

Isolation, characterization, and complete genome analysis of P1312, a thermostable bacteriophage that infects *Thermobifida fusca*

Jatuporn Cheepudom[†], Cheng-Cheng Lee[†], Bingfu Cai and Menghsiao Meng^{*}

Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan

OPEN ACCESS

Edited by:

William Michael McShan, University of Oklahoma Health Sciences Center, USA

Reviewed by:

Eric Altermann, AgResearch Ltd., New Zealand Paul Hyman, Ashland University, USA

*Correspondence:

Menghsiao Meng, Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan mhmeng@dragon.nchu.edu.tw

> [†]These authors have contributed equally to this work.

Specialty section:

This article was submitted to Virology, a section of the journal Frontiers in Microbiology

Received: 12 June 2015 Accepted: 31 August 2015 Published: 15 September 2015

Citation:

Cheepudom J, Lee C-C, Cai B and Meng M (2015) Isolation, characterization, and complete genome analysis of P1312, a thermostable bacteriophage that infects Thermobifida fusca. Front. Microbiol. 6:959. doi: 10.3389/fmicb.2015.00959 Thermobifida fusca is a moderately thermophilic and cellulolytic actinobacterium. It is of particular interest due to its ability to not only produce a variety of biotechnologically relevant enzymes but also serve as an alternative host for metabolic engineering for the production of valuable chemicals from lignocellulosic agricultural wastes. No bacteriophage that infects T. fusca has been reported, despite its potential impacts on the utilization of T. fusca. In this study, an extremely thermostable bacteriophage P1312 that infects T. fusca was isolated from manure compost. Electron microscopy showed that P1312 has an icosahedral head and a long flexible non-contractile tail, a characteristic of the family Siphoviridae. P1312 has a double-stranded DNA genome of 60,284 bp with 93 potential ORFs. Thirty-one ORFs encode proteins having putative biological functions. The genes involved in phage particle formation cluster together in a region of approximately 16 kb, followed by a segment containing genes presumably for DNA degradation/modification and cell wall disruption. The genes required for DNA replication and transcriptional control are dispersed within the rest of the genome. Phylogenetic analysis of large terminase subunit suggests that P1312 is a headful packaging phage containing a chromosome with circularly permuted direct terminal repeats.

Keywords: bacteriophage, *Thermobifida fusca*, lignocellulosic agricultural wastes, large terminase subunit, amidase, phage purification, endolysins, actinobacteriophage

Introduction

Thermobifida fusca, a moderately thermophilic soil actinobacterium, is known for its ability to produce a battery of cellulolytic enzymes (Maki et al., 2009; Adav et al., 2010; Gomez del Pulgar and Saadeddin, 2014). Sequence analyses of the genome of *T. fusca* YX strain suggests that it produces nine cellulases (including endocellulase, exocellulase, and cellobiosidase), at least five hemicellulose hydrolysis-related enzymes and many other glycoside hydrolases (Lykidis et al., 2007). Recent studies demonstrated that *T. fusca* may also secret lignin degradation-promoting enzymes. For example, a copper-containing polyphenol oxidase exhibits an activity for oxidation of phenolic lignin related compounds, and this activity boosts the digestion function of cellulase/xylanase toward sugarcane bagasse (Chen et al., 2013). Besides cellulolytic enzymes, *T. fusca* also produces a variety of oxidoreductases, such as heme-containing peroxidase (van Blooise et al., 2010) and catalase (Lončar and Fraaije, 2015), which are potentially useful in industries for detoxification and decolorization.

Cellulosic biomass is a low cost, abundant and renewable source for biofuels. To utilize it, great efforts have been devoted to engineer Saccharomyces cerevisiae so that the genetically modified yeasts can ferment xylose, cellobiose, and cellooligosaccharides for bioethanol production (Katahira et al., 2006; Ha et al., 2011). Nonetheless, directly using the recalcitrant lignocellulose for biofuel production is still a challenging task. T. fusca has potential to be an alternative host for metabolic engineering to transform the sugars embedded in lignocellulose into biofuels and green chemicals. For example, an engineered T. fusca strain was able to convert untreated plant biomass to 1-propanol after an exogenous gene of bifunctional butyraldehyde/alcohol dehydrogenase was inserted into its genome (Deng and Fong, 2011). Despite this encouraging success, more molecular biology tools such as expression vectors and efficient transformation methods need to be developed before T. fusca can be fully modified for the purpose of producing valuable commodities from various cellulosic agricultural wastes.

Bacteriophages have contributed to the development of a variety of molecular tools for biotechnology. For example, the origin of replication from f1 and λ phages was used in the construction of plasmids for single-stranded DNA production (Reece, 2004) and routine recombinant DNA operation, respectively (Boyd and Sherratt, 1995). In addition, recombinases from bacteriophages such as phage λ , P1, and PY54 have been widely used to modify prokaryotic species and to create transgenic animals and plants (Sauer and Henderson, 1988; Nafissi and Slavcev, 2014). On the other hand, bacteriophages have potentials to foul industries that use bacteria to produce fermented products or bioactive molecules. No detailed reports of bacteriophages that infect *T. fusca* are present in the literature. Thus, we set out to isolate T. fusca-infecting phages with longterm goals to understand the bacterium-phage interactions and look for useful genetic elements for the development of molecular tools specific for T. fusca. A thermostable tailed bacteriophage of the Siphoviridae family was then isolated in this study.

Tailed bacteriophages constitute the Caudovirales order. Phages with contractile tails are further subdivided into the Myoviridae, while those with short and long non-contractile tails are into Podoviridae and Siphoviridae, respectively. Tails are critical to the infection because they contain proteins required for the specific recognition of the hosts and trigger DNA release from the heads. The genomes of tailed bacteriophages are composed of several functional modules. For Siphoviridae, the modular arrangement as follows: packaging, head morphogenesis, tail morphogenesis, lysis, recombination, lytic/lysogenic control, excision, and DNA replication modules is seen repeatedly in numerous temperate phages of Gram-positive low GC-content bacteria (Stevens et al., 2011), whereas lambdoid phages that infect Gramnegative bacteria have a genome consisting of modules in order of packaging, head morphogenesis, tail morphogenesis, recombination, lytic/lysogenic control, DNA replication, and lysis (Campbell, 1994). Characteristics and genome analysis of this newly discovered T. fusca-infecting phage are addressed herein.

Materials and Methods

Bacterial Strain

T. fusca NTU22 strain (Chen et al., 2013) was routinely cultivated by transferring 10^7 spores into 50 ml CYC medium (30 g sucrose, 6 g Casamino acids, 3 g NaNO₃, 2 g yeast extract, 1 g K₂HPO₄, 0.5 g KCl, 0.5 g MgSO₄·7H₂O, 0.01 g FeSO₄·7H₂O, 1 l distilled water, pH 8.0) and incubated aerobically at 50°C with 200 rpm shaking.

Phage Isolation

Compost collected from eight different sites in the suburbs of Taichung city, Taiwan, was the source of phage screening. One gram of the compost was added into 10 ml Luria-Bertani medium (LB) and incubated aerobically at 50°C overnight. One ml aliquot of the sample was irradiated (120 mJ/cm², 30 s) using a CL-1000 UV crosslinker (UVP, California, USA) before being mixed with 0.1 ml *T. fusca* spore (10^8 cfu/ml) and 15 ml CYC media with 0.7% agar. The warm mixture was immediately poured onto a solidified CYC agar plate and incubated at 50°C for 2 days. One of the plaques formed in the bacterial lawn was transferred into 50 ml 1-day-old culture of *T. fusca* and further incubated at 50°C for 1 day. The bacterial lysate was centrifuged, and the supernatant was sterilized using a 0.45-µm filter and stored at 4°C. The isolated bacteriophage capable of infecting *T. fusca* was named P1312 hereafter.

Phage Titer

Phage titer was estimated by plaque assay method. Briefly, 1 ml phage sample at the $10^7 - 10^9$ dilution was mixed with 10^7 spore of *T. fusca* in 15 ml pre-warmed (50° C) CYC soft agar medium, and the mixture was poured evenly onto a CYC solid agar medium. The solidified plates were then incubated at 50° C for 2 days, and the number of plaques formed in the lawn of *T. fusca* was counted to determine the phage titer.

Phage Stability, Adsorption, and Burst Size

To determine the structural stability of P1312, the purified phage sample was diluted in water and incubated at temperatures ranging from 60-95°C for the indicated periods of time (10-45 min), and the residual infectivity was determined by the plaque assay. The burst size of P1312 was determined by onestep growth method (Lin et al., 2012) with slight modifications. Briefly, P1312 was added into an overnight culture of T. fusca in 20 mM phosphate buffer (pH 8.0) to give a multiplicity of infection (MOI) of 1.0 according to the initial spore number of T. fusca. The mixture was incubated at room temperature for 10 min to allow the phage particles to attach to the host. The supernatant, after centrifugation at 12,000 rpm for 5 min, was collected to determine the number of unattached phage particles. The percentage of adsorption was calculated using the formula [(initial titer-titer in supernatant)/initial titer \times 100%]. The pelleted cells were washed two more times with CYC medium and resuspended in 50 ml of pre-warmed CYC and incubated at 50°C. Aliquots of 1 ml culture were taken at intervals and the phage titers in the clarified supernatant were then determined as aforementioned. The burst size (B_s) of P1312 was calculated as $B_s = P_t/P_o$ where P_t is the phage titer at the plateau phase and P_o is the initial infective titer, which was estimated on the basis of the plaque-forming units arising from the initially washed cells.

Phage Purification

Hundred milliliter broth of T. fusca, which had been cultivated for 1 day, was inoculated with 1 ml of P1312 stock (10⁹ pfu/ml) and the cultivation was continued for another 2 days at 50°C, 200 rpm. The clarified broth, after centrifugation at 12,000 rpm, 4°C, for 10 min, was adjusted to contain 1.5 M NaCl and 10% (w/v) polyethylene glycol (PEG) 8000. The mixture was placed on ice for at least 1 h and subjected to centrifugation at 12,000 rpm, 4°C, for 15 min to precipitate the phage particles. The pellet was resuspended in TBS buffer (50 mM Tris-HCl [pH 8.0], 150 mM NaCl) that additionally contained 0.25 U/ml DNase I and 10µg/ml RNase A (Takara Bio). After incubation at 30°C for 1 h, the supernatant was passed through a filter with $0.45\,\mu m$ pore size and loaded onto a Tricorn 10/600 column packed with Sephacryl S-500HR (Amersham Biosciences). The chromatography was performed with TBS buffer at a flow rate of 0.7 ml/min.

Transmission Electron Microscopy (TEM)

The purified phage particles on a carbon-coated copper grid were negatively stained with 2% uranyl acetate (pH 4.0) for 10 min and observed at an accelerating voltage of 120 kV under a transmission electron microscope (Jeol LEM-1400).

Genome Analysis of Phage P1312

Genomic DNA was obtained from the purified phage P1312 after phenol/chloroform extraction and ethanol precipitation. Whole genome sequencing of P1312 was performed using Illumina Miseq (Tri-I Biotech, Inc). The count of reads was 115,622 with the average length of 175 bases per read. The sequence data could be assembled into a circular single contig of 60,284 base pairs using the de novo assembly algorithm of CLC Genomics Workbench (Qiagen). The nucleotide sequence of the genome of P1312 is deposited at GenBank under accession number KT021004. Identification of potential open reading frames (ORFs) within the phage genome was performed by using Bacterial Annotation System (van Domselaar et al., 2005) as well as Glimmer/RBSfinder program (Delcher et al., 1999), and the functions of proteins encode by the ORFs were predicted based on BLASTp program and conserved domain search (http://www. ncbi.nlm.nih.gov/). The probable replication origin of P1312 was predicted by the GenSkew program (http://genskew.csb.univie. ac.at/).

Phylogenetic Analysis

Protein sequences of terminase large subunit from a variety of bacteriophages were retrieved from the biological database, National Center for Biotechnology Information (NCBI). Multiple sequence alignments of those terminase sequences were performed by using the ClustalW program with default parameters in MEGA 6.0 version (Tamura et al., 2013). Phylogenetic tree was built by the neighbor-joining method and phylogenies were determined by bootstrap analysis of 10,000 replicates in MEGA 6.0 version.

Identification of Proteins Associated with P1312 Virions

Proteins of P1312, purified via PEG precipitation and gel filtration chromatography, were identified by tandem mass spectrometry using an Applied Biosystems QStar LC-MS/MS spectrometer (Life Technologies Corp., Carlsbad, USA). The obtained spectrometry information was analyzed with Mascot software (Matrix Science Ltd., London, UK) using the NCBI non-redundant database and the specific database created in this study based on the predicted ORFs of phage P1312 (**Table 1**). The important parameter settings for Mascot analysis were as follows: mass values, monoisotopic; protein mass, unrestricted; peptide mass tolerance, ± 0.5 Dalton; fragment mass tolerance, ± 0.5 Dalton; and maximal missed cleavages, 2.

Results and Discussion

Isolation and Purification of Phage P1312

Compost collected from several suburban farms was tested for the presence of phages that infect T. fusca according to the method described in Materials and Methods. A chicken manure sample was found to contain phages that could grow in T. fusca and resulted in lytic plaques in the lawn of the bacterium (Figure 1). After plaque purification and phage propagation, the virions were purified by PEG precipitation and gel filtration using a Sephacryl S-500HR column as described in Materials and Methods. The phage particles could be obtained from the fractions corresponding to the void volume of the chromatography (Figure 2). According to the TEM photos and the genome organization (described below), we believe that the purified sample contained only one type of phage. If there were more than two bacteriophages, more genes for phage specific proteins such as tape measurement protein and large subunit of terminase would be expected.

Infectivity of P1312

Since T. fusca is a moderately thermophile, it was interesting to know the thermal stability of P1312. The phage particles were incubated at 60, 70, 80, 90, and 95°C. Aliquots were withdrawn periodically during the incubation and the residual infectivity was determined by the plaque assay. The infectivity of P1312 remained intact after the incubations at 90°C for 45 min, indicating that P1312 is extremely thermostable (Figure 3). Nonetheless, 5 min incubation at 95°C was able to inactivate P1312 effectively. For one-step growth experiments, P1312 was added into the culture of T. fusca at an MOI of 1. After 10 min incubation, which resulted in 69% adsorption of the phage particles to the host, the infected host cells were transferred into a fresh CYC medium and the phage particles released into the medium during the following cultivation were determined by the plaque assay. There was a latent period of \sim 45 min before the rapid increase of the phage titer, and lysis was complete by \sim 120 min (**Figure 4**). The growth kinetics of P1312 suggests that the average burst size is 57 pfu per infected cell.

TABLE 1 | Predicted open reading frames (ORFs) of P1312 and predicted database matches.

ORF	Start	End	Protein kDa (Start) ^a	Predicted functions	BLASTP ^b (best match)	Ident (%) ^c	LC-M/M ^d
001	243	980	27.8 (V)	Phage head morphogenesis protein	WP_017602198/	132/249	38
					Nocardiopsis lucentensis	(53)	
002	987	1475	18.3 (V)	Hypothetical protein	WP_030728966	80/131	
					Streptomyces	(61)	
003	1462	2805	50.6 (M)	Phage terminase large subunit	WP_027740749	289/435	38
					Streptomyces	(66)	
004	5101	2795	83.4 (V)	Phage portal protein	WP_040692131	299/405	14
					Nocardiopsis lucentensis	(74)	
				gp23	YP_003714730	36/148	
					phiSASD1 phage	(24)	
005	4301	5080	29.0 (L)	Hypothetical protein	WP_040692134	45/61	
					Nocardiopsis lucentensis	(74)	
006	5774	5085	25.2 (V)		No match		44
007	5121	6005	31.3 (V)	Capsid	WP_017602203	225/283	18
					Nocardiopsis lucentensis	(80)	
				gp27	YP_003714734	28/91	
					phiSASD1 phage	(31)	
008	6036	6461	15.5 (V)	Phage protein	WP_017602204	84/138	63
					Nocardiopsis lucentensis	(61)	
				gp27	YP_003714736	21/47	
				0.	phiSASD1 phage	(45)	
009	6644	6363	10.1 (V)		No match		
010	6954	6376	21.7 (V)		No match		63
011	6487	6963	18.2 (M)	Hypothetical protein	WP 040692137	34/68	
					Nocardiopsis lucentensis	(50)	
012	6978	7340	13.3 (M)	Phage head-tail adaptor	WP 017602206	80/120	66
					Nocardiopsis lucentensis	(67)	
				ap30	YP 003714737	38/94	
					phiSASD1 phage	(40)	
013	7340	7732	14 8 (V)	Phage tail protein	WP 040692140	49/70	
					Nocardiopsis lucentensis	(70)	
				ap32	YP 003714739	43/105	
				3	phiSASD1 phage	(41)	
014	8508	7699	29 7 (V)		No match	()	36
015	7720	8157	16.2 (V)	Phage tail protein	WP 026128262	84/130	00
010	1120	0107	10.2 (V)		Nocardionsis lucentensis	(65)	
				ap33	YP 003714740	44/124	
				gpee	nhiSASD1 nhage	(35)	
016	9510	9702	7100	Phago tail protoin		(55)	
010	0012	0705	7.1 (V)	Fliage tail protein	Necardiansis lucantansis	(72)	
				ap24		(73)	
				yp34	1F_003714741	(26)	
017	9709	0000	14.2 (M)	Hupothetical protein		(30)	
017	0103	9090	14.3 (IVI)	האָטְטווופווכמו טוטנפוח	VVF_U4UU92140	(50)	
				an ²⁵	NUCALUOPSIS IUCENTENSIS		
				ccyg	17_003/14/43	40/116	
010	0110	0.400	11 0 4 4	Dhaga tail ar-t-i-		(34)	
018	9119	9406	11.2 (V)	Phage tail protein	WP_017602211	48/99	
					ivocardiopsis lucentensis	(48)	

(Continued)

TABLE 1 | Continued

ORF	Start	End	Protein kDa (Start) ^a	Predicted functions	BLASTP ^b (best match)	Ident (%) ^c	LC-M/M ^d
				gp35.1	YP_003714742	37/96	
					phiSASD1 phage	(39)	
019	9411	9587	5.9 (V)		No match		
020	9418	14391	177.1 (V)	Tail tape measure protein	WP_040703000	156/362	27
					Nocardiopsis salina	(43)	
				gp37	YP_003714744	19/56	
					phiSASD1 phage	(34)	
021	14388	16361	71.7 (V)	Phage tail protein	WP_017602213	356/672	
					Nocardiopsis lucentensis	(53)	
				gp38	YP_003714745	47/88	
					phiSASD1 phage	(53)	
022	16358	19648	120.6 (M)	Phosphodiesterase	WP_026128263	520/933	
					Nocardiopsis lucentensis	(56)	
				gp38	YP_003714745	126/465	
					phiSASD1 phage	(27)	
023	19670	20212	19.3 (M)	Hypothetical protein	WP_040692409	71/180	23
					Nocardiopsis lucentensis	(39)	
024	20237	20497	9.6 (M)		No match		
025	20494	21270	28.4 (M)	O-methyltransferase	YP_024820	63/175	18
					<i>Actinoplanes</i> phage phiAsp2	(36)	
026	21359	21267	3.2 (M)		No match		
027	21428	22423	37.2 (V)	Glycosyl/glycerophosphate	WP_017602346	147/213	
				transferases	Nocardiopsis lucentensis	(69)	
028	22494	23063	20.1 (L)	Hypothetical protein	WP_045936534	35/120	
					<i>Streptomyces</i> sp. NRRL S-104	(29)	
029	23346	23068	10.5 (M)	Hypothetical protein	WP_017602347	43/86	
					Nocardiopsis lucentensis	(50)	
030	23167	23517	11.9 (V)		No match		
031	23530	23408	4.9 (M)		No match		
032	23850	23530	12.0 (M)		No match		
033	23822	24076	8.5 (V)		No match		
034	24019	23870	5.9 (M)		No match		
035	24099	24554	13.5 (L)		No match		
036	24608	24126	17.6 (L)	Hypothetical protein	WP_031096358	58/114	
					Streptomyces	(51)	
037	24451	24597	5.4 (V)		No match		
038	24655	24882	8.6 (M)	Transcriptional regulator	WP_017946204	53/68	
					Streptomyces sp. CNS615	(78)	
039	25042	25404	13.5 (V)	Protein involved in exopolysaccharide	WP_042170120	41/124	
				biosynthesis	<i>Streptomyces</i> sp. NBRC 110035	(33)	
040	25530	25973	16.3 (L)	Sensory protein kinase CreC	WP_043471037	47/109	
					Kitasatospora sp. MBT66	(43)	
041	25970	26845	30.8 (M)	N-acetylmuramoyl-L-alanine amidase/Lysin	WP_017607061, <i>Nocardiopsis</i>	173/266	34
					xinjiangensis	(65)	
042	27063	27344	9.9 (L)	Hypothetical protein (Similar to	WP_011293338	45/73	
				I tu_2915)	Thermobifida fusca	(62)	

(Continued)

TABLE 1 | Continued

ORF	Start	End	Protein kDa (Start) ^a	Predicted functions	BLASTP ^b (best match)	Ident (%) ^c	LC-M/M ^d
043	27313	28419	38.9 (L)		No match		
044	28350	27490	32.0 (V)	Transcriptional regulator	WP_018223844	54/131	
				(Helix-turn-helix family protein)	Salinispora pacifica	(41)	
045	28819	28406	14.5 (M)		No match		
046	29336	28905	16.5 (M)		No match		
047	30751	29333	50.3 (V)	Hypothetical protein	ADJ28745	88/289	
					Nitrosococcus watsonii C-113	(30)	
048	29466	29365	3.7 (L)		No match		
049	29438	30544	42.5 (M)	Transposase, IS605 orfB	WP_016188297	364/368	29
					Thermobifida fusca	(99)	
050	30724	31998	44.1 (L)		No match		27
051	31767	30778	34.9 (M)	Hypothetical protein	WP_037974524	40/107	14
					Synergistes jonesii	(37)	
052	33166	31952	45.3 (M)	Transcriptional regulator	WP_017615773	223/399	
				(Helix-turn-helix XRE-family like proteins)	Nocardiopsis salina	(56)	
053	34868	33456	50.7 (V)	Replicative DNA helicase	WP_035111511	174/451	31
					Corynebacterium freiburgense	(39)	
054	34798	35892	37.3 (V)		No match		
055	36066	34912	42.3 (V)	Hypothetical protein	WP_040793245	49/130	
					Nocardia paucivorans	(38)	
056	37130	36525	22.0 (M)	Hypothetical protein	WP_040271854	37/87	
					Streptomonospora alba	(43)	
057	36735	37016	9.8 (V)		No match		
058	37102	38487	45.7 (V)		No match		
059	37779	37183	22.1 (M)		No match		
060	38460	37840	23.7 (M)	Hypothetical protein	WP_017541564	59/168	
					Nocardiopsis halophila	(35)	
061	38523	40232	64.3 (L)		No match		
062	40349	38715	55.7 (V)	Hypothetical protein	WP_013475335	89/160	
					Micromonospora sp. L5	(56)	
063	42526	40484	72.8 (V)	DNA segregation ATPase FtsK/SpollI	WP_017602285	253/481	
					Nocardiopsis lucentensis	(53)	
064	44174	42486	58.0 (V)	Hypothetical protein	WP_017602419	96/293	
					Nocardiopsis lucentensis	(33)	
065	43517	43747	8.7 (M)		No match		
066	44513	44346	6.2 (V)		No match		
067	45035	44577	16.5 (V)	ABC-ATPase	WP_037918697	51/119	
					Streptomyces yeochonensis	(43)	
068	45020	46795	67.3 (L)	Intergrase/Recombinase	YP_005087274	155/501	
					Rhodococcus phage REQ1	(31)	
069	47265	46846	15.3 (M)		No match		
070	47870	47286	22.4 (V)	Hypothetical protein	WP_036322164	44/113	51
					<i>Microbispora</i> sp. ATCC PTA-5024	(39)	
071	47971	48198	8.6 (M)	Transcriptional regulator	WP_012032242	33/63	
				(Helix-turn-helix XRE-family like proteins)	Pelotomaculum thermopropionicum	(52)	

(Continued)

TABLE 1 | Continued

7/2 48620 48943 16.5 (M) No match 7/3 49092 48966 18.2 (L) No match 7/4 49094 49405 11.2 (V) No match 29 7/6 49024 50229 30.7 (M) No match 29 7/6 49935 49747 6.6 (M) No match 79 7/7 50446 51980 33.9 (V) Excdeoxyribonuclease VIII WP_01772488 156/282 7/7 50446 51980 33.9 (V) Excdeoxyribonuclease VIII WP_02771248 156/282 7/7 52137 52118 28.2 (V) Hypothetical protein WP_026740910 117/172 7/7 52737 52138 28.6 (M) No match 68) 7/7 52737 52137 28.6 (M) No match 621 7/8 5357 52137 28.6 (M) No match 622 7/7 6445 16.3 (M) Whoolymerase III subunit epsion MP_0205118477 121/234 7/8 53720 54645 16.3 (M) WhiB family transcriptional regula	ORF	Start	End	Protein kDa (Start) ^a	Predicted functions	BLASTP ^b (best match)	Ident (%) ^c	LC-M/M ^d
073 49402 4886 18.2 (l.) No match 74 074 49094 49405 11.2 (v) No match 29 076 49035 49747 6.6 (M) No match 79 076 49035 49747 6.6 (M) No match 6(5) 077 50446 51390 33.9 (v) Exodeoxynbonuclease VIII Mc/mopoynora halophila (65) 078 51357 52118 28.2 (v) Hypothetical protein Mc/mopoynora halophila (65) 079 52187 52187 52187 53037 5.9 (v) No match (62) 070 53097 5307 5.9 (v) No match (62) (62) 081 53097 53723 22.6 (M) Holdiday junction resolvase MP_033299115 102/157 083 54205 56677 5343 13.0 (M) Hypothetical protein Mcoardiopsis gilas (66) 084 5439 30.3 (M) Hypothetical protein Mc/modozestrum datzerines (37) 085 56567 5343 11.0 (M) H	072	48520	48948	16.5 (M)		No match		
074 49094 49405 11.2 (v) No match 29 075 49402 5029 30.7 (v) No match 29 076 49408 66 (w) No match 29 077 50448 51360 33.9 (v) Exodeoxyribonuclease VIII NP _017972488 156/282 078 51357 5218 28.2 (v) Hypothetical protein WP_0045740910 17/1 72 1 079 52187 52393 27.5 (v) DNA polymerase III subunit epsilon (DnaC-like exonuclease) WP_005740910 12/1/234 1 079 52187 52939 27.5 (v) DNA polymerase III subunit epsilon (DnaC-like exonuclease) No match 1 12/1/234 078 53723 22.6 (M) No match 1 102/157 081 53097 53723 22.6 (M) WP_017992084 50/107 082 53720 54208 16.3 (M) Wholf Bamily transcriptional regulator MP_011995906 50/107 083 56657 55433 11.0 (M) Moardlopsis lucentensis (50) 35/27 084	073	49402	48866	18.2 (L)		No match		
075 49402 50229 30.7 (M) No match 29 076 49393 49474 6.6 (M) No match 79 077 50446 51360 33.9 (V) Exodeoxynbonuclease VIII No match 166/224 078 51357 5218 28.2 (V) Hypothetical protein Mc/1070planes recilineatus (68) 079 52187 52939 27.5 (V) DNA polymerase III subunit epsion Mc/202118477 121/234 080 52936 53077 5.9 (V) No match 102/157 081 53097 53937 5.9 (V) No match 65) 082 53720 54208 17.9 (V) Holiday junction resolvase MP_033299115 102/157 083 54205 54645 16.3 (M) MviB family transcriptional regulator Mr/201590508 50/107 084 5488 5439 30.3 (M) Hypothetical protein MP_01595068 50/107 085 54205 54645 11.0 (M) No match 35/271 35/271 086 55382 56044 24.7 (V) Hypothetical protein Mc/2043984660 80/215 087 56829 5613 21.9 (V) Hypothetical protein <td>074</td> <td>49094</td> <td>49405</td> <td>11.2 (V)</td> <td></td> <td>No match</td> <td></td> <td></td>	074	49094	49405	11.2 (V)		No match		
076 4993 49747 6.6 (M) Kodeoxyribonuclease VII No match 79 077 50445 51360 33.9 (V) Exodeoxyribonuclease VII Actinopolyspora halophila (55) 078 51357 52118 28.2 (V) Hypothetical protein WP_045740910 117/172 121/234 079 61357 52187 52939 27.5 (V) DNA polymerase III subunit pesilon WP_045740910 117/172 121/234 079 61370 53097 5.9 (V) DNA polymerase III subunit pesilon WP_026118477 121/234 080 52936 53097 5.9 (V) No match 102/157 081 53097 53723 22.6 (M) No match 102/157 082 53720 54048 16.3 (M) WhiB family transcriptional regulator WP_033299115 102/157 083 54045 16.3 (M) WhiB family transcriptional regulator WP_011605908 50/107 170 Mocardiopsis lucentensis (50) 135/271 135/271 135/271 084 55439 50.3 (M) Hypothetical protein Mocardiopsis lucentensis (50) 085 55657 55343 11.0 (M) No match 30/3 30/3	075	49402	50229	30.7 (M)		No match		29
077 5046 51360 33.9 (v) Exodeoxyribonuclease VIII WP_017972488 156/282 078 51357 52118 28.2 (v) Hypothetical protein WP_045740910 117/172 079 52187 52939 27.5 (v) DNA polymerase III subunit epsion (DnaC-like exonuclease) WP_026118477 121/234 080 52936 5.9 (v) No match (63) 081 5307 5.9 (v) No match (65) 082 53720 54208 17.9 (v) Holiday junction resolvase WP_033299115 102/157 083 54205 54645 16.3 (M) WhiB family transcriptional regulator WP_017602245 135/271 084 54648 55439 30.3 (M) Hypothetical protein WP_017602245 135/271 085 56657 55343 11.0 (M) Hypothetical protein WP_04384960 80/215 086 565657 56343 11.9 (V) Hypothetical protein WP_043864960 80/215 087 56029 57438<	076	49935	49747	6.6 (M)		No match		79
078 51357 5118 26.2 (M) Hypothetical protein Actinopolyspora halophila (MP_045740910) (117/172 079 52187 52939 27.5 (M) DNA polymerase III subunit epsilon (DnaO-like exonuclease) WP_026118477 121/234 080 52936 53097 5.9 (M) No match 102/167 081 53087 53723 22.6 (M) No match 102/167 083 54205 54645 16.3 (M) While family transcriptional regulator WP_01369908 50/107 084 54648 55439 30.3 (M) Hypothetical protein WP_017602245 135/271 085 55667 55343 11.0 (M) Montech WP_017602245 135/271 086 55382 6004 4.7 (V) Hypothetical protein WP_003984960 060/215 087 56059 57438 51.9 (V) Hypothetical protein WP_003984960 30/83 086 56319 66311 21.1 (L) Moratch 30/83 30/83 30/83 30/83	077	50446	51360	33.9 (V)	Exodeoxyribonuclease VIII	WP_017972488	156/282	
978 5137 5218 28.2 (V) Hypothetical protein WP_045740910 117/172 079 52187 52399 27.5 (V) DNA polymerase III subunit epsilon (DnaO-like exonclease) WP_025118477 121/234 080 52936 53097 5.9 (V) No match (65) 081 53097 53723 22.6 (M) No match (65) 082 53097 54645 16.3 (M) Whild family transcriptional regulator WP_033299115 102/157 083 54205 54645 16.3 (M) Whild family transcriptional regulator WP_011595908 50/107 084 56657 55433 11.0 (M) No match 38 085 55657 5543 11.0 (M) No match 38 086 55382 56044 24.7 (V) Hypothetical protein Mycobacterinum latzerense (37) 35/380 087 5609 57438 51.9 (V) Hypothetical protein Mycobacterinum latzerense (36) 35/380 088 56919 66111						Actinopolyspora halophila	(55)	
$Actinoplanes rectilineatus (68) 079 52187 52939 27.5 (v) DNA polymerase III subunit epsilon(DnaO-like exonuclease) WP_026118477 121/234 080 52936 53097 5.9 (v) No match No 080 53097 53723 22.6 (M) No match 102/157 082 53720 54208 17.9 (v) Holiday junction resolvase WP_033299115 102/157 083 54205 54645 16.3 (M) WhiB family transcriptional regulator Mocardiopsis lucentensis (65) 084 54648 55439 30.3 (M) Hypothetical protein WP_011595008 (67) 085 5657 55343 11.0 (M) No match (63) 086 55382 56044 24.7 (V) Hypothetical protein Mocardiopsis lucentensis (36) 087 5639 57438 51.9 (V) Hypothetical protein Mocardiopsis planaensis (36) 088 56919 56311 21.1 (L) Moraction Steptomyces planaensis$	078	51357	52118	28.2 (V)	Hypothetical protein	WP_045740910	117/172	
079 \$2187 \$2939 27.5 (M) DNA polymerase III subunit epsilon (DnaQ-like exonuclease) WP_026118477 121/234 080 \$2936 \$3097 \$5.9 (V) No match Kocardiopsis salina (62) 081 \$3097 \$5.72 (X) \$22.6 (M) No match No match 081 \$3020 \$4208 11.9 (V) Holiday junction resolvase WP_013229115 102/157 083 \$4205 \$4645 16.3 (M) WhiB family transcriptional regulator WP_011595098 \$50/107 084 \$4205 \$4648 \$5439 30.3 (M) Hypothetical protein WP_017602245 135/271 085 \$5657 \$5333 11.0 (M) Momatch WP_014984960 80/215 086 \$5632 \$6044 24.7 (V) Hypothetical protein Mocaardiopsis lucentensis Mocaardiopsis lucentensis (36) 087 \$5638 \$6131 21.1 (L) Morpothetical protein WP_043984960 80/215 088 \$6919 \$6311 21.1 (L) Morpothetical protein Morpothetical protein Streptomyces ghanaensis ATC 14672 (36) 089 \$6919 \$6311 21.1 (L) No match Streptomyces sp.NRRL B-5680 (36) <t< td=""><td></td><td></td><td></td><td></td><td></td><td>Actinoplanes rectilineatus</td><td>(68)</td><td></td></t<>						Actinoplanes rectilineatus	(68)	
Nocardiopsis salina (62) 080 52936 53097 5.9 (v) No match 081 53097 53723 22.6 (M) No match 082 53720 54208 17.9 (M) Holiday junction resolvase No match 082 54205 54645 16.3 (M) While family transcriptional regulator WP_03059503 50/107 083 54205 54645 16.3 (M) While family transcriptional regulator WP_017602245 135/271 084 56657 55343 11.0 (M) No match No match 085 56657 55343 11.0 (M) Mpothetical protein WP_033894960 80/215 086 56657 55343 11.9 (V) Hypothetical protein Wpota83849860 80/215 087 56029 57438 51.9 (V) Hypothetical protein WP_030282501 30,433 630 088 56919 56311 21.1 (L) No match Mo match Mo 089 57435 58103	079	52187	52939	27.5 (V)	DNA polymerase III subunit epsilon	WP_026118477	121/234	
080 53936 53097 5.9 (v) No match 081 53097 53723 22.6 (M) No match 082 53720 54208 17.9 (v) Holliday junction resolvase MP_032329115 102/157 083 54205 54645 16.3 (M) WhiB family transcriptional regulator MP_011595908 60/107 084 54545 55439 30.3 (M) Hypothetical protein WP_017602245 135/271 086 55657 55343 11.0 (M) Moradriopsis lucentensis (50) 086 55657 55343 11.0 (M) Moradriopsis Moradriopsis 66 087 56029 57438 51.9 (V) Hypothetical protein WP_043984960 60/215 086 56919 56311 21.1 (L) Moradriopsis lucentensis (36) 087 57435 58103 24.4 (M) Hypothetical protein WP_030282501 30/83 63 088 56919 58131 21.1 (L) No match Zeptomyces sp. NRRL (36) 089 57435 58103 24.4 (M)					(DnaQ-like exonuclease)	Nocardiopsis salina	(52)	
081 53097 53723 22.6 (M) No match 082 53720 54208 17.9 (V) Holliday junction resolvase WP_033299115 102/157 083 54205 54645 16.3 (M) While family transcriptional regulator WP_011595908 50/107 084 54543 54645 16.3 (M) Whyothetical protein WP_017602245 135/271 085 55657 55343 11.0 (M) Moratch No match 38 086 55382 56044 24.7 (V) Hypothetical protein No match 80/215 087 56029 57438 51.9 (V) Hypothetical protein WP_043984960 80/215 086 55382 56044 24.7 (V) Hypothetical protein WP_043984960 80/215 087 56029 57438 51.9 (V) Hypothetical protein WP_030282501 30/83 63 088 56919 56311 21.1 (L) No match 40 089 57435 58103 24.4 (M) Hypothetical protein WP_030282501 30/83 63	080	52936	53097	5.9 (V)		No match		
082 53720 54208 17.9 (V) Holiiday junction resolvase WP_033299115 102/157 083 54205 54645 16.3 (M) WhiB family transcriptional regulator WP_011595908 50/107 084 54648 55439 30.3 (M) Hypothetical protein WP_017602245 135/271 086 55657 55343 11.0 (M) No match 88 80/215 086 55657 55343 11.0 (M) Mypothetical protein WP_043984960 80/215 086 56657 56034 24.7 (V) Hypothetical protein WP_0043984960 80/215 086 56059 57438 51.9 (V) Hypothetical protein WP_003082501 35/380 087 5601 5611 21.1 (L) No match 40 088 56919 56313 24.4 (M) Hypothetical protein WP_03082501 30/83 53 089 57435 58103 24.4 (M) Hypothetical protein WP_037865813 61/118 08908 <td>081</td> <td>53097</td> <td>53723</td> <td>22.6 (M)</td> <td></td> <td>No match</td> <td></td> <td></td>	081	53097	53723	22.6 (M)		No match		
083 54205 54645 16.3 (M) WhiB family transcriptional regulator $Nocardiopsis gilva$ 665 084 54205 54648 55439 30.3 (M) Hypothetical protein $WP_0015002245$ $135/271$ 084 54548 55343 11.0 (M) No ardiopsis lucentensis (65) 085 55657 55343 11.0 (M) No match $80/215$ 086 55382 5604 24.7 (V) Hypothetical protein WP_043984960 $80/215$ 087 56029 57438 51.9 (V) Hypothetical protein EFE65835 135/380 088 56919 56311 21.1 (L) No match 40 089 57435 58103 24.4 (M) Hypothetical protein No match 40 089 57435 58103 24.4 (M) Hypothetical protein No match 56627 $30/83$ 63 090 58214 58504 14.5 (V) No match 5687 56821 9.3 (M) No match 562 091 58573 58908 12.3 (M) H	082	53720	54208	17.9 (V)	Holliday junction resolvase	WP_033299115	102/157	
083 54205 54645 16.3 (M) WhiB family transcriptional regulator WP_011595908 50/107 084 54648 55439 30.3 (M) Hypothetical protein WP_017602245 135/271 085 55657 55343 11.0 (M) No match 38 086 55382 66044 24.7 (V) Hypothetical protein WP_043984960 80/215 087 56029 57438 51.9 (V) Hypothetical protein WP_043984960 30/37 088 56919 56311 21.1 (L) Hypothetical protein EFE65835 135/380 089 57435 58103 24.4 (M) Hypothetical protein WP_030282501 30/83 63 089 57435 58103 24.4 (M) Hypothetical protein WP_030282501 30/83 63 090 58214 58504 14.5 (M) Hypothetical protein WP_037865813 61/118 091 58573 58908 12.3 (M) Hypothetical protein Streptomyces sp. NRRL B-5680 62/2 092 58872 58621 9.3 (M) Hypothetical						Nocardiopsis gilva	(65)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	083	54205	54645	16.3 (M)	WhiB family transcriptional regulator	WP_011595908	50/107	
084 5468 55439 30.3 (M) Hypothetical protein WP_017602245 135/271 085 55657 55343 11.0 (M) No match 38 086 55382 56044 24.7 (V) Hypothetical protein WP_043984960 80/215 087 56029 57438 51.9 (V) Hypothetical protein EFE65835 135/380 088 56919 56311 21.1 (L) Moratch VP_030282501 30/83 63 089 57435 58103 24.4 (M) Hypothetical protein WP_030282501 30/83 63 089 58214 58504 14.5 (V) Moratch 25 2680 090 58214 58908 12.3 (M) Hypothetical protein WP_037865813 61/118 0510 58573 58908 12.3 (M) Hypothetical protein WP_037865813 61/118 0810 58574 58621 9.3 (M) Moratch 5168 092 58872 58621 9.3 (M) </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>Rhodococcus</td> <td>(47)</td> <td></td>						Rhodococcus	(47)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	084	54648	55439	30.3 (M)	Hypothetical protein	WP_017602245	135/271	
085 55657 55343 11.0 (M) No match 80 086 55382 56044 24.7 (V) Hypothetical protein WP_043984960 80/215 087 56029 57438 51.9 (V) Hypothetical protein EFE65835 135/380 087 56019 56311 21.1 (L) EFE65835 135/380 30/83 63 088 56919 56311 21.1 (L) No match 40 089 57435 58103 24.4 (M) Hypothetical protein No match 40 089 57435 58103 24.4 (M) Hypothetical protein No match 25 090 58214 58504 14.5 (V) No match 25 091 58573 58908 12.3 (M) Hypothetical protein No match 25 092 58872 58621 9.3 (M) Hypothetical protein No match 52 093 59867 59571 10.5 (V) No match 52						Nocardiopsis lucentensis	(50)	
086 55382 56044 24.7 (V) Hypothetical protein WP_043984960 80/215 087 56029 57438 51.9 (V) Hypothetical protein EFE65835 135/380 087 56029 57438 51.9 (V) Hypothetical protein EFE65835 135/380 088 56919 56311 21.1 (L) Streptomyces ghanaensis ATCC 14672 (36) 089 57435 58103 24.4 (M) Hypothetical protein WP_030282501 30/83 63 089 58214 58504 14.5 (V) Moratch 25 3680 26 091 58573 58908 12.3 (M) Hypothetical protein WP_037865813 61/118 092 58872 58621 9.3 (M) Woratch Streptomyces sp. NRRL S1686 (52) 093 59867 59571 10.5 (V) No match 52	085	55657	55343	11.0 (M)		No match		38
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	086	55382	56044	24.7 (V)	Hypothetical protein	WP_043984960	80/215	
087 56029 57438 51.9 (V) Hypothetical protein EFE65835 135/380 088 56919 56311 21.1 (L) No match 40 089 57435 58103 24.4 (M) Hypothetical protein WP_030282501 30/83 63 090 58214 58504 14.5 (V) No match 25 091 58573 58908 12.3 (M) Hypothetical protein WP_037865813 61/118 092 58872 58621 9.3 (M) No match 25 093 59867 59571 10.5 (V) No match 25						Mycobacterium llatzerense	(37)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	087	56029	57438	51.9 (V)	Hypothetical protein	EFE65835	135/380	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						Streptomyces ghanaensis ATCC 14672	(36)	
089 57435 58103 24.4 (M) Hypothetical protein WP_030282501 30/83 63 089 58214 58504 14.5 (V) Kreptomyces sp. NRRL (36) 35 090 58214 58504 14.5 (V) No match 25 091 58573 58908 12.3 (M) Hypothetical protein WP_037865813 61/118 5876 58908 12.3 (M) Hypothetical protein Kreptomyces sp. NRRL (52) 58168 58908 12.3 (M) No match 51 092 58872 58621 9.3 (M) No match 51 093 59867 59571 10.5 (V) No match 51	088	56919	56311	21.1 (L)		No match		40
900 58214 58504 14.5 (V) No match 25 091 58573 58908 12.3 (M) Hypothetical protein WP_037865813 61/118 092 58872 58621 9.3 (M) No match 58 093 59867 59571 10.5 (V) No match 10.5 (V)	089	57435	58103	24.4 (M)	Hypothetical protein	WP_030282501	30/83	63
090 58214 58504 14.5 (V) No match 25 091 58573 58908 12.3 (M) Hypothetical protein WP_037865813 61/118 Streptomyces sp. NRRL S-1868 (52) (52) (52) 092 58872 58621 9.3 (M) No match V 093 59867 59571 10.5 (V) No match V						<i>Streptomyces</i> sp. NRRL B-5680	(36)	
091 58573 58908 12.3 (M) Hypothetical protein WP_037865813 61/118 Streptomyces sp. NRRL (52) 5-1868 5-1868 5-1868 092 58872 58621 9.3 (M) No match No match 093 59867 59571 10.5 (V) No match No match	090	58214	58504	14.5 (V)		No match		25
092 58872 58621 9.3 (M) S-1868 So match 093 59867 59571 10.5 (V) No match	091	58573	58908	12.3 (M)	Hypothetical protein	WP_037865813	61/118	
092 58872 58621 9.3 (M) No match 093 59867 59571 10.5 (V) No match						<i>Streptomyces</i> sp. NRRL S-1868	(52)	
093 59867 59571 10.5 (V) No match	092	58872	58621	9.3 (M)		No match		
	093	59867	59571	10.5 (V)		No match		

^aThe first translated amino acid is shown in parentheses.

^bThe matched homologs in Streptomyces phage phiSASD1 are also included although they are not the best hits.

^c The percentage identity is calculated based on the number of identical amino acid residues (numerator) over the number of compared residues (denominator) and shown in parentheses. ^d The sequence coverage (%) determined by mass spectrometry of the protein is indicated.

General Features of P1312

The morphology of P1312 was visualized using a transmission electron microscope (**Figure 5**). P1312 has a head in hexagonal outline, plausibly icosahedral, and a long flexible non-contractile tail, suggesting that P1312 belongs to the family *Siphoviridae*. The head is approximately 56 nm in diameter, and the tail is approximately 250 nm long and 11 nm wide. The complete nucleotide sequence of the genome of P1312 was determined with Illumina Miseq and assembled into a circular genome of 60,284 base pairs using the assembly algorithm of CLC Genomics Workbench. The GC content of the phage genome is 65.9%, close to 67.5% of the host's chromosome (Lykidis et al., 2007). The possible ORFs in the genome were predicted by Bacterial Annotation System and Glimmer/RBSfinder program. Integrating the computing results indicated the presence of 93 ORFs, arranged on both strands. Among them, 36 ORFs start with methionine, while 44 and 13 ORFs start with valine and leucine, respectively. The biggest ORF encodes a protein containing 1657 amino acid residues; by contrast, the smallest one encodes a peptide of 30 amino acids. The general information of the proteins encoded by the ORFs regarding their lengths, putative functions, and homologs found by BLASTp are listed in **Table 1**. The phage head morphogenesis protein-encoding ORF was arbitrarily assigned as the first ORF, followed by terminase genes, so that the presented gene order is similar to that of many bacteriophages such as *Salmonella* bacteriophage ES18

(Casjens et al., 2005) and *Enterococcus faecalis* bacteriophage ϕ Ef11 (Stevens et al., 2011). Thirty-one ORFs encode proteins that contain acknowledged functional domains or motifs, while 23 ORFs encode hypothetical proteins that have homologs found in other phages, prophages or bacteria, despite the lack of putative conserved domains. The rest of the predicted ORFs encode proteins sharing no significant identity with proteins in the databases; therefore, some of them may represent false positives.

The purified phage particles were subjected to protein identification by LC-MS/MS. This method identified 24 out of the 93 predicted proteins, including many phage structural proteins and enzymes such as N-acetylmuramoyl-L-alanine amidase and replicative DNA helicase (**Table 1**). Nine identified proteins (encoded by ORF6, 10, 14, 50, 75, 76, 85, 88, and 90) actually do not have significant homologs in the databases; therefore,

FIGURE 3 | Thermal stability of *T. fusca* **phage P1312.** P1312 diluted in water was incubated at 60, 70, 80, 90, and 95°C for the indicated time, and the residual infectivity was determined by the plaque assay.

they may represent novel proteins. It is noteworthy that either DNase I or RNase A, which were used in the pretreatment prior to the size exclusion chromatography, was not detected. The absence of the nucleases in the phage preparation suggests that the chromatographic method could effectively separate the soluble proteins from the virions.

Provisional Functions of P1312 Proteins

Genome organization of P1312 is illustrated in **Figure 6**. ORFs are displayed on both DNA strands with many of them overlapping. The cluster encompassing ORF1–21 is responsible for phage particle formation. ORF1 produces the head morphogenesis protein. The product of ORF3 contains an ATP-binding cassette transporter nucleotide-binding domain and shares similarity to the large subunit of phage terminases. ORF4 is supposed to produce the phage portal protein, the junction between the phage head and tail proteins, through which DNA passes during packaging and injection. ORF7 encodes

FIGURE 5 | Electron microgram of P1312 virions. The phage particles were prepared, negatively stained and examined by electron microscope as described in Materials and Methods. **(A)** The broad view of the phage particles. **(B)** The close-up of a single phage particle.

a phage capsid protein. The product of ORF8 belongs to a family composed of proteins from a variety of bacteriophages. The region from ORF12 to ORF21 probably is involved in tail formation. In details, ORF12 directs the synthesis of the phage head-tail adaptor, while ORF13, 15, 16, 17, 18, and 21 likely encode the phage tail components. ORF20, the largest gene in the genome, encodes the tail tape measure protein. For lambdoid phages, the size of the tape measurement protein corresponds to the tail length by a fairly constant of 0.15 nm per amino acid residues (Katsura, 1990). The average tail length of P1312 is approximately 250 nm, accordant to the size of the phage tail tape measure protein. Many of the proteins encoded by the assumed head and tail gene modules share similarities to the proteins encoded by Streptomyces phage phiSASD1 (Wang et al., 2010) (Table 1). The comparison of the modules between P1312 and phiSASD1 is shown in Figure 7. Despite the resemblance, a couple of differences in the gene order are noticed. First, the directions of portal protein gene are opposite. Second, the N terminus of gp38 of phiSASD1 shares a small similar region with a tail protein of P1312 (product of ORF21), while the C terminus has a region similar to the CBM_4_9 domain present in the phosphodiesterase of P1312 (product of ORF22). Apart from the head and tail gene modules, the other modules share less similarity between P1312 and phiSASD1.

The segment from ORF22 to ORF49 is notable for producing enzymes for a variety of functions such as DNA degradation/modification and cell wall disruption. ORF22 encodes a protein of 1096 amino acid residues. This protein is predicted to contain an N-terminal signal peptide, a metallophosphatase (MPP) domain and a domain related to carbohydrate-binding module (CBM) family 4_9 at the C-terminus. Proteins in the MPP superfamily are functionally diverse; the members include Mre11/SbcD-like exonucleases, Dbr1-like RNA lariat debranching enzymes, YfcE-like phosphodiesterases, purple acid phosphatases (PAPs), YbbF-like UDP-2,3-diacylglucosamine hydrolases and acid sphingomyelinases according to the conserved domain database, NCBI. By the N-terminal signal peptide and the C-terminal CBM, the product of ORF22 may be secreted through the cell membrane and anchors within the cell wall architecture. The MPP domain is thought to have a DNA degradation activity that may prevent the superinfection of the host by other bacteriophages. The cell wall of T. fusca mainly contains peptidoglycan and polyglycerolphosphate-lipoteichoic acid (Rahman et al., 2009); the latter is covalently linked to the outer leaflet of the cytoplasmic membrane. Therefore, the alternative function of the MPP domain may be involved in the hydrolysis of the cell wall by hydrolyzing the phosphodiester bonds in the teichoic acid polymers. ORF25 directs the synthesis of a putative class I adenosylmethionine-dependent methyltransferase. Presumably, this enzyme has an activity for nucleic acid modification. ORF27 encodes a protein similar in amino acid sequence to glycosyl/glycerophosphate transferase, a protein responsible for the polymerization of the main chain of the cell wall-associated teichoic acid. The product of ORF27, as being a phage protein, is thus assumed to interfere with, rather than promote, the host's function of teichoic acid synthesis.

The protein encoded by ORF41 is a putative Nacetylmuramoyl-L-alanine amidase, presumably able to disintegrate the peptidoglycan of the host cell by cleaving the amide bond between N-acetylmuramoyl and L-alanine. It is noteworthy that this phage protein does not contain a secretory signal sequence, consistent with a long-term observation that the endolysin produced by double stranded DNA bacteriophages requires a small membrane protein, known as a holin, to permeabilize the membrane for its access to the peptidoglycan (Young et al., 2000). Interestingly, we found that this putative amidase was associated with the phage particles according to the results of tandem mass spectrometry. This association may reflect an artifact caused by an unspecific interaction of the protein to the virion. Alternatively, it may implicate an involvement of the amidase in the infection step by assisting the phage to inject its DNA into the host cell. Actually, tail-associated peptidoglycan-degrading enzymes involved in localized cell wall degradation have been evidenced in a number of bacteriophages such as Tuc2009 (Kenny et al., 2004) and \$\$\phi\$29 (Xiang et al., 2008). ORF042 encodes a 93-amino acid polypeptide with two transmembrane helices predicted by the TMPred program (Hofmann and Stoffel, 1993). It is tempting to assume that this polypeptide serves as the holin for the phage amidase to pass through the membrane. ORF49 encodes a transposase belonging to IS605 family, which is also present in the genome of T. fusca and many other bacteria. Presumably, phage P1312 acquired this gene from its bacterial host.

Genes responsible for DNA replication and transcriptional regulation are situated sporadically in the remaining half of the genome. Presumably, ORF53 directs the synthesis of a DnaB-like replicative helicase that unwinds the DNA duplex at the replication fork. ORF63 encodes a protein whose C-terminus shares similarity to DNA translocase ftsK of *Actinoplanes*, suggesting the involvement of the protein in DNA segregation. The protein encoded by ORF68 contains a putative serine recombinase domain that is usually found associated with pfam00239 in putative integrases/recombinases of mobile genetic elements of diverse bacteria and phages. Therefore, this protein may catalyze the integration and excision of the phage genome in and from the host chromosome, respectively. It is noteworthy that P1312 behaved as a lytic bacteriophage in this study; therefore, the culture condition may disfavor the integration

modifications, enzymes participating in phage DNA replication, and transcriptional factors, respectively. The orange arrow denotes the presumed origin of DNA replication. Ticks on the scale are at intervals of 500 bp.

function of the protein probably through suppressing the protein expression. The protein encoded by ORF77 is related to the PDDEXK superfamily, and appears to be an exonuclease VIII. The product of ORF79 is a DnaQ-like exonuclease, belonging to DEDDh 3'-5' exonuclease family. Probably, it acts as a proofreading subunit (epsilon) of polymerase III for the DNA replication of P1312. ORF 82 encodes a protein of RusA superfamily that can resolve Holliday junction intermediates by its endonuclease activity. BLASTp analysis also suggests the

presence of five transcriptional regulators, encoded by ORF38, 44, 52, 71, and 83. P1312 may use them to control the gene expressions, in terms of transcriptional timing and level, for its successful proliferation. The probable replication origin of P1312 was predicted by the GenSkew program, an application for computing and plotting nucleotide skew data. The resulting GC-skew plot (not shown) suggests that the region around the nucleotide 38440 (close to ORF60) could be the initiation site for replication.

FIGURE 8 | Neighbor-joining phylogenetic tree of large terminase subunit amino acid sequences. The sequences, except that from P1312, were classified as described previously (Casjens et al., 2005), and bootstrap analysis was performed with 1000 repetitions. The node of phylogenetic tree shows the bootstrap confidence values above 50%.

FIGURE 9 | Restriction analysis of P1312 DNA. The phage DNA was completely digested with *Bam*HI, *BstXI*, *PvuI*, *PvuII*, *SacI* or *SphI*, and the products were analyzed by 0.8% agarose gel electrophoresis. Lane M indicate DNA marker, 1-kb DNA Ladder. f and s indicate that the digests were heated to 80°C for 15 min and then cooled fast or slow to room temperature, respectively.

DNA Packaging Strategy

All known tailed-bacteriophage virions contain a single linear dsDNA chromosome, because the passage of the portal protein is not wide enough to allow two parallel dsDNAs to be threaded simultaneously into the head during packaging and out of the virion during injection. As a member of Siphoviridae, P1312 probably contains a linear genome, rather than a circular one as determined by whole genome sequencing using Illumina Miseq. Six types of termini of the chromosomes in tailed-bacteriophage virions have been studied (Casjens and Gilcrease, 2009); they are (1) single-stranded cohesive ends, (2) circularly permuted direct terminal repeats, (3) short, non-permuted, direct terminal repeats, (4) long, non-permuted, direct terminal repeats, (5) terminal host DNA sequences, and (6) covalently bound terminal proteins. These different types of ends reflect varied DNA replication strategies and depend on terminase actions during DNA packaging. A previous bioinformatic analysis indicated that the different functional classes of phage-encoded terminases can usually be predicted from the amino acid sequence of large terminase subunits (Casjens et al., 2005). According to the determined nucleotide sequence, the termini of type 5 and 6 were precluded from the genome of P1312. To have a clue about the most probable packaging strategy employed by P1312, the large terminase subunit of P1312 was compared, in amino acid sequence, to those of bacteriophages with known chromosomal termini. Based on the resulting phylogenetic tree

(Figure 8), P1312 is classified into a clan that uses the P22-like headful strategy for DNA packaging. Accordingly, the genomic termini of P1312 are possibly circularly permuted direct terminal repeats. To support this proposition, the phage genome was digested with a variety of restriction enzymes, and the digested products were heated at 80°C for 15 min, followed by a fast or slow cooling process. The samples were then analyzed by agarose gel electrophoresis (Figure 9). If the genome has singlestranded cohesive ends, the two restriction fragments, which have a single cohesive terminus, will join together and appear as a larger fragment in the slow chilled sample. That the restriction patterns of P1312 did not alter in response to the different cooling processes excludes the possibility of the presence of cohesive ends. For headful packaging phages that contain terminally redundant and circularly permutated chromosomes, the restriction pattern may consist of all the fragments expected from a circular genome plus a submolar pac fragment as in the case of P22 (Casjens and Gilcrease, 2009). However, if the headful terminase makes imprecise series initiation cleavage, as is the case for sf6 and ES18, no visible pac fragment will be detected in the restriction pattern. Instead, the terminal fragments will show as blur backgrounds between bands due to their variable lengths (Casjens and Gilcrease, 2009). The restriction patterns created by the various restriction enzymes in Figure 9 are consistent with the predicted results based on a circular P1312 genome. No pac fragment was observed in the electrophoresis gel in this study; however, blur backgrounds were actually present. This result supports the proposition that P1312 is a P22-like headful packaging phage.

Concluding Remarks

Bacteriophage P1312 is the first well-described phage to infect *T. fusca.* The tolerance to high temperature indicates that P1312 has adapted to the thermophilic stage of composting as *T. fusca.* In general, P1312 has a genome organization similar to *Siphoviridae* of Gram-positive bacteria; however, a notable difference is the direction of the portal protein-encoding gene, which renders the genome of P1312 unique. *Nocardiopsis lucentensis*, an actinomycete lives in saline soil habitats (Yassin et al., 1993), is the number 1 ranked organism that provides bestmatched homologs with the proteins encoded by the putative ORFs of P1312. This fact suggests the presence of prophages in *N. lucentensis* or implies a possibly evolutionary origin of P1312. P1312 may represent a valuable resource for understanding the molecular interaction between *T. fusca* and its co-evolutionary bacteriophages.

Acknowledgments

This work was supported by grants MOST 103-2313-B-005-032-MY3 from the Ministry of Science and Technology, Taiwan, ROC. We would also like to express our gratitude to Professor Michael Bagdasarian, Michigan State University, for his help in the preparation of the manuscript.

References

- Adav, S. S., Ng, C. S., Arulmani, M., and Sze, S. K. (2010). Quantitative iTRAQ secretome analysis of cellulolytic *Thermobifida fusca. J. Proteome Res.* 9, 3016–3024. doi: 10.1021/pr901174z
- Boyd, A. C., and Sherratt, D. J. (1995). The pCLIP plasmids: versatile cloning vectors based on the bacteriophage lambda origin of replication. *Gene* 153, 57–62. doi: 10.1016/0378-1119(94)00788-T
- Campbell, A. (1994). Comparative molecular biology of lambdoid phages. Annu. Rev. Microbiol. 48, 193–222. doi: 10.1146/annurev.mi.48.100194.001205
- Casjens, S. R., and Gilcrease, E. B. (2009). Determining DNA packaging strategy by analysis of the termini of the chromosomes in tailed-bacteriophage virions. *Methods Mol. Biol.* 502, 91–111. doi: 10.1007/978-1-60327-565-1_7
- Casjens, S. R., Gilcrease, E. B., Winn-Stapley, D. A., Schicklmaier, P., Schmieger, H., Pedulla, M. L., et al. (2005). The generalized transducing *Salmonella* bacteriophage ES18: complete genome sequence and DNA packaging strategy. *J. Bactriol.* 187, 1091–1104. doi: 10.1128/JB.187.3.1091-1104.2005
- Chen, C. Y., Hsieh, Z. S., Cheepudom, J., Yang, C. H., and Meng, M. (2013). A 24.7-kDa copper-containing oxidase, secreted by *Thermobifida fusca*, significantly increasing the xylanase/cellulase-catalyzed hydrolysis of sugarcane bagasse. *Appl. Microbiol. Biotechnol.* 97, 8977–8986. doi: 10.1007/s00253-013-4727-y
- Delcher, A. L., Harmon, D., Kasif, S., White, O., and Salzberg, S. L. (1999). Improved microbial gene identification with GLIMMER. *Nucleic Acids Res.* 27, 4636–4641. doi: 10.1093/nar/27.23.4636
- Deng, Y., and Fong, S. S. (2011). Metabolic engineering of *Thermobifida fusca* for direct aerobic bioconversion of untreated lignocellulosic biomass to 1propanol. *Metab. Eng.* 13, 570–577. doi: 10.1016/j.ymben.2011.06.007
- Gomez del Pulgar E. M., and Saadeddin, A. (2014). The cellulolytic system of *Thermobifida fusca*. Crit. Rev. Microbiol. 40, 236–247. doi: 10.3109/1040841X.2013.776512
- Ha, S.-J., Galazka, J. M., Kim, S. R., Choi, J.-H., Yang, X., Seo, J.-H., et al. (2011). Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc. Natl. Acad. Sci. U.S.A. 108, 504–509. doi: 10.1073/pnas.1010456108
- Hofmann, K., and Stoffel, W. (1993). TMbase a database of membrane spanning proteins segments. *Biol. Chem. Hoppe-Seyler* 374, 166.
- Katahira, S., Mizuike, A., Fukuda, H., and Kondo, A. (2006). Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. *Appl. Microbiol. Biotechnol.* 72, 1136–1143. doi: 10.1007/s00253-006-0402-x
- Katsura, I. (1990). Mechanism of length determination in bacteriophage lambda tails. Adv. Biophys. 26, 1–18. doi: 10.1016/0065-227X(90)90004-D
- Kenny, J. G., McGrath, S., Fitzgerald, G. F., and van Sinderen, D. (2004). Bacteriophage Tuc2009 encodes a tail-associated cell wall-degrading activity. *J. Bacteriol.* 186, 3480–3491. doi: 10.1128/JB.186.11.3480-3491.2004
- Lin, Y. R., Chiu, C. W., Chang, F. Y., and Lin, C. S. (2012). Characterization of a new phage, termed ΦA318, which is specific for *Vibrio alginolyticus*. Arch. Virol. 157, 917–926. doi: 10.1007/s00705-012-1244-8
- Lončar, N., and Fraaije, M. W. (2015). Not so monofunctional-a case of thermostable *Thermobifida fusca* catalase with peroxidase activity. *Appl. Microbiol. Biotechnol.* 99, 2225–2232. doi: 10.1007/s00253-014-6060-5
- Lykidis, A., Mavromatis, K., Ivanova, N., Anderson, I., Land, M., DiBartolo, G., et al. (2007). Genome sequence and analysis of the soil cellulolytic actinomycete

Thermobifida fusca YX. J. Bacteriol. 189, 2477-2486. doi: 10.1128/JB.01 899-06

- Maki, M., Leung, K. T., and Qin, W. (2009). The prospects of cellulase producing bacteria for the bioconversion of lignocellulosic biomass. *Int. J. Biol. Sci.* 5, 500–516. doi: 10.7150/ijbs.5.500
- Nafissi, N., and Slavcev, R. (2014). Bacteriophage recombination systems and biotechnical applications. *Appl. Microbiol. Biotechnol.* 98, 2841–2851. doi: 10.1007/s00253-014-5512-2
- Rahman, O., Pfitzenmaier, M., Pester, O., Morath, S., Cummings, S. P., Hartung, T., et al. (2009). Macroamphiphilic components of thermophilic actinomycetes: identification of lipoteichoic acid in *Thermobifida fusca. J. Bacteriol.* 191, 152–160. doi: 10.1128/JB.01105-08
- Reece, R. J. (2004). Analysis of Genes and Genomes. Hoboken, NJ: John Wiley & Sons.
- Sauer, B., and Henderson, N. (1988). Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc. Natl. Acad. Sci. U.S.A. 85, 5166–5170. doi: 10.1073/pnas.85.14.5166
- Stevens, R. H., Ektefaie, M. R., and Fouts, D. E. (2011). The annotated complete DNA sequence of *Enterococcus faecalis* bacteriophage φEf11and its comparison with all available phage and predicted prophage genomes. *FEMS Microbiol. Lett.* 317, 9–26. doi: 10.1111/j.1574-6968.2010.02203.x
- Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. *Mol. Biol. Evol.* 30, 2725–2729. doi: 10.1093/molbev/mst197
- van Blooise, E., Torres Pazmiño, D. E., Winter, R. T., and Fraaije, M. W. (2010). A robust and extracellular heme-containing peroxidase from *Thermobifida fusca* as prototype of a bacterial peroxidase superfamily. *Appl. Microbiol. Biotechnol.* 86, 1419–1430. doi: 10.1007/s00253-009-2369-x
- van Domselaar, G. H., Stothard, P., Shrivastava, S., Cruz, J. A., Guo, A., Dong, X., et al. (2005). BASys: a web server for automated bacterial genome annotation. *Nucleic Acids Res.* 33, W455–W459. doi: 10.1093/nar/gki593
- Wang, S., Qiao, X., Liu, X., Zhang, X., Wang, C., Zhao, X., et al. (2010). Complete genomic sequence analysis of the temperate bacteriophage phiSASD1 of *Streptomyces avermitilis*. Virology 403, 78–84. doi: 10.1016/j.virol.2010.03.044
- Xiang, Y., Morais, M. C., Cohen, D. N., Bowman, V. D., Anderson, D. L., and Rossmann, M. G. (2008). Crystal and cryoEM structural studies of a cell wall degrading enzyme in the bacteriophage \u03c629 tail. Proc. Natl. Acad. Sci. U.S.A. 105, 9552–9557. doi: 10.1073/pnas.0803787105
- Yassin, A. F., Galinski, E. A., Wohlfarth, A., Jahnke, K.-D., Schaal, K. P., and Trüper, H. G. (1993). A new actinomycete species, *Nocardiopsis lucentensis* sp. nov. *Int. J. Syst. Evol. Microbiol.* 43, 266–271.
- Young, R., Wang, I.-N., and Roof, W. D. (2000). Phages will out: strategies of host cell lysis. *Trends Microbiol.* 8, 120–128. doi: 10.1016/S0966-842X(00)01705-4

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2015 Cheepudom, Lee, Cai and Meng. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.