure for the position of
each gene in the distribution of between-platform ratio
differences. Note that this P-value should not be inter-
preted as a significance value for the ratio difference
between platforms. Such a test requires a gene specific var-
iance estimate in the denominator of the standardized
difference, which cannot easily be derived from the avail-
able data.
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